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1. Introduction

Understanding physics and stabilization of the resistive wall mode (RWM) is of

significant importance for the successful operation of the present day and the future

fusion devices. Converted from the ideal MHD mode in the presence of the wall

with finite electrical conductivity, and growing on the time scale of the magnetic field

penetration time through the wall, the RWM sets pressure limit in the high beta, long

pulse scenarios of the tokamak devices [1, 2, 3]. It also limits the discharge duration of

the reversed field pinch (RFP) devices [4, 5, 6]. Control of the mode growth is necessary

for the discharge time longer than the wall time.

Generally two methods are envisaged for the RWM stabilization: active control and

stabilization via the mode resonance with continuum spectra or particle motions. For

active control, the perturbed magnetic field, measured by a set of sensors, is used to

generate the control signal for a set of active magnetic coils. This technique has been

extensively studied theoretically [7, 8, 9, 10, 11, 12, 13, 14] and has been successfully

applied in the present day fusion devices, allowing operations with the plasma pressure

exceeding the no-wall limit for tokamaks, [15, 16, 17] and resulting in substantial increase

of the plasma discharge duration in RFPs [18, 19] . These experiments also demonstrated

the possibility of simultaneous suppression of multiple unstable modes, with different

toroidal harmonic numbers.

The RWM suppression via the mode resonance with stable waves or particles is

another possible control mechanism (also called passive stabilization). It has been

experimentally observed in multiple tokamak configurations [20] that the mode is

stabilized when the plasma rotation frequency is sufficiently high. Several physics

mechanisms have been proposed, that can contribute to this stabilization. In the ideal

MHD description, the free energy dissipation is caused by the mode resonance with

the Alfvén [21, 22] or sound [23, 24] wave continuum spectra. The dissipation strength

depends on the toroidal rotation frequency Ω of the plasma. In the absence of other

damping, normally a rotation speed of the order of a few percent of the Alfvén speed is

required for the full mode suppression. Another mechanism, that can contribute to the

RWM stabilization, is associated with the ion Landau damping of the parallel sound

wave. An accurate description of this mechanism requires kinetic treatment of the ion

motion along magnetic field lines [25]. A fluid approximation can be made by adding a

viscous force to the parallel momentum equation [26]. A large aspect ratio drift kinetic

calculation was performed in Ref. [27], where the mode resonance with the transit

motion of circulating and the bounce motion of trapped thermal ions were considered.

The resulting kinetic terms were implemented as a semi-kinetic damping model [28] and

subsequently improved [29]. In the regime of slow plasma rotation, where the rotation

frequency is below the diamagnetic frequency of thermal particles, a damping model was

proposed based on the mode resonance with the magnetic precession drift of trapped

particles [30]. This model seems to predict well the observed RWM stabilization in DIII-

D plasmas with balanced beam injection [31], as well as in recent NSTX experiments
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[32]. The accurate prediction of the RWM stabilization for slowly rotating plasmas is

an important issue for the future reactor experiment ITER.

Previous studies of the rotational stabilization of the RWM were performed mainly

for the tokamak configuration. In a RFP device, the poloidal and toroidal equilibrium

magnetic fields are of the same order of magnitude. The toroidal field normally changes

sign near the plasma edge. This normally results in a rich spectrum of the mode

along the toroidal angle. Several non-resonant harmonics, with different toroidal mode

numbers (positive or negative according to the sign of the safety factor q), can be

simultaneously unstable and grow on the time scale comparable with the wall response

time, and therefore are classified as the RWMs. Available theoretical results for the RFP

configuration [33, 34] show that a plasma rotation frequency, in the range of the Alfvén

frequency (Ω ∼ ωa), is needed for the mode suppression. Such a high plasma rotation

is not observed in the present day RFP devices. Therefore, rotational stabilization

mechanism was not considered as realistic for RFPs. On the other hand, the mode

resonance with particle drift motions also occurs in RFP plasmas in the slow rotation

regime, and it is not clear to which degree the kinetic effects can contribute to the RWM

stabilization in RFP configurations. In this work, numerical study of the effect of kinetic

resonances on the RWM stability is performed for RFP plasmas. In particular, plasma

parameters corresponding to the RFX device [35] are assumed.

2. Physics models and numerical schemes

In this section we briefly describe the physics models that are used in the present work.

More complete description can be found in [36]. The stability of the RWM for these

studies is determined by solving numerically the system of MHD equations with a drift

kinetic closure, in the presence of the toroidal plasma flow

(−iω + inΩ)ξ = v + (ξ · ∇Ω)R2∇φ (1)

ρ(−iω + inΩ)v = −∇ · p + j ×B + J × Q

− ρ[2ΩẐ × v + (v · ∇Ω)R2∇φ] −∇ · Π (2)

(−iω + inΩ)Q = ∇× (v ×B) + (Q · ∇Ω)R2∇φ (3)

(−iω + inΩ)p = − v · ∇P (4)

j = ∇× Q (5)

where ω = iγ − ωr is the complex mode frequency, with γ being the mode growth or

damping rate and ωr being the real mode rotation frequency (in the laboratory frame),

B,J,P - equilibrium magnetic field, current density and pressure respectively, Ẑ - unit

vector in the vertical direction, ρ - plasma density, Ω - plasma rotation frequency in

the toroidal direction φ, ξ,v,j,Q - plasma displacement, perturbed velocity, perturbed

current, and perturbed magnetic field respectively, p - the perturbed pressure tensor.

The kinetic terms are coupled to the MHD equations via the pressure tensor terms,
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defined as

p = Ip+ p‖b̂b̂ + p⊥(I − b̂b̂) (6)

where p is the fluid pressure perturbation, associated with the “adiabatic” part of the

drift kinetic solution, p‖, p⊥ are the parallel and perpendicular components of the kinetic

pressure tensor, respectively, b̂ = B/B, B =| B |, I is the unit tensor. For a perturbation

with the given toroidal mode number n, the parallel and perpendicular components of

the pressure tensor are calculated as:

p‖e
−iωt+inφ =

∑

e,i

∫

dvMv2
‖f

1
L (7)

p⊥e
−iωt+inφ =

∑

e,i

∫

dv
1

2
Mv2

⊥f
1
L (8)

Here the summation is over the electron and ion species. The integration is carried

out over the particle velocity space. M is the particle mass, v‖, v⊥ are the parallel

and perpendicular velocity components, respectively, with respect to the equilibrium

magnetic field. f 1
L is the “non-adiabatic” part of the perturbed particle distribution

function. It is derived as

f 1
L = −f 0

ǫ ǫke
−iωt+inφ

∑

m,l

XmHmlλmle
−inφ̃(t)+im<χ̇>+ilωbt (9)

where the subscripts n,m,l mark the Fourier components along the toroidal, poloidal

angles and along the particle bounce orbit, f 0
ǫ - derivative of the equilibrium distribution

function (taken to be Maxwellian for thermal particles) with respect to the particle

energy ǫ, ǫk - kinetic energy of the particles, Hml - geometrical factor associated with

the equilibrium quantities in the perturbed particle Lagrangian, λml - the mode-particle

resonance operator, φ̃(t) = φ(t)− < φ̇ > t - the periodic part (in bounce period) of

the particle phase angle along the toroidal direction. < · > here denotes average over

the particle bounce period. χ(t) is the particle poloidal phase angle. Xm denotes the

poloidal Fourier harmonics of the perpendicular fluid displacement and the magnetic

field perturbation. The mode-particle resonant operator is

λml =
n[ω∗N + (ǫk − 3/2)ω∗T + Ω] − ω

nωd + nΩ + [α(m+ nq) + l]ωb − iνeff − ω
(10)

where ω∗N , ω∗T - diamagnetic frequencies associated with the equilibrium density and

temperature gradients, respectively, ωb - bounce frequency, ωd - bounce averaged

magnetic drift frequency, νeff - effective collision frequency, α =0 for trapped particles,

and α =1 for passing particles. For passing particles, the bounce frequency ωb becomes

the transit frequency ωt. The energy damping of the mode is associated with the

singularity of the resonant operator, as the denominator vanishes. The finite mode

growth (damping) rate and the collisionality term eliminate the singularity, and hence

modifies the eventual damping energy. The collisionality effect on the RWM stability

(via the collision frequency term iνeff of the resonant operator) is not considered in this
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work, although the electron collision in RFP plasmas is probably high enough to have

a large impact on the kinetic contribution from electrons.

Equations (1)-(9) form a MHD-kinetic hybrid system in a non-perturbative manner,

that the eigenfunction (and the eigenvalue) is allowed to be self-consistently determined

in the presence of kinetic effects.

The ion Landau damping of the parallel sound wave can be modeled by replacing

the viscous stress tensor term from Eq. (2) by a parallel viscous force [26]

∇ · Π = κ|k‖vthi|ρ(v · b̂b̂) (11)

where κ is a numerically tunable coefficient determining the damping strength. k‖ =

(n−m/q)/R is the parallel wave number. vthi is the ion thermal velocity.

The system of the ideal single fluid equations can be recovered by dropping the

parallel and the perpendicular kinetic pressure tensor terms, and adding the term

−5/3P∇ · v to the right hand side of Eq. (4), to obtain the adiabatic equation of

state.

The system of equations (1) - (9) is formulated as an eigenvalue problem, that can

be written in a matrix form

−iωBX = A(ω)X (12)

where A,B represent the MHD operators, and X is the solution variables (the

eigenvector). Note that the eigenvalue problem becomes nonlinear since the complex

eigenfrequency ω enters into operator A via the resonant operator (10). This non-

linearity is resolved in the MARS-K code [36] by using an iterative algorithm with

relaxation. At each iteration, an inverse iteration scheme is used to find the eigenvalue

and eigenvector of Eq. (12).

The problem is solved in full toroidal geometry, in a flux coordinate system (s,χ,φ),

where s =
√

ψp, with ψp = (ψ−ψa)/(ψ0−ψa) being the normalized poloidal flux (ψ0 and

ψa are the equilibrium poloidal flux on the magnetic axis and at the plasma boundary

surface, respectively). χ is the generalized poloidal angle and φ is the geometrical

toroidal angle. The equilibrium quantities are obtained by using the equilibrium solver

CHEASE [37].

3. Equilibria specifications

We choose equilibria that closely model the typical RFX plasmas. We assume a circular

plasma cross-section, with the major radius R0 = 2.0 m and the inverse aspect ratio

ε = 0.23. The global equilibrium parameters (for RFP) are F ≡ Bφ(a)/< Bφ >=-

0.06, Θ ≡ Bθ(a)/< Bφ >=1.41, where Bθ(a),Bφ(a) are the equilibrium poloidal and

toroidal fields, respectively, at the plasma edge (< · > here denotes the average over

the plasma column). The total plasma current is Ip=1.6 MA. The on-axis toroidal field

is B0=1.53 T. For comparative studies, we consider a set of equilibria, with a base case

having the poloidal beta βp ≡ 8π < p > Vtot/I
2
p=4%, corresponding to the on-axis

electron and ion temperatures and densities Te0=1 keV, Ti0=400 eV, ne0 = ni0=2× 1019
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Figure 1. Equilibrium profiles along the minor radius s ≡
√

ψp, with ψp being the

normalized poloidal flux, for (a) the normalized equilibrium magnetic field components

(solid -toroidal component, dashed - poloidal component), (b) the normalized plasma

pressure, and (c) the safety factor q. B0 is the toroidal field at the magnetic axis.

m−3. Here < p > is the plasma volume averaged equilibrium pressure. For the base

case, the pressure profile p(r) = n(r) ∗ T (r) is given by specifying the density profile

n(r) = n0(1 − (r/a)6) and the temperature profile T (r) = T0(1 − (r/a)3). The on-axis

and edge values of the safety factor are q0=0.161, qa=-0.01 for the base case. Figure

1 shows the radial profiles of the poloidal and toroidal equilibrium fields, the pressure

as well as the safety factor for the base case. Variations of the equilibrium parameters

(mostly the pressure) will be introduced, when the stability results are reported in the

next two Sections.

4. Stability following fluid models

The RWM spectrum in RFP is usually characterized by the presence of several unstable

modes with different toroidal mode numbers n. The Fourier harmonics with different

helicities (positive or negative toroidal mode numbers) are visible in the spectrum due

to the edge reversal of the equilibrium toroidal field. Figure 2 shows the computed

spectrum of unstable RWMs for the base case equilibrium described in Section 3, in the

absence of both plasma rotation and kinetic effects. The mode with n = −6 is most

unstable. In further discussions, the stability of the n = −6 mode will be considered if

not otherwise stated.

The computed poloidal Fourier harmonics of the normal displacement ξn are shown

in Fig. 3, for the n = −6 mode. The m = 1 poloidal harmonic is dominant. This points



Effects of kinetic resonances ... 7

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

|n|

γτ
w

Figure 2. The MARS-F computed spectrum of the unstable RWMs for one of the

RFX equilibria with F = −0.06,Θ = 1.41 and βp = 0. The black color shows

internal non-resonant modes with negative toroidal mode number n < 0. The grey

color shows external non-resonant modes with n > 0. The poloidal harmonics are

chosen as m = 1, · · · , 5.

to a weak toroidicity induced coupling in RFP plasmas, even though the aspect ratio is

just about 4.

Plasma rotation opens the possibility for the interaction of the otherwise static,

non-resonant RWM with stable waves in the plasma. In ideal MHD, such interaction is

due to the mode resonance with the continuum spectra. Two of them are known to be

potentially in resonance with the RWM: the Alfvén continuum and the sound continuum.

The condition for the resonance to occur can generally be written as nΩ+ωr = ωc, where

ωc is either the Alfvén or the sound frequency. Note that both Ω and ωc are generally

functions of the plasma minor radius. For the static RWM (ωr = 0) this condition

becomes nΩ = ωc. The mode resonance with the Alfvén continuum appears when the

condition |nΩ| = |ωca| ≡ |k‖va| is satisfied. Here va ≡ B/(µ0ρ)
1/2 is the Alfvén velocity.

Note that we neglected the (1 + 2q2) type of the Pfirsh-Shluter inertia enhancement

factor [27] in the above resonance condition. This factor is normally very close to unity

for RFP plasmas. In order to demonstrate the effect of the pure Alfvén wave coupling,

we consider a pressure-less equilibrium by setting βp = 0 for the base case. Figure 4

shows the computed growth rate γ and frequency ωr (both normalized by the wall time

τw) of the fluid RWM, as we vary the plasma rotation frequency Ω. A uniform radial

profile is assumed for the plasma rotation Ω.

Because of the absence of rational surfaces inside the plasma for the RWM in

RFP, no resonance between the mode and the Alfvén waves is possible at vanishing
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Figure 3. The radial profiles of the poloidal harmonics (m = 1(o),m = 2(+),m =

3(∗),m = 4(⊳),m = 5(⊲)) of the fluid RWM eigenfunction with n = −6. Plotted is

the amplitude of the plasma normal displacement normalized by the maximum value

in the straight field line coordinate system.
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Figure 4. The computed (a) growth rate, and (b) frequency, of the fluid RWM in the

presence of the Alfvén continuum resonance alone. The toroidal rotation frequency Ω,

normalized by the Alfvén frequency ω0

a in the plasma center, is varied. The equilibrium

is specified by F = −0.06,Θ = 1.41, βp = 0.
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or sufficiently slow plasma rotation. The analytically predicted rotation frequency, at

which the above described resonance condition starts to satisfy, is Ω = 0.06ω0
a. Indeed,

the numerical results start to show a resonant behavior at this rotation frequency.

Specifically, the mode growth rate γτw starts to decay for plasma rotation frequency

Ω > 0.06ω0
a, accompanied by the appearance of the finite mode frequency. This points

to the damping effect from the mode-continuum resonance, though no compete RWM

stabilization is achieved for the rotation range considered here. The critical rotation

frequency, for the mode resonance to occur, is much less than that obtained in the

previous study [34], due to the fact that we consider here the internal non-resonant RWM

with n = −6. At relatively slow rotation Ω > 0.06ω0
a, the Alfvén resonance already starts

to appear near the magnetic axis. It should be noted that the experimentally observed

plasma rotation frequency in RFX (Ω ∼ 10−3ωa [38]) is much smaller than the value

obtained here, for the mode resonance with the Alfvén continuum to occur.figures

The resonance of the RWM with parallel sound wave (more precisely the slow

magneto-acoustic wave) appears when nΩ = ωcs ≡ k‖vs where vs = (Γp/ρ)1/2 is the

sound velocity (Γ = 5/3). In order to study this effect, we consider our base case with

finite equilibrium pressure. The analytically predicted minimal rotation frequency, from

which the above resonance condition starts to be satisfied, is Ω/ω0
a = 0.005. Figure 5

shows the computed fluid RWM eigenvalue versus rotation. The curves with “×” shows

the results without any other damping, such that the mode resonance with the parallel

sound wave is the only possible damping term (in the range of rotation considered here).

The change of the growth rate behavior occurs very close to the analytically predicted

point Ω/ω0
a = 0.005. Also, the mode frequency becomes finite at this rotation frequency,

indicating a damping term arising from the resonance. This study shows that the RFP

equilibrium can provide a very “clean” understanding of the continuum damping physics

for the RWM.

The initial destabilization phase of the RWM by rotation, shown by the curve with

“×” in Fig. 5, is due to an artifact of the ideal MHD model [25]. This is because

the ideal MHD model (with adiabatic equation of state) cannot describe adequately the

particle motion along the magnetic field lines, causing unphysical destabilization effect of

the mode by the subsonic flow. A rigorous treatment should invoke kinetic description

for the parallel motion of particles. However, a reasonable fluid-like damping term,

Eq. (11), first introduced in Ref. [26], helps to remove this unphysical destabilization

behavior, by damping the parallel sound wave in the ideal MHD model.

By tuning the numerical coefficient κ in Eq. (11), we can vary the damping

strength for the parallel sound wave, and hence the RWM stability. The numerical

results are shown in Fig. 5 by choosing various values of κ. At sufficiently large κ, the

destabilization effect by plasma rotation disappears. Further increase of κ leads to more

suppression of the mode by the plasma rotation.
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Figure 5. The computed (a) growth rate, and (b) frequency, of the fluid RWM in the

presence of the sound wave continuum resonance. The toroidal rotation frequency Ω,

normalized by the Alfvén frequency ω0

a in the plasma center, is varied. The equilibrium

is specified by F = −0.06,Θ = 1.41, βp = 4%. The strength of the parallel sound wave

damping is varied by choosing κ=0.0 (’×’), κ=0.5 (’o’), κ = 1.0 (’�’), and κ = 1.5

(’♦’).

5. Stability following kinetic models

5.1. Effects of various kinetic resonances

Whilst the stability of an ideal kink mode, growing at the Alfvén time scale, is normally

well described by ideal MHD theory, the stability of the RWM, often grows at the

drift wave time scale, is better described by kinetic theory, due to the (possibly strong)

mode resonance with drift motions of bulk plasma particle species. In MARS-K, these

resonant effects are introduced into MHD through the pressure tensors (6) with the

resonant operator (10).

Equations (7)-(10) show that the resonance can occur with different types of particle

drifts, depending on the plasma rotation frequency. In this work, we consider the mode

resonance with both precessional drifts and bounce motions of thermal particles. We

also consider contributions from different plasma species (electrons and ions). Generally

the local value of the particle drift frequencies (even after the bounce average) can have

complicated dependence on the particle pitch angle Λ and the particle kinetic energy

ǫk, at each flux surface. The total effect of the mode-particle resonances is obtained by

computing the above mentioned local frequencies. On the other hand, some qualitative

understanding can be reached by comparing the particle distribution averaged bounce

and precession frequencies, which are shown in Fig. 6 for thermal ions, for the base case
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Figure 6. The radial profiles of drift frequencies for thermal ions, averaged over

the particle equilibrium distribution function. Compared are the normalized (to the

central Alfvén frequency ω0

a) frequencies among the bounce frequency ωb of trapped

ions (solid), the transit frequency ωt of passing ions (dotted), the magnetic precession

frequency ωd of trapped ions (dashed), and the thermal ion diamagnetic frequency ω∗

(dash-dotted). The RFX equilibrium is chosen with F = −0.06,Θ = 1.41, βp = 4%.

equilibrium.

Figure 6 compares the averaged transit frequency ωt for passing ions, the bounce

frequency ωb for trapped ions, the magnetic precession frequency ωd for trapped ions, as

well as the ion diamagnetic frequency ω∗, defined here as the sum of the contributions

from both density and temperature gradients. The experimental plasma rotation

frequency Ωexp, not shown in the figure, is calculated as in the order of 0.1% of the

Alfvén frequency in RFX [38], and hence being comparable to the thermal particle

magnetic precession frequency Ωexp ∼ ωd. The following ordering of frequencies is valid

for the studied case here

ωr ≪ Ωexp ∼ ωd ∼ ω∗ ≪ ωb ∼ ωi0
s < ωca < ωt < ω0

a (13)

where ωi0
s ≃ 0.1ω0

a is the central ion sound frequency.

In this work we assume subsonic rotation Ω . ωi0
s . In particular, we consider two

sub-regions in view of the above ordering, namely Ω ∼ ωd and ω ∼ ωb. In each of

these sub-regions, we expect certain kinetic effects on the RWM stability, due to the

mode-particle resonances.

Before showing numerical results, it is useful to make a qualitative estimate of the

kinetic contribution from different sorts of particles (trapped/passing, ions/electrons)

in different rotation regimes, based on the resonant operator (10). We shall neglect the

mode frequency ω and the collisionality term νeff for this analysis. We carry out the
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analysis for the n = −6 mode.

In the sub-region Ω ∼ ωd, for trapped particles (α = 0), we have λ ∼

(ω∗ + Ω)/(ωd + Ω + (l/n)ωb). At l = 0, the mode resonance with magnetic precession

drift motion of trapped ions and electrons becomes dominant. At l 6= 0, the resonance

condition requires that ωd ∼ (l/n)ωb, which cannot be satisfied in most of plasma

regions, since ωd/ωb ≈ 0.02 for ions, following Fig. 6. However, this resonance can be

satisfied locally in the plasma core and edge regions, where ωd ∼ ωb. The resonance with

the electron bounce motion should be even smaller due to much larger bounce frequency

for electrons.

For passing ions (α = 1) in the sub-region Ω ∼ ωd, the resonance can occur only if

(m + nq + l)/n ∼ ωd/ωt. Since |ωd/ωt| < 10−2 for the case studied here, the resonant

contribution from passing particles can only be expected locally near the reversal radius

of the safety factor |q| ≪ 1 and when m+ l = 0.

Therefore, in the low rotation frequency sub-region, we expect that the major effect

on the RWM stability comes from the mode resonance with the magnetic precession

drift of trapped ions and electrons. The contributions from bounce or transit motion of

thermal ions are always localized along the minor radius and hence being small.

In the sonic rotation sub-region Ω ∼ ωb, the particle magnetic precession does

not play a significant role, since ωd ≪ ωb. For trapped particles (ions), λ ∼

(ω∗ + Ω)/((l/n)ωb + Ω), the resonance condition is satisfied when (l/n)ωb ≃ −Ω, for

l 6= 0. For the n = −6 mode, the bounce harmonic with l = 6 should give the dominant

contribution. The lower l harmonics can also play a larger role with decreasing Ω.

The resonance condition is more intriguing for passing ions in the sonic rotation

regime, in which λ ∼ (ω∗ + Ω)/[ωt(m+ nq + l)/n+ Ω]. The resonance occurs when

(m+nq+ l)/n ∼ ωb/ωt. Since |ωb/ωt| ∼ 0.1 for our plasma, the contribution of passing

particles can be expected for a larger region near the field reversal surface, i.e. |q| . 0.1

and m + l = 0. [Note that the present equilibrium has |q| < 0.16 in the whole plasma

region.]

We conclude that both trapped and passing ions can contribute to the kinetic

resonances, for the plasma rotation frequency in the order of the ion sound frequency.

The trapped particle contribution comes from the bounce motion with specific bounce

harmonics. The passing particle contribution can come from a broad region near the

field reversal surface. The latter is different from the case of the slow rotation regime

Ω ∼ ωd.

Now we turn to numerical results. Figure 7 reports the computed eigenvalue of the

kinetic RWM versus rotation, using the full kinetic model (i.e. including resonance with

all particles). For comparison, we also plot the fluid result with the parallel sound wave

damping model (with the damping coefficient κ = 1). The kinetic model gives slightly

lower growth rate at low rotation frequency (Ω . ωd), whilst a stronger suppression

is obtained, at Ω ∼ ωb, by using the viscous damping model. Further increase of the

plasma rotation (Ω > 0.05ω0
a) leads to a slight destabilization of the mode with both

damping models. For the kinetic model, this is due to the loss of resonances. For the
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Figure 7. Compare (a) the growth rate, and (b) the frequency, of the RWM between

the parallel sound wave damping model with κ = 1.0 (’×’), and the full kinetic damping

(’�’). The toroidal rotation frequency Ω, normalized by the Alfvén frequency ω0

a in the

plasma center, is varied. The equilibrium is specified by F = −0.06,Θ = 1.41, βp = 4%.

viscous damping model, this is probably due to the imperfection of the model. Over

the whole rotation regime considered here, the kinetic model generally does not predict

a significant stabilization of the RWM for the RFX plasma. In fact, in the (slow)

rotation regime relevant to the RFX plasma, the relative change of the mode growth

rate, introduced by the bulk particle kinetic effects, is less than 5% in our case.

We point out that our kinetic formulation effectively replaces the adiabatic equation

of state, in the ideal MHD model, by the kinetic pressure closure. By doing so, we

eliminate the unphysical coupling of the mode to the parallel sound wave, and hence

remove the destabilization effect by the sound wave at subsonic rotation, as observed in

Fig. 5.

Further numerical results compare kinetic contributions from different kinetic

resonances and particle fractions, by artificially switching off terms from the resonance

operator (10). Figure 8 compare the computed mode eigenvalues by retaining all

terms (the full model), the bounce resonance terms only, and the precession resonance

terms only. Both trapped and passing particles are included. From the qualitative

discussions performed above, we understand that when the precessional resonance alone

is included, the passing particle contribution does not have much physics significance.

We nevertheless consider this as a “numerical” option.

Two plasma rotation regimes can again be distinguished, separated by the value of

Ω/ω0
a ≈ 10−2. In the region of Ω/ω0

a < 10−2, the computed eigenvalues using the full

model closely follow that assuming the precessional drift resonance alone. The mode
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Figure 8. The computed (a) growth rate, and (b) frequency, of the kinetic RWM,

including the mode resonance with the particle precession frequency alone (’×’), with

the particle bounce-transit frequency alone (’o’), and with both frequencies (’�’).

Both trapped and passing particles are included. The toroidal rotation frequency Ω,

normalized by the Alfvén frequency ω0

a in the plasma center, is varied. The equilibrium

is specified by F = −0.06,Θ = 1.41, βp = 4%.

growth rate for these two cases is slightly less than that with the bounce resonance

alone, indicating a small but finite damping effect from the precessional resonance. In

the region of Ω/ω0
a > 10−2, the situation becomes opposite: the eigenvalues from the full

model follow well that with the bounce resonance alone, indicating that the major kinetic

effects come from the mode resonance with particle transit and/or bounce motions. The

growth rate peaking near Ω/ω0
a ≃ 5×10−2, with the precessional resonance alone, can be

attributed partially to the loss of the resonance condition, and partially to the behavior

associated with the Alfvén continuum resonance, as observed in Fig. 4.

Figure 9 compares the kinetic results for trapped particles only. The computed

mode growth rate, with the precessional resonance alone, follows well the “full” model

(i.e. with both precession and bounce resonances for trapped particles in this case),

for the plasma rotation frequency Ω up to about 5 × 10−2ω0
a. In the region between

1−5×10−2ω0
a, we do not expect much resonance damping due to the particle precession.

Most likely, the stabilizing effect from the particle precession, as shown in the figure,

comes from the real part of the kinetic energy in this frequency range, i.e. from the

inertial effect. It is also clear from Fig. 6, that the inertial effect comes primarily

from the particle precession, than the bounce/transit motions, due to the fact that the

diamagnetic flow is comparable to the precession frequency, but much smaller than the

bounce/transit frequencies.
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Figure 9. The computed (a) growth rate, and (b) frequency, of the kinetic RWM,

including the mode resonance with the particle precession frequency alone (’×’), with

the particle bounce-transit frequency alone (’o’), and with both frequencies (’�’).

Only trapped particle contribution is included. The toroidal rotation frequency Ω,

normalized by the Alfvén frequency ω0

a in the plasma center, is varied. The equilibrium

is specified by F = −0.06,Θ = 1.41, βp = 4%.

When the plasma rotation frequency starts to match or exceed the trapped particle

bounce frequency, Ω & 5× 10−2ω0
a, figure 9 shows that the computed growth rate, with

the bounce resonance alone, starts to follow the “full” model, indicating that the bounce

resonance damping of trapped particles starts to play a dominant role. We mention that

the mode resonance with the Alfvén continuum also starts to play a role in this rotation

regime.

Summarizing Figs. 8 and 9, we find that, in the slow rotation regime Ω < 10−2ω0
a,

most of the kinetic effect comes from the mode resonance with particle precession. In

the fast rotation regime Ω > 5×10−2ω0
a, the kinetic effect from trapped particle bounce

motions prevails. In the regime between 10−2ω0
a < Ω < 5 × 10−2ω0

a, both precessional

drift of trapped particles (inertial effect), and the transit motion of passing particles

(resonant damping effect) can contribute. But not much damping effect is observed

from the bounce motion of trapped particles. In this intermediate rotation regime, the

dominant resonant contribution from passing particles’ transit motion agrees with the

qualitative analysis (the effect of large radial resonance region with |q| < 0.1) made

earlier in this Section. We point out that this passing particle resonance effect is rather

specific to the RFP plasmas, and not to be expected in tokamak plasmas.
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5.2. Effects of equilibrium pressure on kinetic results

Since the drift kinetic energy depends on both the equilibrium pressure amplitude and

profile, we consider here how the pressure variation affects the growth rate of the kinetic

RWM, following a similar study pursued for the tokamak plasma [39].

The shape of the pressure profile mostly affects the diamagnetic terms in the

mode-particle resonance operator (10). We consider here two pressure profiles: one

is specified in the base case equilibrium in Section 3, and used in the numerical

computations described so far; the other is specified by the following density and

temperature profiles, producing a more flat pressure profile: ni,e(r/a) = ni,e
0 (1−(r/a)12),

T i,e(r/a) = T i,e
0 (1 − (r/a)6).

Figure 10 compares the results. The major change, in terms of the fluid and drift

frequencies, is naturally the diamagnetic frequency ω∗, as shown in Fig. 10(b). Note

also slight changes of the averaged magnetic precession frequency ωd and the transit

frequency ωt of passing particles (ωt is normalized by the factor 0.01). The bounce

frequencies of trapped particles are not compared here, since the bounce resonance does

not seem to make a significant contribution to the mode stability (see Figs. 8 and 9).

In terms of the mode stability, the flat pressure profile in the core is slightly less

stabilizing than the more peaked profile, in the slow rotation regime Ω ∼ ωd ∼ 10−3ω0
a,

as shown in Fig. 10(c). [Note that, since the change of equilibrium pressure also results

in a slight change of the fluid growth rate for the RWM, we compare here the kinetic

growth rates, both normalized to unity at vanishing rotation.] This should be due to a

smaller ω∗ value with the flat profile in the core. Similar effect is observed at the high

rotation end Ω & 2×10−2ω0
a. The flat profile, however, is slightly more stabilizing for the

intermediate rotation. Probably due to a combined effect caused by the trapped particle

precession and passing particle transit motion. We emphasize that these explanations

here are rather qualitative. The eventual comparison, as shown in Fig. 10(c-d), is the

integrated effect of all inertial and resonant effects, with both passing and trapping

particles.

The amplitude of the plasma pressure, βp, acts as a linear scaling factor to both the

diamagnetic and precessional drift frequencies. The particle bounce frequency scales as

the square root of βp. We shall perform a broad scan of the plasma pressure amplitude,

with βp =5%, 15% and 25%. In order to separate the kinetic bounce resonance effect

from the Alfvén continuum resonance, both occurring at Ω ≃ 6 × 10−2ω0
a for the base

case studied before for the n = −6 mode, we shall now consider the n = −5 mode,

for which the Alfvén resonance occurs at much larger rotation frequency Ω ≃ 0.2ω0
a.

We thus can neglect the Alfvén resonance effect for the rotation frequency range of

Ω = 0 − 0.1ω0
a, that we choose to study the kinetic effects.

Figure 11 summarizes the results. To compare the relative effect of the kinetic

(de-)stabilization (and to remove the fluid effect of the pressure amplitude), we again

normalize the growth rate to unity at vanishing rotation, as shown in Fig. 11(c). With

this normalization, the essential effect of increasing the equilibrium pressure is to shift
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Figure 10. Effects of equilibrium pressure profiles on the stability of the kinetic

RWM. Plotted are (a) the normalized radial profiles of pressure; (b) the distribution

function averaged drift frequencies (solid - ωt ∗ 0.01, dashed - ωd, dashed-dotted -

ω∗); (c) the mode growth rate (normalized to unity at vanishing rotation) and (d) the

mode frequency versus the normalized plasma rotation frequency. The black curves

correspond to the case with n(r) = n0(1 − (r/a)6), T (r) = T0(1 − (r/a)3). The grey

curves correspond to the case with n(r) = n0(1 − (r/a)12), T (r) = T0(1 − (r/a)6).

both the precessional and bounce resonances to larger rotation frequency, as evident

from the resonance operator (10). This is also confirmed by the numerical results shown

in 11(c). The effect is more prominent for the particle bounce resonance. We mention

that such a large shift of resonance condition normally does not occur for tokamak

plasmas, since the range of variation of the equilibrium thermal pressure is normally

much smaller, between the no-wall and the ideal-wall beta limits (much smaller than

the factor of 5 as we assumed in this study).

5.3. Ion versus electron contributions

The total thermal pressure consists of the ion and electron contributions. With the same

equilibrium pressure, the drift kinetic energy depends on the ion-electron temperature

ratio. Following a similar study for tokamaks [36], we consider here the role of relative

contribution from ions and electrons, on the RWM stability in RFP plasmas.

We consider the precessional drift resonance alone, since only this type of

resonance gives comparable contributions from thermal ions and electrons. [The

kinetic contribution from bounce resonance of electrons is much smaller that of the ion

contribution, and hence is normally neglected in the kinetic study.] We define a figure
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Figure 11. Effects of equilibrium pressure amplitude on the stability of the kinetic

RWM. Plotted are (a) the radial pressure profiles; (b) the maximum of the averaged

drift frequencies as a function of poloidal beta (ωt(×), ωb(o), ω∗(∗) ωd(♦)); (c) the

mode growth rate (normalized to unity at vanishing rotation) and (d) the mode

frequency versus the normalized plasma rotation frequency. Compared are three cases

with βp=5% (solid), βp=15% (dashed), and βp=25% (dotted).

of merit Cp ≡ Ti0/(Ti0 +Te0). If we further assume that the bulk ions and electrons have

the same density, and the same temperature profile, it can be easily worked out, based

on the resonance operator (10), that the total kinetic contribution, from both ions and

electrons, does not depend on the direction of the plasma rotation if Cp = 0.5. This is

confirmed by the numerical results shown in Fig. 12, where the eigenvalues of the n = −6

kinetic RWM are compared using the base case equilibrium. However, when Cp 6= 0.5,

this symmetry (with respect to the sign of Ω) is broken. Indeed, assuming Cp = 0.33,

corresponding to Te0=1keV and Ti0=0.5 keV in the present study, the mode growth rate

behaves differently with positive and negative rotation directions. With negative Ω, the

mode stabilization effect is observed at lower rotation speed, than that with positive Ω.

This is qualitatively understandable. Since |ωd| ∝ T , |ωi
d| < |ωe

d|. On the other hand,

the negative rotation leads to a predominant resonance damping with trapped ions (not

electrons), according to Eq. (10) and Fig. 6. Therefore, with increasing |Ω|, the mode

resonance first occurs with trapped ions, which has smaller precession frequency. We

notice that, whilst this qualitative analysis explains well the numerical results here for

the RFP plasmas, it may not always work for tokamak plasmas, due to the precession

reversal effect occurring for both ions and electrons. This precession reversal is often

substantially enhanced by the finite pressure effect in the tokamak field geometry.
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Figure 12. Relative contributions of thermal ions/electrons, as well as the effect of

the rotation direction, on the RWM stability. Plotted are (a) the mode growth rate,

and (b) the mode frequency, for various cases: Ω > 0, Cp = 0.33 (solid line with “�”),

Ω > 0, Cp = 0.5 (solid line with “⊳”), Ω < 0, Cp = 0.33 (dashed line with “♦”),

Ω < 0, Cp = 0.5 (dashed line with “⊲”). The mode growth rate is normalized to unity

at Ω = 10−4ω0

a, for all cases.

6. Conclusion and discussion

We have carried out systematic study of the drift kinetic effects on the RWM stability

in RFP plasmas, using the MARS-K code with a non-perturbative MHD-kinetic hybrid

formulation. Both magnetic precession and transit-bounce motions of thermal ion and

electrons are considered. A large range of the plasma rotation and pressure scans has

been performed. The kinetic results are compared with the fluid results.

One of the main results of the present numerical investigation, is that the drift

kinetic effects do not substantially modify the RWM growth rate for RFP plasmas,

within the plasma rotation regime (generally subsonic) considered in this study. In

fact the change of the mode growth rate, due to kinetic effects, is generally less than

5% compared to the fluid theory prediction, for the typical RFX plasma in the range

of the experimental plasma rotation. This partially explains why the previous fluid

computations [41] seem to match well the experimentally measured mode growth rates

in RFX.

This numerical result can be qualitatively understood by comparing the perturbed

drift kinetic energy with the perturbed fluid potential energy. For a current driven RWM,

such as that in RFP plasmas, the drift kinetic energy is normally small compared to

the fluid energy, and hence offering minor modification to the mode growth rate. For
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pressure driven RWMs, especially those from the tokamak experiments, the drift kinetic

energy can be comparable to the fluid energy, thus often resulting in a substantial

modification of the mode stability, compared to the fluid prediction [40].

Another interesting result from the present study, is the observation that, at the

plasma rotation of the order of the sound speed, the kinetic effect on the RWM mainly

comes from the transit resonance of passing particles. Not much kinetic effect is observed

from the bounce motion of trapped particles, unless the plasma flow speed starts to

exceed the sound speed. The transit resonance with passing particles occurs in a broad

range of minor radius, where |q| . 0.1. This is a specific feature of RFP equilibria.

Both the computed kinetic and fluid mode growth rates can be relatively easily

explained by analytic considerations. The former agrees well with the estimate from

the kinetic resonance operator. The latter agrees with the continuum wave damping

theory. Compared to the (sometimes complicated) kinetic effects in tokamak plasmas,

the RFP magnetic configuration seems to give more transparent understanding of the

RWM physics in many aspects, as also evident from the present numerical investigation.

We did not consider the kinetic effects from energetic particles for these RFP

plasmas. In RFX experiments, some fraction of energetic particles can be induced by

the neutral beam heating. We also neglected the effect of the plasma collisionality in this

study. For RFX plasmas, the plasma collisionality, especially for electrons, is probably

un-negligible, and need to be taken into account in the future study. As a final remark,

we point out that our drift kinetic formalism is valid only for subsonic flow. Therefore,

those kinetic results, where the plasma flow speed approaches the sound speed, should

be treated with caution.
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