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Abstract — We present new upper bounds on the

size of constant-weight binary codes, derived from

bounds for spherical codes. In particular, we improve

upon the 1962 Johnson bound and the linear program-

ming bound for constant-weight codes.

I. Introduction

An (n, d, w) constant-weight code is a binary nonlinear code
with length n and minimum Hamming distance d, where all
codewords have the same number of ones, w. The maxi-
mum size of such a code is denoted A(n, d, w). The value of
A(n, d, w) is in general not known, but a number of lower and
upper bounds have been established. See [2–4] for summaries
of the best bounds known today.

The new bounds presented here are based on concepts from
Euclidean geometry, in particular, spherical codes. An (n, s)
spherical code is a set of points on the n-dimensional unit
sphere such that the inner product of any two points is at
most s. Its maximum size is denoted by AS(n, s).

II. Improved Johnson Bound

Through an elementary mapping from binary space to Eu-
clidean space, we obtain the following upper bound. It is
equivalent to the well-known Johnson bound from 1962 [2] for
b > δ/(n+ 1) and improves on it for 0 ≤ b ≤ δ/(n+ 1).

Theorem1. Let b = δ − w(n−w)/n. Then

A(n, 2δ, w) ≤ ⌊δ/b⌋ , if b ≥ δ/n

A(n, 2δ, w) ≤ n, if 0 < b ≤ δ/n

A(n, 2δ, w) ≤ 2n− 2, if b = 0

Proof: Consider any constant-weight code C with param-
eters (n, 2δ, w) and map it into Euclidean space by replacing
the binary components 0 and 1 with, respectively, 1 and −1.
After translation and scaling, this yields an (n−1, s) spherical
code, where s = 1 − δn/(w(n − w)). Since its size is upper-
bounded by AS(n− 1, s), so is the size of C . Applying known
values of AS(n− 1, s) for s ≤ 0 [1] completes the proof.

Some values of A(n, d, w) for which Theorem 1, in con-
junction with known lower bounds [3], yields previously un-
known exact values are A(20, 10, 9) = 20, A(21, 10, 8) = 21,
A(24, 10, 7) = 24, A(24, 12, 11) = 24, A(26, 12, 9) = 26, and,
somewhat surprisingly, A(28, 14, 12) = A(28, 14, 13) = 28.

III. Improved Linear Programming Bound

The distance distribution of any binary code C is defined
as Ai = 1

|C |

∑

c∈C
|{c′ ∈ C | d(c, c′) = i}| for i = 0, . . . , n,
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where d(·, ·) denotes the Hamming distance. The linear pro-

gramming bound for a constant-weight code with w ≤ n/2 is
A(n, 2δ, w) ≤ 1+max

∑w

i=δ
A2i, where the maximum is taken

over all {Ai} that satisfy certain well-known constraints [2].
We propose an additional constraint in the maximiza-

tion, which sharpens the bound. In the following theorem,
T ′(w1, n1, w2, n2, d) and T (w1, n1, w2, n2, d) denote the max-
imum size of an (n1 + n2, d,w1 + w2) constant-weight code
in which the number of ones in the first n1 positions of all
codewords is, respectively, at most w1 and exactly w1.

Theorem2. For all i, j ∈ {δ, δ + 1, . . . , w} with i 6= j,

PjiA2i + (Pi − Pij)A2j ≤ PiPji, if Pij/Pi + Pji/Pj > 1

(Pj − Pji)A2i + PijA2j ≤ PjPij , if Pij/Pi + Pji/Pj > 1

PjA2i + PiA2j ≤ PiPj , if Pij/Pi + Pji/Pj ≤ 1

where Pi, Pj , Pij , and Pji are any numbers that satisfy

Pi ≥ T (i, w, i, n− w, 2δ)

Pj ≥ T (j, w, j, n− w, 2δ)

Pij ≥ min
{

Pi, T
′(w − δ, j, δ − w + i, n−w − j,

2δ − 2w + 2i)
}

, if i+ j ≤ n− δ

Pji ≥ min
{

Pj , T
′(w − δ, i, δ − w + j, n−w − i,

2δ − 2w + 2j)
}

, if i+ j ≤ n− δ

Pji = Pij = 0, if i+ j > n− δ.

The entities T and T ′ can be upper-bounded using bounds
for spherical codes and so-called zonal spherical codes. Details
and proofs are given in [1], which also contains several other
new bounds, a survey of known bounds on A(n, d, w), and
updated tables of A(n, d, w) for n ≤ 28.

New upper bounds obtained through Theorem 2 include
A(20, 8, 9) ≤ 195, A(21, 8, 9) ≤ 320, A(22, 8, 10) ≤ 641,
A(24, 8, 11) ≤ 2188, and A(23, 10, 9) ≤ 81.
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