OFF-ON-OFF Fluorescence Switch with T-Latch Function

Vânia F. Pais, ${ }^{\dagger}$ Patricia Remón, ${ }^{\dagger}$ Daniel Collado, ${ }^{\ddagger}$ Joakim Andréasson, ${ }^{\S}$ Ezequiel Pérez-Inestrosa, ${ }^{\text {,* }}$ and Uwe Pischel ${ }^{\text {T }} \uparrow$
Centro de Investigación en Quimica Sostenible (CIQSO) and Departamento de Ingeniería Quimica, Quimica Física y Quimica Orgánica, Universidad de Huelva, Campus de El Carmen, E-21071 Huelva, Spain, Departamento de Quimica Orgánica, Universidad de Málaga, Campus Teatinos, E-29071 Málaga, Spain, and Department of Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology, SE-41296 Göteborg, Sweden

uwe.pischel@diq.uhu.es; inestrosa@uma.es
Received August 25, 2011
ABSTRACT

A novel molecular system with characteristics of an OFF-ON-OFF fluorescence switch was designed to integrate the function of a T-latch. In detail, a receptor ${ }_{1}$-fluorophore-receptor ${ }_{2}$ architecture was adopted to achieve fluorescence switching upon addition of protons.

The idea to use molecular systems for information processing has attracted a great deal of interest during the recent years. ${ }^{1-5}$ This has been manifested by the availability of molecular mimics for all essential logic gates (AND, OR, NOR, NAND, INH, XOR, etc.) ${ }^{1,3}$ and for rather complex logic devices such as adders/subtractors, encoders/decoders, and multiplexers/demultiplexers. ${ }^{2,6-10}$ Such logic functions are of elevated interest for

[^0]applications such as object coding, ${ }^{11}$ intelligent materials, ${ }^{12-14}$ pro-drug activation, ${ }^{15-17}$ and diagnostics/ actuation. ${ }^{18-20}$ While these systems work independently of the order of input application (combinational logic), the molecular memorization of information is a precondition for applications which profit from a sequential application of input signals. ${ }^{21,22}$ This behavior is reflected in the

[^1]function of molecular keypad locks ${ }^{10,23-28}$ and memory devices. ${ }^{29-35}$

The set-reset (S-R) latch was one of the first memory devices that was implemented at the molecular level by using electrochemical, chemical, and photonic signaling. ${ }^{29,31-35}$ The device is characterized by a high state (binary 1) whenever the set input is applied $(S=1)$ and which upon reset ($R=1$) has a binary 0 (low) state. The herein described toggle-latch (T-latch) is a different logic switch with memory capacity. Its working principle is well illustrated with the function of a conventional light switch or of the push button of a ballpoint pen: every time the toggle input is activated, the state Q of the system changes (see Scheme 1). The device "remembers" if a 0 or a 1 state was memorized ($Q_{\text {current }}$) and upon each T input application, the new state ($Q_{\text {next }}$) has the opposite value ($0 \rightarrow 1$ and $1 \rightarrow 0)$. The "do nothing" situation leaves the system state unchanged.

Scheme 1. Presentation of the T-Latch Function

We anticipated that a molecular OFF-ON-OFF fluorescent switch could integrate this function. In detail, we needed a switch which upon single application of an input changes to the ON state and is set back to the OFF state by

[^2]Scheme 2. (a) Structures of Triad 2 and the Naphthalimide Models $\mathbf{3}$ and $\mathbf{5}$ with One Receptor Unit and (b) Synthesis of Triad 2 (for Compound 4, an Intermediary Product, see Supporting Information)
a)

b)

a second equal input. Fluorescent systems, which change their emission properties upon application of chemical input information, have been often explored in the design of logic switches and chemical sensors. ${ }^{3,4,36-38}$ The integrated receptor ${ }_{1}$-fluorophore-receptor ${ }_{2}$ architecture $\mathbf{2}$ (Scheme 2a) was identified as an excellent candidate to put the molecular T-latch function into practice.

Figure 1. Relative absorption spectra (dashed lines) and normalized fluorescence spectra (solid lines) for $\mathbf{2}$ (red), $\mathbf{2} \mathrm{H}^{+}$(blue), and $\mathbf{2 H}{ }_{2}{ }^{2+}$ (black). Note that the low fluorescence emissions of $\mathbf{2}$ and $\mathbf{2 H}{ }^{2+}$ are hardly distinguishable.

[^3]The synthesis of the new triad $\mathbf{2}$ is briefly sketched in Scheme 2b. The sequence started with the commercial 4-bromo-1,8-naphthalic anhydride, which was condensed with 8 -aminoquinoline (74% yield). Further aromatic nucleophilic substitution of the intermediary 4 -bromo-1,8-naphthalimide derivative with N-methylpiperazine resulted in the final product 2 with a yield of 52%. The synthesis of the naphthalimide derivatives $\mathbf{3}$ and $\mathbf{5}$ (Scheme 2a), which served herein as model structures, is described in the Supporting Information.

Table 1. Photophysical Properties of Compounds 2, 3, and 5 and Their Protonated Forms in Aerated Acetonitrile Solution

	$\lambda_{\text {abs } \text { max }} / \mathrm{nm}$	$\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}$	$\lambda_{\text {fluo, } \max } / \mathrm{nm}$	Φ_{f}	$\tau_{\mathrm{f}} / \mathrm{ns}$
$\mathbf{2}$	401	10100	504	0.017	a
$\mathbf{2} \mathrm{H}^{+}$	377	10500	499	0.67	8.90
$\mathbf{2} \mathrm{H}_{2}{ }^{2+}$	383	11100	499	0.017	a
$\mathbf{3}$	433	13000	520	0.56	10.00
$\mathbf{3} \mathrm{H}^{+}$	441	13400	519	0.006	a
$\mathbf{5}$	398	9700	502	0.018	a
$\mathbf{5} \mathrm{H}^{+}$	374	10100	498	0.62	9.06

${ }^{a}$ Not determined due to low signal intensity.

Triad $\mathbf{2}$ contains two proton receptors: a piperazinyl and a quinolinyl moiety. The receptors have sufficiently different $\mathrm{p} K_{\mathrm{a}}$ values (7.78 for N-benzoylpiperazine versus 4.60 for 8 -methylquinoline as models $)^{39}$ so that they can be stepwise protonated. In accordance with this assumption and as shown in Figures 1 and 2, the addition of 1 equiv of protons (triflic acid; $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$) yielded a pronounced fluorescence enhancement (fluorescence quantum yield $\Phi_{\mathrm{f}}=0.67$ versus 0.017 for $\mathbf{2 H} \mathrm{H}^{+}$and $\mathbf{2}$, respectively) of the 4 -amino-1,8-naphthalimide chromophore ($\lambda_{\text {fluo, max }}=$ 504 nm for $\mathbf{2}$ and 499 nm for $\mathbf{2 H}^{+}$). However, the subsequent addition of a second equivalent of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ caused practically quantitative fluorescence quenching (98% quenching). The photophysical properties of all investigated compounds and their protonated forms are summarized in Table 1. The independent actuation of both receptors in 2 was supported by the observation of the same differential photophysical effects upon protonation of the model compounds $\mathbf{3}$ and $\mathbf{5}$, which contain each only one of the two receptors (Scheme 2a). In accordance with the fluorescence response of $\mathbf{2}$ upon stepwise protonation, 3 showed quenching and 5 enhancement of the emission for the addition of 1 equiv of protons (Supporting Information). The superposition of the photophysical

[^4]trends of the model compounds in the triad was also noted for the absorption spectra. ${ }^{40}$

Figure 2. Fluorescence titration curve ($\lambda_{\mathrm{exc}}=388 \mathrm{~nm}, \lambda_{\text {obs }}=$ $499 \mathrm{~nm})$ of $\mathbf{2}\left(12.5 \mu \mathrm{M}\right.$ in acetonitrile) upon $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ addition.

Table 2. Truth Table for the Implemented Molecular T-Latch

T input $\left(1\right.$ equiv $\left.\mathrm{H}^{+}\right)$	$Q_{\text {current }}$ (fluo)	$Q_{\text {next }}$ (fluo)	control channel (abs, 313 nm)
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

The fluorescence switching of triad $\mathbf{2}$ can be mechanistically rationalized as follows. The electron-donating methyl-substituted piperazinyl nitrogen atom is protonated upon the addition of the first equivalent of protons, which leads to blocking of photoinduced electron transfer (PET) and consequently fluorescence ON switching. ${ }^{4-43}$ The second equivalent of protons serves to transform the quinolinyl residue into a quinolinium cation. The hydro-gen-bonding interaction of NH^{+}with the imide carbonyl $\mathrm{C}=\mathrm{O}$ is assumed to be at the origin of the fluorescence quenching of the 4 -amino-1,8-naphthalimide derivative. ${ }^{41}$ However, PET from the singlet-excited fluorophore to the electron-accepting quinolinium cation may also be involved in the observed fluorescence OFF switching. ${ }^{44,45}$ Noteworthy, the control of 4-aminonaphthalimide fluorescence by a receptor linked to the "imide side" of the fluorophore has been rarely observed. ${ }^{41,42,46-48}$

[^5]The first three columns of the truth table (Table 2) describe the implementation of the T-latch function, which is mimicked by the above-discussed fluorescence switching. Starting with the triad in its unprotonated state (2), only low fluorescence is observed for $T=0$ (no addition of acid). This situation corresponds to $Q_{\text {current }}=Q_{\text {next }}=0$. However, protonation of $\mathbf{2}$ with 1 equiv of acid $(T=1)$ leads to $2 \mathrm{H}^{+}$and consequently a high fluorescence output (toggling from $Q_{\text {current }}=0$ to $Q_{\text {next }}=1$). Again, the "do nothing situation" $(T=0)$ preserves the Q state (i.e., $Q_{\text {current }}=Q_{\text {next }}=1$ in this case). The second addition of 1 equiv of acid $(T=1)$ to $2 \mathrm{H}^{+}$yields $2 \mathrm{H}_{2}{ }^{2+}$ and concomitant fluorescence quenching, corresponding to a switching from $Q_{\text {current }}=1$ to $Q_{\text {next }}=0$.

Figure 3. Recycling of fluorescence switching $\left(\lambda_{\text {obs }}=499 \mathrm{~nm}\right)$ of $2(8.7 \mu \mathrm{M}$ in acetonitrile) upon consecutive addition of 1 equiv of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ followed by 1 equiv of P_{2}-Et phosphazene base. The dashed line marks the threshold. A conservative estimation yields that up to 10 cycles are possible, maintaining a dynamic switching range of $I(\mathrm{ON}) / I(\mathrm{OFF}) \geq 2$.

The protonation state of the triad can be easily reset by application of a strong base (P_{2}-Et phosphazene), leading to the inverse titration curve (see Supporting Information). The consecutive protonation/deprotonation of 2 with

[^6]acid/base can be repeated for at least five cycles without significant loss of the dynamic fluorescence switching range (Figure 3). The correct functioning of the T-latch requires that the initial device state is represented by the unprotonated triad 2. However, by solely reading the fluorescence output Q, it cannot be decided whether at a random point of operation $Q_{\text {current }}=0$ corresponds to 2 or $2 \mathrm{H}_{2}{ }^{2+}$. The unambiguous assignment of an output to a concrete input situation can be resolved by reading a control channel, as has been shown previously for the implementation of reversible logic functionality. ${ }^{10,28,49,50}$ This control signal is provided herein by the absorption of the quinolinium cation at ca. 313 nm (fourth column in Table 2). ${ }^{51}$ This spectral signature only evolves when the quinoline unit becomes protonated (Supporting Information). Hence, when the fluorescence is low and the absorbance at 313 nm is high, 2 equiv of base is needed to reset the system to its initial state (unprotonated $\mathbf{2}$). If the fluorescence output and the absorbance at 313 nm are both low, then the system is already in its initial state. Hence, the two $Q=0$ situations are now clearly distinguishable.

In summary, we have shown that an OFF-ON-OFF fluorescence switch with two degenerate proton inputs can integrate the function of a molecular T-latch. The photophysical design of the switch is based on the control of electron transfer and hydrogen-bond interaction. Work on an all-optical version, exploring photoinduced proton transfer as relay mechanism, is underway.

Acknowledgment. Financial support by the Spanish MICINN (CTQ2008-06777-C02-02 for U.P., CTQ201020303 for E.P.-I.), the Consejería de Economía, Innovación y Ciencia-Junta de Andalucía (FQM-3685 for U.P.), FEDER, the Swedish Research Council (622-2010280 for J.A.), and the European Research Council (FP7/ 2007-2013 No. 203952 for J.A.) is acknowledged.

Supporting Information Available. Details on the synthesis of $\mathbf{1 - 5},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, additional spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

[^7]
[^0]: ${ }^{\dagger}$ Universidad de Huelva.

 + Universidad de Málaga.
 ${ }^{\text {§ }}$ Chalmers University of Technology.
 (1) de Silva, A. P.; Uchiyama, S. Nat. Nanotechnol. 2007, 2, 399-410.
 (2) Pischel, U. Angew. Chem., Int. Ed. 2007, 46, 4026-4040.
 (3) Szaciłowski, K. Chem. Rev. 2008, 108, 3481-3548.
 (4) Andréasson, J.; Pischel, U. Chem. Soc. Rev. 2010, 39, 174-188.
 (5) Pischel, U. Aust. J. Chem. 2010, 63, 148-164.
 (6) Margulies, D.; Melman, G.; Shanzer, A. J. Am. Chem. Soc. 2006, 128, 4865-4871.
 (7) Amelia, M.; Baroncini, M.; Credi, A. Angew. Chem., Int. Ed. 2008, 47, 6240-6243.
 (8) Pérez-Inestrosa, E.; Montenegro, J.-M.; Collado, D.; Suau, R. Chem. Comтии. 2008, 1085-1087.
 (9) Ceroni, P.; Bergamini, G.; Balzani, V. Angew. Chem., Int. Ed. 2009, 48, 8516-8518.
 (10) Andréasson, J.; Pischel, U.; Straight, S. D.; Moore, T. A.; Moore, A. L.; Gust, D. J. Am. Chem. Soc. 2011, 133, 11641-11648.
 (11) de Silva, A. P.; James, M. R.; McKinney, B. O. F.; Pears, D. A.; Weir, S. M. Nat. Mater. 2006, 5, 787-790.

[^1]: (12) Motornov, M.; Zhou, J.; Pita, M.; Gopishetty, V.; Tokarev, I.; Katz, E.; Minko, S. Nano Lett. 2008, 8, 2993-2997.
 (13) Angelos, S.; Yang, Y.-W.; Khashab, N. M.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2009, 131, 11344-11346.
 (14) Tokarev, I.; Gopishetty, V.; Zhou, J.; Pita, M.; Motornov, M.; Katz, E.; Minko, S. ACS Appl. Mater. Interfaces 2009, 1, 532-536.
 (15) Amir, R. J.; Popkov, M.; Lerner, R. A.; Barbas, C. F., III; Shabat, D. Angew. Chem., Int. Ed. 2005, 44, 4378-4381.
 (16) Ozlem, S.; Akkaya, E. U. J. Am. Chem. Soc. 2009, 131, 48-49.
 (17) Hammarson, M.; Andersson, J.; Li, S.; Lincoln, P.; Andréasson, J. Chem. Commun. 2010, 46, 7130-7132.
 (18) Konry, T.; Walt, D. R. J. Am. Chem. Soc. 2009, 131, 1323213233.
 (19) Margulies, D.; Hamilton, A. D. J. Am. Chem. Soc. 2009, 131, 9142-9143.
 (20) Privman, M.; Tam, T. K.; Bocharova, V.; Halámek, J.; Wang, J.; Katz, E. ACS Appl. Mater. Interfaces 2011, 3, 1620-1623.
 (21) Raymo, F. M.; Alvarado, R. J.; Giordani, S.; Cejas, M. A. J. Am. Chem. Soc. 2003, 125, 2361-2364.
 (22) Pischel, U. Angew. Chem., Int. Ed. 2010, 49, 1356-1358.
 (23) Guo, Z.; Zhu, W.; Shen, L.; Tian, H. Angew. Chem., Int. Ed. 2007, 46, 5549-5553.

[^2]: (24) Margulies, D.; Felder, C. E.; Melman, G.; Shanzer, A. J. Am. Chem. Soc. 2007, 129, 347-354.
 (25) Suresh, M.; Ghosh, A.; Das, A. Chem. Commun. 2008, 39063908.
 (26) Kumar, S.; Luxami, V.; Saini, R.; Kaur, D. Chem. Commun. 2009, 3044-3046.
 (27) Andréasson, J.; Straight, S. D.; Moore, T. A.; Moore, A. L.; Gust, D. Chem.-Eur. J. 2009, 15, 3936-3939.
 (28) Remón, P.; Hammarson, M.; Li, S.; Kahnt, A.; Pischel, U.; Andréasson, J. Chem.-Eur. J. 2011, 17, 6492-6500.
 (29) Baron, R.; Onopriyenko, A.; Katz, E.; Lioubashevski, O.; Willner, I.; Wang, S.; Tian, H. Chem. Commun. 2006, 2147-2149.
 (30) Elbaz, J.; Moshe, M.; Willner, I. Angew. Chem., Int. Ed. 2009, 48, 3834-3837.
 (31) Periyasamy, G.; Collin, J.-P.; Sauvage, J.-P.; Levine, R. D.; Remacle, F. Chem-Eur. J. 2009, 15, 1310-1313.
 (32) Pita, M.; Strack, G.; MacVittie, K.; Zhou, J.; Katz, E. J. Phys. Chem. B 2009, 113, 16071-16076.
 (33) de Ruiter, G.; Motiei, L.; Choudhury, J.; Oded, N.; van der Boom, M. E. Angew. Chem., Int. Ed. 2010, 49, 4780-4783.
 (34) de Ruiter, G.; Tartakovsky, E.; Oded, N.; van der Boom, M. E. Angew. Chem., Int. Ed. 2010, 49, 169-172.
 (35) Pischel, U.; Andréasson, J. New J. Chem. 2010, 34, 2701-2703.

[^3]: (36) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515-1566.
 (37) de Silva, A. P.; Vance, T. P.; West, M. E. S.; Wright, G. D. Org. Biomol. Chem. 2008, 6, 2468-2480.
 (38) Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Chem. Soc. Rev. 2010, 39, 3936-3953.

[^4]: (39) The $\mathrm{p} K_{\mathrm{a}}$ data were taken from http://research.chem.psu.edu/ brpgroup/pKa_compilation.pdf.
 (40) The protonation of the piperazinyl residue leads to a blue shift (by 24 nm) of the long wavelength aminonaphthalimide absorption band (for 2 and 5), which is indicative of the destabilization of the charge transfer state through the repulsive interaction between the protonated distant methyl-substituted N and the positive pole of the charge transfer state at the aromatic N (cf. ref 47). The protonation of the quinolinyl moiety has stabilizing effects on the charge transfer state, which is expressed by a red shift (by $6-8 \mathrm{~nm}$) of the long wavelength absorption band (for 2 and 3).

[^5]: (41) de Silva, A. P.; Gunaratne, H. Q. N.; Habib-Jiwan, J.-L.; McCoy, C. P.; Rice, T. E.; Soumillion, J.-P. Angew. Chem., Int. Ed. Engl. 1995, 34, 1728-1731.
 (42) de Silva, A. P.; Rice, T. E. Chem. Commun. 1999, 163-164.
 (43) Tian, H.; Xu, T.; Zhao, Y.; Chen, K. J. Chem. Soc., Perkin Trans. 2 1999, 545-549.
 (44) Greenfield, S. R.; Svec, W. A.; Gosztola, D.; Wasielewski, M. R. J. Am. Chem. Soc. 1996, 118, 6767-6777.
 (45) Ferreira, R.; Remón, P.; Pischel, U. J. Phys. Chem. C 2009, 113, 5805-5811.
 (46) Gao, Y. Q.; Marcus, R. A. J. Phys. Chem. A 2002, 106, 19561960.

[^6]: (47) de Silva, A. P.; Goligher, A.; Gunaratne, H. Q. N.; Rice, T. E. ARKIVOC 2003, (vii), 229-243.
 (48) Veale, E. B.; Gunnlaugsson, T. J. Org. Chem. 2008, 73, 80738076.

[^7]: (49) Remón, P.; Ferreira, R.; Montenegro, J.-M.; Suau, R.; PérezInestrosa, E.; Pischel, U. ChemPhysChem 2009, 10, 2004-2007.
 (50) Semeraro, M.; Credi, A. J. Phys. Chem. C 2010, 114, 3209-3214.
 (51) Schulman, S. G.; Capomacchia, A. C. J. Am. Chem. Soc. 1973, 95, 2763-2766.

