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Abstract: The paper investigates the problem of uncertainty modeling and constrained robust
control of urban traffic. Linear polytopic approach is used by state-space representations to
describe the uncertain network system. In order to handle model mismatches, robust and infinite
horizon model predictive control (MPC) method is proposed. The control strategy is an efficient
method to reduce travel time and improve homogeneous traffic flow under changing model
conditions. Centralized numerical solution has been carried out as a solution of Linear Matrix
Inequalities (LMI) by using semidefinite programming (SDP). Closed-loop control results were
tested in simulation environment taking alternative model uncertainty levels into account.
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1. INTRODUCTION

During the past decades, several results have been pub-
lished in the field of model control of urban road traffic
network. Nevertheless, the methodologies applied for opti-
mal control have not taken any uncertainties into consider-
ation. Considering the urban traffic control problem from
the perspective of modern control theory a commonly used
modeling paradigm can be found. The Store-and-forward
model of urban network (Gazis and Potts, 1963) is easily
transformable into linear time invariant (LTI) state space
form eligible already for several control techniques. Just to
mention some recent papers based on this model we refer
to Tettamanti et al. (2008), Aboudolas et al. (2009) and
de Oliveira and Camponogara (2010). These publications
present detailed methods for optimal traffic control. At
the same time, they do not concern the robust property
of the control system. Plant model uncertainties are al-
ways neglected. To confront this problem we introduce an
alternative technique based on the minimax MPC using
(LMIs) presented in Kothare et al. (1996). To solve LMI
based optimization process we apply the SDP algorithm
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functional model at BME” project. This project is supported by
the New Hungary Development Plan (Project ID: TÁMOP-4.2.1/B-
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Research Scholarship of the Hungarian Academy of Sciences which
are gratefully acknowledged. This work has been supported by
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implemented in the simulation environment. The proposed
controller deals only with signal split optimization. Offsets
and optimal cycle time are assumed to be fixed or calcu-
lated by other algorithms.
The first part of the paper consist the detailed analysis
of the state space model of urban traffic based on the well
known Store-and-forward approach. A centering technique
of the system is also presented. Furthermore, the polytopic
approach is introduced to describe the state uncertain-
ties. In the second part, a minimax control approach is
discussed as a potential robust method for dealing with
uncertainties. We show how to involve LMI based control
in urban traffic network management with the appropriate
handling of constraints. Finally, the simulation results are
presented for proving the robust property of the system
which is able to attenuate state uncertainties and hereby
to improve network efficiency, subjected to control input
and output constraints.

2. URBAN TRAFFIC MODELING

2.1 From Store-and-forward traffic modeling to state space
representation

The traffic modeling has two main approaches: micro and
macro modeling techniques. Micro models consider each
vehicle in the traffic process as individual object with
several individual properties (e.g. prespecified driver be-
havior, vehicle parameters). Therefore, the micro modeling
is usable mostly for traffic simulations. Macro modeling
approach does not specify much details of the vehicles.
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It mostly deals with the traffic flows on the whole. Due
to its simplicity, macro modeling is a practical approach
in real-word applications and suitable for control pro-
cesses. A common macro modeling approach for urban
road traffic is based on the Store-and-forward dynamic
model Gazis and Potts (1963) which represents a simple
vehicle-conservation equation between two neighbouring
intersections (M,N).

Fig. 1. Generalized urban road link

Considering Fig. 1 the traffic dynamics is described by the
following linear equation:

xz(k + 1) = xz(k) + T [qz(k)− hz(k)], (1)

where xz is the number of vehicles expressed in Passenger
Car Equivalent (PCE), qz the inflow, hz the outflow
(PCE/h) of link z during [kT, (k + 1)T ] where k is the
discrete time step and T the sampling time. It has to be
emphasized that the traffic flows generated and consumed
by the link are neglected for simplicity. These flows can
be produced by parking lots or uncontrolled intersections.
If they are known parameters they can be easily added
to the model (1). Nevertheless, the paper’s aim is to deal
with them as bounded state uncertainties which will be
presented in the following sections.
Equation (1) gives a single link dynamics. In order to
obtain network dynamics each link equation is needed. The
network can be represented by directed graphs composed
of nodes and arcs. The nodes j ∈ J denote the controlled
intersections and the arcs z ∈ Z the links. In this case
the meaning of qz and hz has to be given. Equation 1 is
redefined depending of the network dynamics:

xz(k + 1) = xz(k)+

T

C

[

∑

w∈IM

αw,zSw

∑

i∈vw

uM,i(k)− Sz

∑

i∈vz

uN,i(k)

]

(2)

C is the cycle time and we assume T = C. αw,z with
w ∈ IM are the turning rates of the links entering junction
M towards link z. Sw and Sz are the saturation rates
giving the traffic flow ratio during the green times. The
values of α and S are considered known and constant.
Nevertheless, they can be measured or estimated (Kulcsár
et al., 2005).

∑

i∈vw
uM,i and

∑

i∈vz
uN,i represent the

green times of intersection M and N , respectively (during
the cycle time). Equation 2 can be written in matrix form
which yields the general LTI state space representation
Diakaki et al. (1999):

x(k + 1) = Ax(k) +Bu(k) + Ed(k),

y(k) = Cx(k),
(3)

In our case the state matrix A is practically considered
as an identity matrix. The elements of the state vector x
represent the number of vehicles of each controlled link.
The number of states is equal to the number of controlled
links in the network. Matrix B can be constructed by the
appropriate allocation of the combinations of saturation
and turning rates. The diagonal values of B are negative
Sz as the product Sz

∑

i∈vz
uN,i represents the outflow

of link z. The third term Ed(k) of (3) represents an
additive disturbance where E = I. d contains the traffic
intending to enter the network at the boundary. Traffic
d is considered as a measurable value. Matrix C is an
identity matrix as all outputs inside the network are at the
same time measured states. The values of y(k) = x(k) are
not directly measurable but may be estimated by using
Kalman-filter Welch and Bishop (1995), for example. A
possible realization for state estimation was published in
the paper of Vigos et al. (2007).
The traffic model derived above is valid only with con-
straints. The states are subject to physical constraints as
the maximum number of vehicles (xz,max) is defined by
the length of zth link between two junctions (considering
PCEs):

0 ≤ xz(k) ≤ xz,max (4)

Also the control input is restricted by constraints. On the
one hand, u is constrained by the interval of green time:

uz,min ≤ uz(k) ≤ uz,max(xz) (5)

uz,max is state dependent since the number of vehicles
on the link determines the maximum green time. This
constraint assures the positivity of the states. Depending
on the system setting uz,min (for lack of vehicles on a link
given) can be zero, which means permanent red signal for
the stage in the next control interval. On the other hand,
control input u is restricted by the linear combination
constraints of green times of junction j. The sum of the
green times has to be less than Tj,max:

Oj
∑

z=1

uz(k) ≤ Tj,max, j = 1, 2, . . . , J (6)

where Oj is the number of stages at junction j, Tj,max =
T − Lj (Lj is the fixed lost time resulted from the
geometry of junction j), and J is the number of controlled
intersections.

2.2 Nominal traffic model

The traffic model (3) derived from Store-and-forward ap-
proach contains an additional term, Ed(k). This term
cannot be directly handled by the control techniques (nei-
ther the later introduced minimax MPC) which are based
on the minimization of the general LQ cost functional.
Therefore a centered traffic model is needed, where Ed(k)
can be eliminated (Diakaki et al., 1999). The control is
based on a fixed nominal signal plan. First, we have to
introduce the following equations which are held for the
original model (3):
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∆x = x− xN , ∆u = u− uN , ∆d = d− dN , (7)

where indexN denotes the nominal value and ∆ represents
the deviation compared to the nominal value. It has to be
noted that disturbance d represents exclusively the inflow
demand at the boundary of the network (see Sec. 2.1). It
is assumed that d = dN and hence, ∆d = 0 . Furthermore,
we assume that in stationary case the state equation is
xN (k + 1) = xN (k) and thus xN (k) = xN (k) +BuN (k) +
dN (k) (with A = E = I) which result in BuN + dN = 0.
Therefore, we arrive at the eligible state space model
without any additive term:

∆x (k + 1) = A∆x (k) +B∆u (k) (8)

which implies that our control is designed to find control
deviation ∆u(k). To apply expression (8) an appropriate
nominal signal plan is required. Hereunder we introduce
a possible method to calculate the nominal control input
uN . Knowing demands dN , it is straightforward to find uN

solving the following feasibility problem:

find uN

s.t. BuN + dN = 0,

uz,min ≤ uN
z ≤ uz,max,

Oj
∑

z=1

uN
z ≤ Tj,max,

(9)

2.3 Uncertainty modeling in urban traffic

In the previous parts the general LTI state space repre-
sentation of urban traffic system was discussed in details.
The possible state uncertainties were neglected or consid-
ered as known parameters, e.g. in the paper of Diakaki
et al. (1999) the demand and exit flows are known values
within the link. Typically, state uncertainties appear due
to unexpected traffic fluctuations caused by parking places
along the road or non-controlled junctions in the network
(Fig. 2). The measurements of these disturbing flows would
lead to enormous costs in urban network. Therefore, it is
more reasonable to treat them as bounded uncertainties.

Fig. 2. State uncertainties in urban traffic

A common approach for modeling uncertainties is the use
of bounded additive disturbance model. Another potential
technique is the multiplicative approach which may involve
state uncertainties in the traffic model. In the paper the
latter approach was chosen for robust control design.
The uncertainties can be defined on linear time variant
(LTV) system matrices A(k) and B(k) within polytope Ω:

Ω(k) = Co{[A1 B1], [A2 B2], . . . , [AL BL]} (10)

where Co devotes the convex hull and L is the number of
the vertices of uncertainties. Equation (10) expresses that

[A(k) B(k)] ∈ Ω if for some nonnegative λi (
∑L

i=1 λi = 1):

[A(k) B(k)] =
L
∑

i=1

λi[Ai(k) Bi(k)] (11)

As we only attend to the state uncertainties throughout
this paper, we may conclude that

A(k) ∈ Ω = Co{A1(k), A2(k), . . . , AL(k)} (12)

The vertices of uncertainties can be placed into the current
diagonal elements of A as A = I in nominal case. For ex-
ample, in case of one single uncertain link in the network,
polytope Ω contains the following matrices:

A1 =











1 0 . . . 0

0 1− α1

...
...

. . . 0
0 . . . 0 1











, A2 =











1 0 . . . 0

0 1 + β1

...
...

. . . 0
0 . . . 0 1











(13)

where αi and βi (αi, βi ∈ [0, 1]) represent percent devia-
tions of the measured states. The measure of the uncer-
tainties can be estimated based on prior measurements
exclusively. Although Ai(k) is time varying, it does not
definitely alter in each time step. Therefore, it may be
updated in larger time interval (e.g. night hours, morning
hours).
In this paper polytopic uncertainty description is consid-
ered around the centered representation (8) for control ori-
ented reasons. Authors are aware of the specific structure
of the uncertainty, and believes that the before mentioned
description is valid if x(k) > xN (k), i.e in oversaturated
intersections.

3. ROBUST CONTROL IN URBAN TRAFFIC
NETWORK

Uncertainties introduced in the previous part can strongly
disturb online optimization based traffic control. In the
following part an efficient robust traffic control method is
introduced to overcome the uncertainty problem.

3.1 Minimax MPC

The minimax approach is a potential method to deal
with uncertainties. An infinite horizon minimax MPC was
published in Kothare et al. (1996), which is the basis of
our traffic control design. The centered model (8) can be
described for state uncertain system as LTV model:
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∆x(k + 1) = A(k)∆x+B(k)∆u(k),

A(k) ∈ Ω
(14)

An efficient robust solution for system (14) is the mini-
mization of a robust performance objective:

min
∆u(k+i|k), i=0,1,...,m−1

(

max
A(k+i)∈Ω, i≥0

Jp(k)

)

, (15)

where

Jp(k) =

p
∑

i=0

(∆x (k + i|k)
T
Q1∆x (k + i|k)+

∆u (k + i|k)
T
R∆u (k + i|k))

(16)

Q1 ≻ 0 and R ≻ 0 are symmetric weighting matrices. p
is the prediction horizon and m the control horizon. We
consider the case of p = ∞, which implies the so-called
infinite horizon MPC. Finite horizon control laws have
weak nominal stability properties (Rawlings and Muske,
1993). To ensure nominal stability of finite horizon MPC
one has to impose the terminal state constraint ∆x(k +
i|k) = 0 (i = m) or the contraction mapping princi-
ple (Zafiriou, 1990) to tune Q1, R,m and p for stability.
These methods, however, cannot guarantee stability in
all cases and may imply extreme computational time.
Therefore, infinite horizon approach is adopted to guar-
antee at least nominal stability (Rawlings and Muske,
1993). In the following part instead of the maximiza-
tion of A(k+i)∈Ω, i≥0J∞(k) a Lyapunov function V (∆x) =

∆xTP∆x is generated. Additionally, an upper bound is de-
rived such that max

(

A(k+i)∈Ω, i≥0J∞(k)
)

≤ V (∆x(k|k)).
The original optimization problem can be reformulated as:

min
∆u(k+i|k), i=0,1,...,∞

V (∆x(k|k)) (17)

which still implicitly depends on uncertainties. This prob-
lem leads to an optimization problem involving LMIs. Let
∆x(k) = ∆x(k|k) be the state of the uncertain system
(14) measured at sampling time k. State feedback matrix
F in the control law ∆u (k + i|k) = F∆x (k + i|k) , i ≥ 0
minimizing the upper bound V (∆x(k|k)) is given by

F = Y Q−1, (18)

where Q and Y are obtained from the solution of the
following linear minimization problem, using LMIs:

min
γ,Q,Y

γ

s.t.

[

1 ∆x (k|k)
T

∆x (k|k) Q

]

� 0,











Q QAT
j + Y TBT QQ

1

2

1 Y TR
1

2

AjQ+BY Q 0 0

Q
1

2

1 Q 0 γI 0

R
1

2Y 0 0 γI











� 0,

j = 1, 2, . . . , L

(19)

The application of (19) represents a closed loop control
which guarantees the robust stability of the system. An

efficient solution algorithm for LMI problem (19) can be
the SDP (Vandenberghe and Boyd, 1996).

3.2 Constraints handling in minimax MPC

As discussed in Section 2.1, the urban traffic system has
several constraints which must be satisfied. The robust
LMI based control offers input and output constraint
handling as well. In terms of the invariant ellipsoids (Boyd
et al., 1994) physical limitations can be incorporated into
the robust MPC algorithm as sufficient LMI (Kothare
et al., 1996) where the constraints are given in quadratic
form. Thus, the system has to be subject to symmetric
constraints of the following form:

v ≤ v ≤ v, (20)

where |v| = v. In our case the symmetric form (20) implies
that the control input constraint has to be given as follows:

|∆uz(k + i|k)| ≤ u∗
z(k), i ≥ 0, z = 1, 2, . . . , nu, (21)

Due to the symmetric definition u∗
z(k) is defined condi-

tionally. u∗
z(k) = uz,max(k) − uN

z if uN
z ≥ uz,max(k)/2,

else u∗
z(k) = uN

z . Therefore, the original constraint (5)
may turn more tight. Nevertheless, it does not reduce the
control efficiency as urban traffic has a transient dynamics.
For example, if link z has very low nominal state xN

z with
u∗
z(k) = uN

z potential uz,max(k) is reduced. It may not be
utilized at all by reason that the extreme increase of xz is
not realistic from one time step k to the next. At the same
time the centering process (9) is continuously updated in
a couple of time steps. Thus, u∗

z(k) can follow the growth
of xz. Finally, the maximum green time constraints on
each component of ∆u(k + i|k) can be expressed as an
LMI according to the book of Boyd et al. (1994) and using
Schur complement:

[

X Y
Y T Q

]

� 0, with Xzz ≤ (u∗
z)

2
,

z = 1, 2, . . . , nu

(22)

It has to be noted that using u∗
z as constraint bound,

zero green time may be calculated. Therefore, permanent
red signal (in the next control interval) can be resulted
which can be admissible depending of the concept of traffic
management. At the same time, if permanent red is not
allowed or there is a pedestrian stage in parallel, a non-zero
minimum green time (according to the pedestrian stage)
have to be ensured. This can be done easily such that the
system automatically enlarges the lost time Lj with the
current pedestrian green time in the next cycle.
The linear combination constraints on green times (6) has
to be guaranteed as well in SDP algorithm. Based on
the deduction of (22) of Kothare et al. (1996) the LMI
constraint of the sum of green times is derived (see App.
A). Thus, the maximal value of the sum of green times at
junction j is formulated as below

[

b2j wT
j Y

Y Twj Q

]

� 0, j = 1, 2, . . . , J (23)

where bj is the maximal value allowed, wT
j the vector to

allocate the current rows and columns of Y according to
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∆u. Constraint bj depends on the nominal control inputs
uN :

bj = Tj,max −

Oj
∑

z=1

uN
z (k) (24)

It has to be noted that in case of less dense traffic the
SDP algorithm does not necessarily result in all the pos-
sible green times (Tj,max). Nevertheless, according to the
general concept of the traffic engineering (utilization of
all available green times) it is worth distributing the rest
proportionally among the stages. At the same time, these
additional green times do not disturb the model (8) as
the green time intervals are proportional to the number of
exiting vehicles.
Furthermore, for better performance, additional con-
straints can be imposed on centered process output ∆y(k)
(i.e. the states in our case). The use of the output con-
straints may contribute to avoiding spill-over phenomenon
on links in the controlled traffic area applying the following
LMI:

[

Q QAT
j + Y TBT

AjQ+BY Z

]

� 0,

with Zzz ≤ ∆y2z,max = ∆x2
z,max,

z = 1, 2, . . . , ny, j = 1, 2, . . . , L,

(25)

4. SIMULATION AND RESULTS

The minimax MPC was verified in a closed loop simu-
lation environment. We used microscopic traffic simulator
(VISSIM) for traffic network modeling and the LMITOOL
package of SCILAB (Nikoukhah et al., 1995) for the
control process. By using simulations, we could compare
nominal and robust control strategies in presence of un-
certainties. The simulation is realized as online control.
In each control cycle the measurements of the states are
forwarded to SCILAB. After minimizing the cost function,
the new green times return to the traffic simulator.
During the simulations, we used a fictional test network
including 4 controlled intersections and 16 controlled links
(states). The lengths of links alter between 100 and 250
meters. State uncertainties were involved in the control
scheme determining the upper and lower bounds of unmea-
sured traffic flows. Control disturbances were not consid-
ered. Therefore, polytopic set (12) was applied. We applied
centered traffic model with nominal control inputs by
solving problem (9). Inflow demands (dN ) were determined
by real word data considering average traffic measurements
in District 10 of Budapest during peak hours. We defined
two uncertain cases for the simulations. One is with uncer-
tain link 1 (see Fig. 3) and another with two uncertain
locations (link 1 and 2 ).
We simulated three different scenarios with ±10%,±20%
and ±30% state uncertainties in both cases. The uncer-
tainties were generated by non-controlled junctions as non-
measurable vehicle flows. The dynamics of the disturb-
ing fluctuations had normal distribution. To compare the
effectiveness we simulated robust (RMPC) and nominal
MPC (NMPC) strategies as well. The nominal MPC was
applied with L = 1 and A = I since it did not take any
uncertainties into consideration. Nevertheless, the same

Fig. 3. Simulation traffic network with state uncertainties

SDP algorithm (19) was used for robust and nominal MPC
with LMI constraints (22, 23, 25). The simulation time was
1800 seconds. The cycle time was set to 90 sec.
Four traffic parameters were analyzed during the simula-
tions. The first parameter is the Number of vehicles that
have left the network which gives a general result consid-
ering the network. Average number of stops per vehicles
is another illustrative parameter to show the dynamics of
the traffic. The Average delay time per vehicle determines
the mean time delay calculated from all vehicles observed
in the network compared to the ideal travel time (no
other vehicles, no signal control). Finally, the Average total
travel time per vehicle was chosen to measure which is
the average of all vehicles’ travel times needed to pass
the network. The results are displayed in Tables 1 and
2, respectively. The rows Change of Tables 1, 2 represent
the variation of current traffic parameters compared to the
nominal MPC strategies.

Table 1. Simulation results comparing the ro-
bust and nominal control strategies with one

uncertainty
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A
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e
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ta
l
tr
a
v
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m
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p
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v
eh
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le

[s
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]

±
1
0
% NMPC 1036 2.3 136 199

RMPC 1044 2.2 132 193
Change +0.8% -4.4% -2.9% -3.0%

±
2
0
% NMPC 1034 2.6 158 227

RMPC 1044 2.3 147 201
Change +1.0% -11.5% -7.0% -11.5%

±
3
0
% NMPC 1036 2.9 167 236

RMPC 1049 2.2 133 198
Change +1.3% -24.1% -20.4% -16.1%

Table 1 and 2 shows that all traffic parameters changed
in the right way. The measure of amelioration is similar
in both cases. The robust property of the signal plan
design improves the system performance in all important
traffic parameters. We also can observe that the number of
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Table 2. Simulation results comparing the ro-
bust and nominal control strategies with two

uncertainties
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A
v
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a
g
e
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l
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a
v
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ti
m
e
p
er

v
eh
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le

[s
ec
]

±
1
0
% NMPC 1047 2.2 134 195

RMPC 1052 2.2 132 194
Change +0.5% 0.0% -1.5% -0.5%

±
2
0
% NMPC 1058 2.5 153 221

RMPC 1070 2.3 144 207
Change +1.1% -8.0% -5.9% -6.3%

±
3
0
% NMPC 1055 3.2 181 256

RMPC 1103 2.4 150 211
Change +4.6% -25.0% -17.1% -17.6%

uncertainties in this test network did not necessary imply
stronger disturbances regarding the whole traffic network.

5. CONCLUSION

The paper introduces an uncertainty modeling framework
for control of urban traffic networks. Recognizing the need
for robust control in urban traffic management, a con-
strained and robust model predictive algorithm is used to
minimize traffic related objectives. The result of the robust
predictive algorithm can be given as a convex set of LMI
conditions. The closed-loop method is demonstrated via
simulations.
Nevertheless, the authors intend to investigate the same
problem in an alternative way. As a part of future re-
search additive uncertainty approach and a different min-
imax MPC technique (introduced in Löfberg (2003)) are
planned to be involved for robust traffic control.
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Appendix A. DERIVATION OF THE LINEAR
COMBINATION CONSTRAINTS ON GREEN TIMES

Let ǫ =
{

∆x|∆xTQ−1∆x ≤ 1
}

=
{

∆x|∆xTP∆x ≤ γ
}

an
invariant ellipsoid for the predicted states of the uncertain
system. At sampling time k consider the Euclidean norm
constraint for junction j:

∥

∥wT
j ∆u(k + i|k)

∥

∥

2
≤ bj , i ≥ 0 (A.1)

Following Boyd et al. (1994), we can formulate the next
expression:

max
i≥0

∥

∥wT
j ∆u(k + i|k)

∥

∥

2

2
=

max
i≥0

∥

∥wT
j Y Q−1∆x(k + i|k)

∥

∥

2

2
≤

max
∆x∈ǫ

∥

∥wT
j Y Q−1∆x

∥

∥

2

2
=

λmax

(

wT
j Q

− 1

2Y TY Q− 1

2wj

)

(A.2)

The last inequality is a generalized eigenvalue problem and
it holds true at all times i ≥ 0 if the following LMI holds:

[

b2j wT
j Y

Y Twj Q

]

� 0 (A.3)
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