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ABSTRACT

In this paper, a forward model for extended covariance
matrix prediction for boreal and hemi-boreal forest in P-
band SAR is presented. The main product is the extended
covariance matrix scaled to sigma nought on the diago-
nal. The input parameters consist of basic radar setup,
topography, forest biome, biomass, and some model pa-
rameters. Backscatter intensities for HH, VV, and HV
channels are predicted from biomass using regression
based on BioSAR 2007 campaign data. The phase of the
correlation between the HH and VV channels is found to
be proportional to biomass and is also modelled by a re-
gression based on BioSAR 2007 data. The coherence of
HH and VV channels is found to be unrelated to biomass
and is chosen to be modelled as a stochastic variable. The
correlation of any co-polarized channel with HV is set
to 0. The interferometric correlation values for the three
channels are modelled using volume over ground (VoG)
model, which is a combination of random volume over
ground (RVoG), oriented volume over ground (OVoG),
and elevated random volume over ground (ERVoG) mod-
els.

The forward model is also evaluated against SAR data
from the BioSAR 2007 campaign. Three intensity im-
ages and one complex polarimetric correlation image are
created for Remningstorp (site of BioSAR 2007) from
existing biomass map, DEM, and flight path informa-
tion. These images are compared with the images ac-
quired with ESAR during the BioSAR 2007 campaign
and the similarities and differences are discussed. The
presented forward model is able to predict backscatter
with an RMSE of 1.35 dB (HV), 1.77 dB (VV), and 1.92
dB (HH). Polarimetric correlation can be predicted with
magnitude and phase RMSE equal to 0.08 and 16.3 deg,
respectively. A qualitative evaluation of the interferomet-
ric part is also done and it is concluded that a good setup
of model parameters is neccessary to get satisfactory re-
sults.

1. INTRODUCTION

In view of the proposed ESA Earth Explorer BIOMASS
mission, a polarimetric interferometric forward model for
P-band forest imaging is developed. The model predicts
the 6x6 extended covariance matrix C6 and requires only
a limited number of input variables such as: relevant bio-
physical parameters (forest biomass and/or forest height,
forest type, surface slopes), instrument parameters (inci-
dent angle, etc), and mission parameters (such as tempo-
ral and spatial baselines). The model simulates all the
mechanisms that are exploited by the different biomass
retrieval methods (intensity-based retrieval, PolInSAR
height inversion, and polarimetric decomposition-based
biomass retrieval).

Three BioSAR campaigns have been carried out as parts
of the BIOMASS project: BioSAR 2007 (Hajnsek et al.
2008; Sandberg et al. 2009), BioSAR 2008 (Hajnsek et al.
2009; Soja et al. 2010), and the most recent BioSAR 2010
(at the time of writing, processed SAR data are not yet
available). The main goal of these campaigns is to exam-
ine issues such as seasonal change and topography vari-
ation influence on SAR data in boreal and hemi-boreal
forests of Sweden.

This text is structured in the following way: first, a short
presentation of the experimental data used in this study
is given in Sec. 2. In Sec. 3, the forward model is pre-
sented. First, the required product and the specified input
variables are defined, and then each separate part of the
forward model is described. In Sec. 4, the model is put
into work and some sample results are presented, com-
pared with ESAR data, and evaluated. Finally, Sec. 5
evaluates the whole study and pinpoints the most impor-
tant observations. This text describes the latest imple-
mentation of the model. Some features, such as temporal
decorrelation, different biome types, and different profile
functions, will be described in the text, but not evaluated
due to the limited character of this paper. Nevertheless,
they will be available for the final delivery of the model.
The model is suitable for extended covariance matrix pre-
diction for boreal and hemi-boreal forests with standwise
biomass range 0-300 tons/ha with an approximate resolu-
tion cell size of 0.5 ha.
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Figure 1. The two test sites in Sweden used for the three
BioSAR campaigns.

2. EXPERIMENTAL DATA

In this study, P-band SAR data and ground truth data from
Remningstorp in southern Sweden is used. A short de-
scription of the used data will be given below. A detailed
description of the BioSAR 2007 campaign can be found
in Hajnsek et al. (2008); Sandberg et al. (2009). Limited
stand-wise forest data from Krycklan in Sweden is also
used.

2.1. Test Site

Remningstorp is located in southern Sweden (58◦30’N,
13◦40’E, see Fig. 1) and covers about 1200 ha of produc-
tive forest land. The forest is classified as hemi-boreal.
The dominant tree species are Norway spruce, Scots pine,
and birch. The dominant soil type is till with a field
layer consisting of different herbs, blueberry and narrow
thinned grass. In denser old spruce stands the field layer
is absent. The ground elevation is moderately varying be-
tween 120 and 145 m above sea level.

2.2. Field and Laser Scanning Data

There are two sets of field data available for Remnings-
torp. The first set consists of 10 stands, each of size 80x80
m2, where every single tree with a diameter at breast
height larger than 5 cm was recorded between 2007 and
2008. Stem diameter together with tree species, stem tilt
and tree position were also recorded. About 10% of the
trees in each stand had also their height measured. The
stand biomass was estimated from stem diameter and tree
height measurements using suitable allometric formulas
with high accuracy.

The second set of Remningstorp ground truth data con-
sists of 58 stands with areas between 0.5 and 9.4 ha. A
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Figure 2. The geometry and nomenclature used through-
out this paper. �n is the normal of the ground surface.

stem volume map for Remningstorp was created from
high-resolution canopy elevation models acquired with
lidar scanning. Highly accurate biomass estimates for
the 58 stands were computed from the stem volume map
with the aid of optical classification of species and well-
established conversion factors. A little less accurate
biomass map for Remningstorp was also created from the
stem volume map using one single conversion factor (see
Fig. 7). This map was used as input for the model, see
Sec. 4.

2.3. SAR Data

Fully polarimetric and interferometric P-band SAR im-
ages of Remningstorp were acquired using DLR’s Ex-
perimental SAR (ESAR) platform at three dates in 2007:
March 9th, March 31st to April 2nd, and May 2nd. For
simplicity, the three data sets will be called March, April,
and May data, respectively. For each date, geocoded im-
ages from two headings: 179◦ (1 image) and 200◦ (2 im-
ages) were created. In this paper, only the 200-degree
heading is used since it is the only one to cover all avail-
able stands. Also, a set of polarimetric-interferometric
images in slant range geometry were acquired for the
200◦-heading at horizontal spatial baselines between 10
and 80 meters and temporal baselines of approximately
0, 1, or 2 months.

3. FORWARD MODEL

3.1. Extended Covariance Matrix

The quantity to be modelled by this forward model is
the extended covariance matrix called C6. Having two
scattering vectors (for two geometries, or “master” and
“slave” images, as shown in Fig. 2) as in Eq. (1) and Eq.



Table 1. Input variables to the forward model.

Var.: Description [unit]:
General setup
TRS training data set used
Radar system setup
νc centre frequency [Hz]
H altitude [m]
θ0 global angle of incidence [deg]
BH horizontal baseline [m]
BV vertical baseline [m]
BT temporal baseline [days]
Ground topography
h0 ground height [m]
u ground slope [deg]
v slope direction [deg]
Forest parameters
h100 forest height (optional) [m]
hc canopy elevation [% of h100]
B forest biomass [tons/ha]
RVoG model parameters
FID profile type (1: exponential, 2: Gaussian)
μHH ground-to-volume ratio for HH
μVV ground-to-volume ratio for VV
μHV ground-to-volume ratio for HV
Exponential profile setup
αHH extinction on top of the layer for HH [dB/m]
αVV extinction on top of the layer for VV [dB/m]
β extinction change with height [dB/m2]
Gaussian profile setup
δ scattering center mean elevation [% of h100]
χ scattering center standard deviation

[% of h100]
Temporal decorrelation setup
τv time constant for temporal decorrelation of

volume [days]
τs time constant for temporal decorrelation of

surface [days]

(2):

�k1 = [S1,HH S1,VV S1,HV]
T
, (1)

�k2 = [S2,HV S2,VV S2,HV]
T
, (2)

where Si,PQ is the complex scattering amplitude for im-
age i and polarisation mode PQ, and T is the transpose
operator, C6 can be acquired by creating outer product
combinations of these two as shown in Eq. (3):

C6 = 4π

[ 〈�k1 · �kH1 〉 〈�k1 · �kH2 〉
〈�k2 · �kH1 〉 〈�k2 · �kH2 〉

]
=

= 4π

[
T11 Ω12

ΩH12 T22

]
, (3)

where C6 has been scaled to give σ0 on diagonal and
H is the Hermitian transpose (the transpose of the com-
plex conjugate). Using the fact that the covariance of any

co-polarised channel with the cross-polarised channel is
(ideally) zero, polarimetric and interferometric elements
of C6 can now be re-written as shown in Eq. (4) and Eq.
(5):

Tii =

⎡⎣ σ0
i,HH ρi ·Ai 0

ρ∗i · Ai σ0
i,VV 0

0 0 σ0
i,HV

⎤⎦ (4)

which is a Hermitian matrix, and

Ω12 =

[
γ̃HH ·BHH ω12 · C 0
ω21 · C γ̃VV · BVV 0

0 0 γ̃HV · BHV

]
, (5)

which is non-Hermitian and where i = 1, 2 is the index
of the studied image (“master” or “slave” in Fig. 2). The
diagonal elements of Tii are scaled to sigma nought:

σ0
i,PQ = 4π

〈
|Si,PQ|2

〉
,

and they also give the following elements in Eq. (4) and
Eq. (5):

Ai =
√
σ0
i,VV · σ0

i,HH,

BPQ =
√
σ0
1,PQ · σ0

2,PQ,

C =
√
σ0
1,HH · σ0

2,VV.

Two complex valued quantities that need to be modelled
are:

ρi =
〈Si,HH · Si,VV

∗〉√〈
|Si,HH|2

〉〈
|Si,VV|2

〉 , (6)

γ̃PQ =
〈S1,PQ · S2,PQ

∗〉√〈
|S1,PQ|2

〉〈
|S2,PQ|2

〉 , (7)

which represent the polarimetric complex correlation
and the interferometric complex correlation, respectively.
Note, that γ̃PQ is the correlation of two interferometric
images acquired in the same polarimetric mode. The
symbolism has been minimised for simplicity.

The non-diagonal elements in Eq. (5), ω12 and ω21, rep-
resent the correlation between HH and VV channels at
both ends of the baseline. In this model, they will not
be predicted using dedicated functions, but their values
will be derived from the expressions for ρ i and γ̃PQ. The
details will be presented in Sec. 3.6.

3.2. Input Parameters

The parameters which have been chosen to be required
from the user are all shown in Tab. 1. Some of the pa-
rameters, together with the geometry of the problem, are
visually presented in Fig. 2. The forest height indica-
tor used in this text will be the h100-parameter, which
is defined as the mean height of the 100 tallest trees per
hectare.



3.3. Backscatter Intensity Modelling

Backscatter intensity is chosen to be modelled by the fol-
lowing function:̂[σ0

PQ]dB = aPQ + bPQ log10 B + εPQ, (8)

where PQ is either HH, VV, or HV, and εPQ is a normally
distributed additive error with mean 0 and standard devi-
ation ςPQ. In order to obtain suitable parameter values in
(8), the functions were fitted to the 200-degree heading
BioSAR data in the following constellations:

• TRS = 0: all available data,

• TRS = 1: March data only,

• TRS = 2: April data only,

• TRS = 3: May data only.

The resulting parameter values are presented in Tab. 2.
In Fig. 3, the fitted lines are plotted together with the
corresponding training data. The same model with the
same error representation is used for both “master” and
“slave” images.

3.4. Polarimetric Correlation Modelling

The cross-channel complex correlation ρ i is modelled by
the following functions derived from empirical observa-
tions in BioSAR 2007 data:

|ρ̂i| = ρ+ ερ, , (9)

arg(ρ̂i) = aρ + bρ · B + εψρ , (10)

where ρ is the mean value of the cross-channel coherence
and the phase changes linearily with biomass B. Both the
magnitude and the phase of ρi are distorted by zero mean
additive errors ερ and εψρ with standard deviations ςρ and
ςψρ , respectively.

The model presented in (9) and (10) was derived from
observations in BioSAR 2007 data. The model was fitted
to the data in the same way as described in Sec. 3.3. In
Fig. 4 the resulting curves are plotted together with the
original data points. Values of the constant parameters in
(9) and (10) can be found in Tab. 2. The same model with
the same error representation is used for both “master”
and “slave” images.

3.5. Interferometric Correlation Modelling

The interferometric contributions γ̃PQ (meaning the com-
plex correlation values of two images with the same po-
larization mode but different geometries and/or acquisi-
tion times) are predicted by a combination of the classi-
cal random volume over ground model (RVoG, see Pa-
pathanassiou & Cloude (2001); Cloude & Papathanas-
siou (1998, 2003); Cloude (2010)), the elevated random

volume over ground model (ERVoG), and the oriented
volume over ground model (OVoG), both in the form
presented in Garestier et al. (2008), with all the profile
functions described in Garestier & Le Toan (2010). The
model presented here will be simply called volume over
ground model (VoG), as it includes elements of all the
three established models.

The RVoG model predicts the complex correlation of a
random volume of particles (of height hV ) situated di-
rectly above a coherently scattering ground. In ERVoG,
the volume is allowed to have an elevation hc above the
ground, thus imitating a tree crown of thickness hV −hc.
The OVoG model allows the particles inside the volume
to have a predetermined orientation, thus allowing the at-
tenuation to be polarization-dependent.

The VoG model presented here also includes exponential
functions simulating the temporal decorrelation of vol-
ume and surface in a very much simplified manner:

γ̃PQ = eikzh0 · γ̃v,PQ · eikzhc · e−
BT
τvol + μPQ · e−BT

τs

1 + μPQ
,

(11)
where

kz =
4π ·Δθ

λ sin θi
is the vertical wavenumber,

γ̃v,PQ =

∫ hV −hc

0
fFID,PQ(z) · eikzz dz∫ hV −hc

0 fFID,PQ(z) dz
(12)

represents the correlation for a volume (“tree crown”) of
thickness hV − hc and a profile described by fFID(z),
and the other quantities are as defined in Fig. 2 and Tab.
1. Two main profiles presented in Garestier & Le Toan
(2010) are:

f1,PQ(z) = exp

(
2σPQ(z) · z

cos θi

)
(13)

and

f2,PQ(z) = exp

(
− (z − δ)2

2χ2

)
, (14)

where the first one is an exponential profile with height-
dependent extinction coefficient σ(z), and the second one
is a Gaussian curve with mean δ and standard deviation
χ. In Garestier & Le Toan (2010) three different types of
σ(z) are discussed, which all can be summarized as:

σPQ(z) = αPQ + βz, (15)

where polarization dependence of the α-parameter has
been introduced as an extension of RVoG to OVoG. Pa-
rameter α should be specified among the other input pa-
rameters for both HH and VV polarisations, and αHV is
then simply:

αHV =
αHH + αVV

2
. (16)

If β = 0, αHH = αVV, and hc = 0, the classical RVoG
model is used. The standard OVoG model can be ob-
tained when β = 0 and hc = 0. Likewise, the ERVoG
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Figure 3. The model presented in (8) was fitted to BioSAR data for each date separately, and for all dates together. The
curves and data points are presented here.
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Figure 4. The model presented in (9) and (10) was fitted to BioSAR 2007 data for each date separately and for all dates
together. The fitted lines are presented here.

model is obtained if β = 0, hc > 0, and αHH = αVV.
The integrals in Eq. (12) can be computed analytically
(see Garestier & Le Toan (2010)).

The choice of the parameters hc, BT , τv , τs, and μPQ,
together with the choice between one of the two profiles
f1(z) and f2(z) (with the parametersαPQ and β, or δ and
χ therein) are all left to the user. Also, it is here assumed
that

hV ≈ h100 (17)

which has been shown to be quite a reliable approach (see
for instance Hajnsek et al. (2008, 2009), where RVoG in-
version gives hV as a good estimate of h100).

3.6. Non-diagonal Elements of Ω12

The non-diagonal elements Ω12 will be modelled us-
ing the assumption that the combined decorrelation

due to different polarizations and different acquisition
points/time can be seen as a product of the polarimetric
decorrelation and the interferometric decorrelation, that
is: 〈Si,PP · Sj,QQ

∗〉√〈|Si,PP|2〉 〈|Sj,QQ|2〉
≈ γpol · γint (18)

which gives:

ω12 ≈ γHH · ρ2 ≈ γVV · ρ1, (19)

ω21 ≈ γVV · ρ∗2 ≈ γHH · ρ∗1, (20)

where each ω has been re-written in two equivalent ways
using the assumption in Eq. (18). In this forward model,
the non-diagonal elements will be modelled in the fol-
lowing way:

ω12 =
γHH · ρ2 + γVV · ρ1

2
, (21)

ω21 =
γHH · ρ∗1 + γVV · ρ∗2

2
. (22)
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Figure 5. Random volume over ground model simulates
complicated forest scattering as a combination of scat-
tering from a random volume of height hV and a coher-
ently scattering surface. Coherence of different channels
is simulated by taking volume and surface scattering in
different proportions (different μ-values). Elevated ran-
dom volume over ground (ERVoG) model allows the ex-
istence of a gap of width hc between the volume and the
ground. Oriented volume over ground (OVoG) introduces
polarization-dependent attenuation in volume.

3.7. Biomass to Height Conversion

The volume over ground model requests the canopy
height hV as an input parameter. Since the assumption
in Eq. (17) is used, h100 is going to be used as the vol-
ume height. Biomass and h100 can be related through
the following allometric equation, which has been found
valid for Remningstorp and Krycklan data:

log10 h100 = ah + bh log10 B + εh (23)

where ah and bh are parameters estimated using least-
squares fitting to the available data, and εh is an additive
error with zero mean and standard deviation ςh. Using
ground-measured values for h100 and B for Remnings-
torp and Krycklan (Hajnsek et al. 2009; Soja et al. 2010),
these parameters can be estimated and a curve can be fit-
ted, see Fig. 6. The estimated values for ah, bh and ςh
can be found in Tab. 2.

4. EVALUATION OF THE MODEL

The forward model described in this paper was evalu-
ated using SAR data over Remningstorp acquired by the
ESAR platform from DLR. One SAR image acquired
in May at the 200-degree heading was used as refer-
ence. The previously mentioned lidar-based biomass map
shown in Fig. 7 was inserted into the model. The ESAR
images were down-sampled to fit the grid of the biomass
map (pixel size: 10 m by 10 m). All presented maps are
geo-coded to UTM33.
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Figure 6. Allometric relation for biomass to height con-
version. 10 stands in Remningstorp and 31 stands in
Krycklan were used.

Table 2. Values of the parameters in models (8), (9), (10),
and (23) found by least-squares fitting to BioSAR data. ς x
is the standard deviation of the error εx (which has mean
0).

Training set used:
Const.: March April May All
aHH -20.7625 -21.8742 -21.7738 -21.4701
bHH 8.1223 8.5064 8.2956 8.3081
ςHH 1.2599 1.3035 1.2748 1.3015
aVV -10.6582 -9.1717 -8.2603 -9.3634
bVV 2.3590 1.4829 0.7784 1.5401
ςVV 1.2843 1.1850 1.0778 1.2467
aHV -22.8652 -22.7809 -22.5807 -22.7423
bHV 5.2002 4.9165 4.5876 4.9014
ςHV 0.9088 0.8681 0.7472 0.9347
ρ 0.3895 0.3886 0.3930 0.3904
ςρ 0.0714 0.0698 0.0669 0.0690
aρ 0.6815 0.8332 0.7509 0.7552
bρ 0.0049 0.0049 0.0046 0.0048
ςψρ 0.2272 0.2137 0.2135 0.2272
ah N/A N/A N/A 0.4118
bh N/A N/A N/A 0.4441
ςh N/A N/A N/A 1.7213

4.1. Backscatter Intensity

The model was set to only use May data. In Fig. 8, the
modelled SAR images are presented side-by-side with
the original ESAR images. They are plotted as RGB im-
ages with HH as the red channel, VV as the green chan-
nel, and HV as the blue channel. Also, there are three bi-
variate (two-dimensional) histograms plotted to the right
(one for each polarization).

The first, most obvious conclusion when comparing the
two images is that the ESAR image shows many more
small-scale effects such as border effects close to roads,
forest boundaries, etc. This is an expected behaviour



Biomass [ton/ha]

 

 

50 100 150 200 250 300 350 400

Figure 7. A laser scanning-derived biomass map with
pixel size 10 m x 10 m was used as input to the for-
ward model. The map has here been rotated 90◦ counter-
clockwise for space-saving reasons. Non-forested areas
have been masked out.
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Figure 8. Simulation results for intensity modelling in
Remningstorp.

since the model is developed for stand-wise data with
stand areas above 0.5 ha. The resolution of the model
can thus be approximated to 70 m x 70 m. Since the pre-
dicted images are on a grid of 10 m x 10 m, there are
many effects unaccounted for. Nevertheless, the predic-
tion of sigma nought backscatter shows good results on
the bigger scale, see Fig. 8. Considering the fact that
the conversion from stem volume map to biomass map
was done in a rather simplified way using one constant
only (independent of tree species), the results are cer-
tainly good on the stand level. The best prediction occurs
for HV with a root-mean-square error of 1.35 dB, which
has already been shown to give the best biomass correla-
tion at P-band (Sandberg et al. 2009). HH gives higher
error (1.92 dB) but still, both images show the same dy-
namic ranges. For VV, the knowledge of biomass is ap-
parently not sufficient for satisfactory prediction of sigma
nought — the dynamic range observed in ESAR data is
far higher than the dynamic range of the model. Although
the RMSE (1.77 dB) for VV is lower than for HH, there
is no alignment of the data along the y = x-line.

Note: the presented RMSE errors were computed for
modelled data based on biomass map downsampled to 70
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Figure 9. Simulation results for polarimetric correlation
modelling.

m x 70 m pixels, which matches the smallest stand size
in training data.

4.2. Polarimetric Correlation

In Fig. 9 the results for prediction of the HH-VV-
correlation are shown. As it was earlier observed, the
magnitude of ρ was not found to be biomass-dependent
and thus only phase images are shown. There is a good
correlation of the ESAR image and the image computed
by the forward model. In the histogram for the phase of ρ,
good results with no visible bias are observed. The statis-
tics of both images are very much alike. When it comes
to the magnitude of ρ, the ESAR image shows higher dy-
namic range than the predicted image. Even though the
magnitude of ρ is seemingly uncorrelated with biomass,
there may be some other factors that introduce the dy-
namic range. One other difference observed in the im-
ages is the “graininess” of the ESAR image. This is most
likely caused by the effects of downsampling after multi-
looking in correlation computing, where a window of 17
pixels in azimuth and 9 pixels in range was used for that
purpose. This even enhances the earlier mentioned issues
connected to different resolutions of the forward model
and the available biomass map. Nevertheless, the predic-
tion of ρi can be done with an error of approximately 0.08
in magnitude and 16◦ in phase.

4.3. Interferometric Correlation

The interferometric part of the forward model was also
tested against ESAR data. As the second ESAR image,
an image from the same date, but with an approximate
horizontal baseline of 70 m, was used. The exact flight
path information was provided to the forward model in
form of θ0 and kz maps. The other radar and forest pa-
rameters were chosen to resemble the ESAR case as well
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Figure 10. Correlation prediction results for HH.
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Figure 11. Correlation histograms.

as possible, based on information in Hajnsek et al. (2008).
The height h100 was computed using Eq. (23). The un-
known model parameters, mainly μPQ and the profile
function with the parameters therein, were estimated us-
ing repetitive qualified guessing. In Fig. 10, an exam-
ple of an interferometric correlation prediction is shown.
In Fig. 11, histograms comparing modelled images with
reference images for all three polarizations are shown.
The phase resemblence is very good, mostly thanks to
the detailed DEM provided to the model, but there are
some issues in the regions corresponding to near and far
range. The coherence values are in general well esti-
mated, but the spread is big, and the spatial changes are
not well reproduced. In the presented case, hc = 50%,
μHH = N (10, 62), μVV = N (7, 42), μHV = N (4, 22),
FID = 1 and αHH = αVV = 0.1 dB/m. The fact, that the
ground-to-volume ratios and the extinction coefficients
are constant (or normally distributed), and not related to
biomass must be one of the explanations to why the big
scale changes are not reproduced. The next planned step
to examine these model parameters and see if they can be
related to biomass.

5. CONCLUSIONS AND FURTHER WORK

The evaluation of the proposed model shows, that the
intensity and polarimetry parts can predict their corre-
sponding quantities with good results. The interfero-

metric part is based on a model that has shown itself to
be functional, but the parameter settings still need some
trimming.

An interesting observation is that the ground-to-volume
ratios (μPQ) apparently need to be very high (μ � 1) for
all polarizations. As expected, HH shows highest pene-
tration depth, which also results in higher coherence lev-
els and higher ground-to-volume ratios. While at higher
frequencies HV is often assumed to only consist of vol-
ume scattering, in P-band it shows high coherence not
only due to quite large amount of ground scattering but
also due to more stable scatterers in the volume (such as
thicker branches).

This model does not simulate incident angle influence nor
the influence of extreme ground topography. These ef-
fects need to be studied in future. Also, intensity and
polarimetric correlation for master and slave images are
not differentiated in the presented version of the model.
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