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Abstract—In the supervisory control theory, a supervisor is
generated based on given plant and specification models. The
supervisor restricts the plant in order to fulfill the specifications.
A problem that is typically encountered in industrial applications
is that the resulting supervisor is not easily comprehensible for the
users. To tackle this problem, we introduce an efficient method to
characterize a supervisor by tractable logic conditions, referred to
as guards, generated from the models. The guards express under
which conditions an event is allowed to occur to fulfill the speci-
fications. To obtain tractable guard expressions, we reduce them
by exploiting the structure of the given models. In order to be able
to handle complex systems efficiently, the models are symbolically
represented by binary decision diagrams and all computations
are performed on these data structures. The algorithms have
been implemented in a supervisory control tool and applied to an
industrially relevant example.

Note to Practitioners—In today’s industry, the control functions
are implemented to a great extent manually, which makes it a
tedious, error-prone, and time consuming process. supervisory
control theory (SCT) provides a powerful framework for automat-
ically producing safe and flexible control functions. SCT is based
on state-transition models, however, industrial people are used to
other representations. Specifically, the interpretation of a control
function represented by a huge and cluttered state-transition
model requires the maintenance personnel to have other skills
than are common today. As a consequence, SCT is seldom utilized
in the industry. This paper aims to facilitate the realization and
manipulation of control functions that are generated based on
SCT. This is performed by restricting the state-transition models
by tractable logic conditions extracted from the generated con-
trol function. To be able to handle large systems efficiently, the
computations are carried out on implicit representations of the
state-transition models.

Index Terms—Binary decision diagrams, deterministic finite au-
tomata, heuristic techniques, propositional formula, supervisory
control theory (SCT), symbolic representation.

I. INTRODUCTION

W HEN designing control functions for discrete-event sys-
tems, a model-based approach may be used to conve-

niently understand the system’s behavior, easily apply different
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modifications, and decrease the testing and debugging time. A
well known example of such a model-based approach is, super-
visory control theory (SCT) [1]. Having a plant (the system to be
controlled) and a specification, SCT automatically synthesizes a
control function, called supervisor, that restricts the conduct of
the plant to ensure that the system never violates the given spec-
ification. SCT has various applications in different areas such as
automated manufacturing and embedded systems, e.g., [2]–[4].

Generally, a supervisor is a function that, given a set of events,
restricts the plant to execute some events towards the specifi-
cation. A typical issue is how to realize such a control func-
tion efficiently and represent it lucidly for the users. A standard
approach is to first synthesize the supervisor and then explic-
itly represent all the states that are allowed to be reached in
the closed-loop system. However, such an approach has some
drawbacks. For instance, a supervisor with a huge number of
states may require more memory than available. Furthermore,
from a user perspective, such supervisors are not tractable. More
specifically, the users retrieve the final supervisor as a black box,
without clearly understanding why some events become dis-
abled after synthesis. Finally, for complex systems, exploring
all reachable states while synthesizing the supervisor is compu-
tationally expensive, due to the state-space explosion problem.

An alternative approach is to represent the supervisor symbol-
ically using binary decision diagrams (BDDs) [5]; useful data
structures (directed acyclic graphs) for representing Boolean
functions. BDDs can be used to compactly and effectively repre-
sent a huge state space [2], [6], [7]. Even if the number of states
is large, the number of nodes in its corresponding BDD can be
relatively manageable. In [6], a supervisor is synthesized in a
few minutes for a transfer line example with more than
states. This is possible due to a special partitioning of the in-
volved BDDs. Nevertheless, since this approach reformulates
and encodes the system’s original model, it is cumbersome for
the users to understand the resulting supervisor. It is more con-
venient and natural to represent the supervisor in a form similar
to the models that were fed into the synthesis initially.

By considering the theoretical description of a supervisor, it
can be represented as a function that restricts the execution of
events in the plant in order to satisfy the closed-loop specifica-
tion. These restrictions can be expressed as logic conditions in
terms of propositional formulae generated from different sets
of states related to the closed-loop model. We refer to such
logic conditions as guards. Intuitively, guards can be compre-
hended easily. However, in some cases the guards could be-
come large and intractable. To tackle this problem, it is possible
to minimize the guard expressions using standard minimization
methods of Boolean functions such as Quine–McCluskey [8];
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but such methods are inefficient for large systems, where a more
attractive approach is to perform an approximate minimization
in a symbolic manner using BDDs.

There are a number of papers which have tackled the above-
mentioned issues. In [9], an implementation of decentralized su-
pervisory control is presented. This is performed “by embedding
the control map in the plant’s local Finite State Machines and
employing private sets of Boolean variables to encode the con-
trol information for each component supervisor” [9]. Although
this process will assist the simplicity and clearness of the su-
pervisors, the main focus is to solve the problem of decentral-
ized communicating controllers and not much attention is paid
on how to reduce the final Boolean formulae for more complex
systems.

Another class of approaches for supervisory synthesis, based
on linear algebraic representation of Petri net models of the
plants, has been presented in [10]–[13]. In these methods, the
specifications are added to the plants in the form of linear predi-
cates, which can be considered as constraint conditions. The re-
sulting controller can also be formulated in a similar way as sug-
gested in this paper. However, each approach has some restric-
tions. The nonblocking problem is not considered in [10]. In ad-
dition, in order to employ this approach, the system should sat-
isfy a particular structural condition: the uncontrollable subnet
extracted from the Petri net model must be loop free. In [11], the
liveness problem is considered but only for controlled marked
graphs. The approach proposed in [12] is applicable if the super-
visory net has a convex reachability set. The focus is mainly on
efficient automatic verification. In [13], the request for a min-
imally restrictive supervisor is abandoned, in favor of a more
easily computed but also more restrictive control function.

In [14], the supervisor is represented as a set of control func-
tions expressed by BDDs, which is relatively close to our ap-
proach. Each control function is connected to an event, which
specifies when the event is allowed to be executed in order to
satisfy the specifications. The system is modeled by hierarchal
models called state tree structures. However, as stated earlier, for
users not familiar with BDDs, having the supervisor as a number
of BDDs would be hard to understand. Even for users familiar
with BDDs, the tree-structured models typically become com-
prehensible for systems where the plants and specifications con-
sist of a limited number of states. Otherwise, it would be compli-
cated for the users to relate the BDD-variables to the state trees.
Furthermore, it is possible to obtain simpler conditions in terms
of guards by utilizing the structures of the original models. Be-
sides, the major focus in [14] is to design a nonblocking super-
visor for huge systems, rather than generating comprehensible
guards added to the original automata for characterizing the su-
pervisor.

Andersson et al. [4] propose an algorithm for manufacturing
cell controllers to extract the relations between the desired op-
erations in the cell from the supervisor. The main advantage
of these relations is to give an easy-to-read representation of
the control function, and make the method usable in an indus-
trial setting. However, their approach can merely be applied to
models with a special structure and the method is not suitable
for large systems. The problem formulation tackled in our paper
is inspired from [4].

The contribution in this paper is to characterize a supervisor
by a set of reduced and tractable guards, which are generated
based on states of the original plant and specification models.
The guards can then be attached to the original models, yielding
a modular supervisor in form of extended finite automata (EFA)
[15]. To be able to handle large systems, all computations are
performed by BDDs. Hence, in this paper, we presuppose that
the monolithic supervisor is computed and its states are repre-
sented by a BDD. Based on the BDD the guards are computed.
To obtain more simplified and reduced guards, we exploit a set
of don’t-care states and apply some heuristic techniques, which
are all performed by BDDs as well. These heuristics are shown
to be crucial in the reduction of the generated guards.

Our method has some main features. The final representation,
i.e., the guards, will preserve all the properties of the supervisor.
So if the supervisor is nonblocking, controllable or minimally
restrictive, then the guards will also represent a supervisor with
those properties. The method is applicable to any system and no
structural conditions are required. The supervisor is represented
by a set of guards, that are understandable for the users, rather
than other data structures such as BDDs. In addition, the guards
can be easily implemented in a programmable logic controller.

This paper is organized as follows. Section II gives a brief
overview of the synthesis procedure based on deterministic fi-
nite automata. The process of generating the guards based on a
set of states is discussed in Section III. In Section IV, we explain
BDDs. The procedure of generating a guard based on a BDD and
applying the heuristic techniques to simplify the guards is pre-
sented in Section V. Section VI describes briefly how the guards
can be used to represent the supervisor. The guard generation al-
gorithm is applied to a real case study in Section VII. Finally,
Section VIII provides some conclusions and suggestions for fu-
ture work.

II. PRELIMINARIES

This section provides some preliminaries that are used
throughout this paper.

A. Deterministic Finite Automata

A deterministic finite automaton (DFA) is a five-tuple
, where is a finite set of states;

is a finite set of events called the alphabet;
is a partial transition function that describes the state transitions,
where means that there exists a transition labeled
by event from state , called source-state, to
state , called target-state. is the set of marked
states that are desired to be reached. We write to denote
all the events that are defined from state . Formally,

.
A sequence of events is called a string of events. An empty

string is denoted by and all possible strings consisting of
events from is denoted by . The domain of the transition
function of an automaton can be recursively extended to strings
of events by and , where

and .
The composition of a number of automata is performed by

the full synchronous (parallel) composition operator defined
in [1] and [16].
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If is the full synchronous composition of automata
, a state, , will have the form

We call an element of a substate. A substate be-
longing to a specific automaton is extracted from
by . For instance,

.

B. Supervisory Control Theory

As described in the introduction, SCT [1] is a general theory
to, given a plant and specification, automatically synthesize a
supervisor restricting the plant towards the specification. Notice
that if the plant is given as a number of subplants , the
monolithic plant is computed by synchronizing the subplants

, and similarly for the specifications.
In SCT, a first candidate to the supervisor is the composed

automaton , where is the monolithic specifica-
tion. After the synthesis procedure, a set of states are identified
as forbidden states denoted by , which should be excluded
from in order to obtain the final supervisor. The supervisor
can have different properties such as nonblocking, controlla-
bility, minimally restrictive, etc. It should be emphasized that
the supervisor representation, which will be presented in form
of guards, will preserve all the properties of the original super-
visor. We show the synthesis procedure by Example II.1. For a
more formal and detailed explanation of supervisory synthesis,
see [1], [16], and [17].

1) Example II.1: Consider two users that will use two re-
sources in opposite order. Fig. 1(a) and (b) depict the user (plant)
models and Fig. 1(c) and (d) depict the resource (specification)
models. The event means that user A uses resource .
Similarly, the other events can be interpreted. Fig. 1(e) shows
the composed automation . As an ad-
ditional specification, we assume that state is
the marked state, i.e., the state that is desired to be reached. In

, the state is a forbidden (blocking) state
and by removing it, the supervisor is obtained.

III. SUPERVISOR AS GUARDS

Recall that the supervisor influences the plant by preventing
it to execute some events in its current state, in order to avoid vi-
olations of the given specification. Accordingly, for each event,
there is a set of states in , where the event is either allowed
or forbidden to occur, in order to end up in a state of the super-
visor. It is also possible that the execution of the event at some
states does not affect the synthesis result. On the basis of the
mentioned state sets, some conditional propositional formulae,
referred to as guards, can be extracted indicating under which
conditions the event can be executed without violating the spec-
ifications. The guards can assist the users to get a profound un-
derstanding of the result of the synthesis process. Our goal is to
make such guards as compact and comprehensible as possible
for the users. Note that all the proceeding computations focus
on generating guards for a single event, which can indeed be
generalized to the entire alphabet.

Fig. 1. Example II.1. (a) and (b) User automata A and B. (c) and (d) resource
automata C and D. (e) The reachable states in the composed automaton � �

� � � � � � �.

Before proceeding, for a number of automata , a
number of state sets are needed to be introduced, required to
compute and formally represent the guards:

;

–the states where is
enabled;

–the
states that can be reached from the initial state;

All the reachable states belonging to the
supervisor referred to as safe states;

–the states that are removed from
during synthesis;

where , and
for two arbitrary sets and . For a state set , denotes
the complement of the set by having as the universal set.

1) Example III.1: In Example II.1:

contains 36 states;

. Note that
the three last states are not reachable and are not
shown in Fig. 1(e);

All nine states shown in Fig. 1(e);
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;

.

A. Basic State Sets

Concerning the states that are retained or removed after the
synthesis process, the states that enable an arbitrary event can
be divided into three basic state sets.

1) The states where must be enabled in order to end up in
states that belong to the supervisor.

2) The states where must be disabled in order to avoid
ending up in , i.e., the states that were removed after
the synthesis process.

3) The states where enabling or disabling does not make
any changes in the final supervisor.

These state sets will form the basis for generating the con-
straining propositional formulae. In the sequel, each state set
will be described formally and in more detail.

Definition III.1 (Forbidden State Set): Forbidden state set,
, is the set of states in the supervisor where the execution of

is defined for , but not for the supervisor

Definition III.2 (Allowed State Set): Allowed state set is
the set of states in the supervisor where the execution of is
defined for the supervisor

In other words, for each event , represents the set of
states where event must be allowed to be executed in order
to end up in states belonging to the supervisor (an analogous
argument can be given for ). For instance, in Example II.1,

.
In order to obtain compact and simplified guards, inspired

from the Boolean minimization techniques, we determine a set
of states where executing will not impact the result of the
synthesis and utilize these states to minimize the guards.

Definition III.3 (Don’t-Care State Set): Don’t-care state set,
, is the set of states where event could either be enabled or

disabled without having any impact on the final supervisor and
is formally defined as

From Definitions III.2 and III.1, it can be concluded that for a
given event , the states that can impact the supervisor are only
the states where must be allowed, , or forbidden, , to
occur and the remaining states can be considered as don’t-care.
It can be deduced that the don’t-care states consist of the states
at which is not defined and the states that are not included in
the supervisor.

B. Guards

Recall that a state in has the following form:

For an event , the following propositional function
, referred to as guard, is desired

otherwise

where is the set of Boolean values and represents the
current state of automaton . In particular, is allowed to be
executed from the state if the guard is true.

The following procedure shows how the corresponding
propositional formula of a state set can be created.

Let , where

The corresponding guard is generated by the following proce-
dure.

1) Introduce new variables where
. We define to hold the current state of

automaton in .
2) The corresponding propositional formula of , ,

will be

(1)

where is the equality operator.
There are two ways to generate the guard for an event , ei-

ther on the basis of as , or on the basis of
as . For the sake of brevity, we denote

as .
Inspired by minimization methods of Boolean functions, sim-

plified guards can be obtained by utilizing the don’t-care states
and applying some heuristic techniques.

Definition III.4 (Allowed Guard): Allowed guard, denoted by
, is the result of simplifying by utilizing the don’t-care

states and some heuristic techniques.
Definition III.5 (Forbidden Guard): Forbidden guard, de-

noted by , is the result of simplifying by utilizing the
don’t-care states and some heuristic techniques.

The number of equality terms, which has either the form
or , in the propositional formula is

referred to as the size of the formula. We denote the size of
a propositional formula by . From a user perspective, a
smaller formula would typically be more readable and compre-
hensible. Our goal is to find the smallest guard.

Since Boolean minimization rules are applied to guards, it can
be concluded that and . The proce-
dure of computing and will be described later. Depending
on the internal structure of each model, either or can yield
a smaller guard. A proper approach is to calculate both and

and select the smallest one.
Definition III.6 (Adaptive Guard): The adaptive guard, de-

noted by , is the smallest guard comparing and , i.e.,
if , otherwise .

There is an exceptional case where the supervisor cannot be
represented by guards. Since guards restrict the occurrence of
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the events, they cannot represent a null supervisor, i.e.,
. Such a case can be represented in different ways. For ex-

ample, an additional imaginary state can be considered that is
connected to the initial state in with the silent event . In this
manner, a guard can be associated to event and if the super-
visor is null, that guard will be , meaning that the initial
state can never be reached. Another way is to simply show a
message to the user indicating that the supervisor is null.

We summarize this section by applying the overall procedure
to Example II.1.

1) Example III.2: From Example II.1, we have

. The guard will be
(the size is 4). After applying

the simplification procedure, the guard becomes
. This shows that is not allowed to occur when the

current state of automaton is . Indeed, by considering the
states that enable in Fig. 1(e), it can be observed that
the only state where should necessarily be disabled is

. A more detailed and formal description about this type of
simplification will be given in Section V-C2. Also, note that an
alternative guard is . Similarly, the guards for the other
events can be computed.

IV. BDD REPRESENTATION

The presented basic state sets could be very huge for com-
plex systems and representing them explicitly would be compu-
tationally expensive in terms of time and memory. This prompts
us to represent them symbolically using BDDs [5]; powerful
data structures for representing Boolean functions. For large
systems where the number of states grows exponentially, BDDs
can improve the efficiency of set and Boolean operations per-
formed on the state sets dramatically [6], [18]–[20].

Given a set of Boolean variables , a BDD is a Boolean func-
tion which can be recursively expressed using
Shannon’s decomposition [21]

where and refer to assigning 0 and 1 to all oc-
currences of Boolean variable , respectively. A BDD is repre-
sented as a directed acyclic graph, which consists of two types
of nodes: decision nodes and terminal nodes. A terminal node
can either be 0-terminal or 1-terminal. Each decision node is la-
beled by a Boolean variable and has two edges to its low-child
and high-child. The low- and high-child corresponds to the cases
in the above equation where is 0 and 1, respectively.

The power of BDDs lies in their simplicity and efficiency to
perform binary operations. A binary operator between two
BDDs and can be computed as

If the operator is implemented based on dynamic programming,
the time complexity of the algorithm will be [22],
where and are the sizes of the BDDs referring to the

TABLE I
STATE AND EVENT ENCODING TABLE FOR AUTOMATON � IN FIG. 1(A)

number of nodes excluding the terminal nodes. A BDD oper-
ation that is used extensively in our implementation is the exis-
tential quantification over Boolean variables

The time complexity for quantification is exponential in the
worst case. The implementation of the BDD operators has been
discussed in more detail in [23].

To represent models such as automata by BDDs, a charac-
teristic function can be used. Having a finite set , for every

, the characteristic function is defined as follows:

The elements of a set can be expressed as a Boolean vector.
So, a set with elements, requires a Boolean vector of length

. Note that, to represent a transition function of an au-
tomaton, two Boolean vectors with different sets of Boolean
variables are needed to distinguish between source-states and
target-states.

A variable has a lower (higher) order than variable if
is closer (further) to the root and is denoted by

. The variable ordering will impact the size of the BDD,
however, finding an optimal variable ordering of a BDD is an
NP-complete problem [24] and will not be considered in this
paper.

We denote the BDD representation of an object , which
could be a transition, a set of states or events, etc., by ;
and the Boolean variables that are required to represent are
denoted by . For a more elaborate and verbose exposition
of BDDs and the implementation of different operators, refer to
[23] and [25].

1) Example IV.1: We will compute the corresponding BDD
for the transition function of automaton in Fig. 1(a). Since
automaton has three states, a binary vector of length 2 is re-
quired to represent the states and the events can be represented
by a binary vector of length 1. The state and event encoding for
automaton is shown in Table I.

Based on this encoding information, a logic model can be
constructed for the transition function as follows:

where and are the binary vectors representing the
source- and target-states, respectively, and represents the
event which consists of a single element. Fig. 2 shows the corre-
sponding BDD for the transition function of automaton . The
variable ordering of this BDD is .
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Fig. 2. Corresponding BDD for the transition function of automaton � in
Fig. 1(a).

Correspondingly, the BDD representation for the other au-
tomata can be computed in an analogous manner.

In this specific example, the BDD representation is larger than
the automaton. However, the value of BDDs will be revealed
for large and complex automata where the BDDs become much
more compact.

Note that in the graphical representation of BDDs, dotted and
solid edges refer to low- and high- child, respectively. For a
more detailed description on how an automaton is translated to
a BDD refer to [6].

In our implementation, a BDD follows a fixed variable or-
dering based on the method presented in [26]. In this method,
the variable ordering is influenced by the ordering of interacting
automata based on weighted search in the Process Communica-
tion Graph (PCG). A PCG for a set of automata is a weighted
undirected graph, where the weight between two automata
and is defined as . In some cases, the ordering
can be improved [6]. This is however beyond the scope of this
paper.

V. FROM BDDS TO GUARDS

The process of converting BDDs to guards can be divided into
three consequent steps.

1) Computing the corresponding BDDs for the basic state
sets.

2) Converting the BDDs to integer decision diagrams (IDDs).
3) Converting the IDDs to guards.
In this section, each step will be explained separately. An

example describing this procedure is presented in Section VII.

A. BDD Computation

The first step of generating the guard, is to compute the
corresponding BDDs for the basic state sets as described in
Section III-A.

For an automaton, the BDD representation for its transition
function is used as the basis for generating these state sets. As
it was described in Example IV.1, two distinct sets of BDD
variables are needed to represent the source- and target-states
in an automaton, denoted by and , respectively. In the

following, we show how , , and are con-
structed:

(2)

(3)

(4)

First, the BDD representation of all transitions that include
event is extracted (2). Next, the BDD-variables used for rep-
resenting the target-states are excluded, giving the transitions
in without their target-states (3). Finally, the BDD-variables
used for representing the events are excluded (4). Hence, the
computed BDD represents all the states that enable . Similarly,
the corresponding BDDs for the basic state sets are computed
as below

(5)

(6)

(7)

(8)

(9)

Initially, the BDD for all the transitions that lead to a forbidden
state is computed (5). Among those transitions, the ones where
their source-states belong to the supervisor are extracted (6). Fi-
nally, to merely keep the source-states, the target-state and event
variables are removed from BDD , yielding . Similarly,
the other two state sets are computed.

Regarding the computation of in the supervisory
synthesis process, there are various implementations based on
BDDs such as [2] and [6]. We compute based on the
algorithms in [6].

As stated, the don’t-care states will be utilized in simplifying
the guard expressions. In our implementation, the simplifica-
tion process is carried out directly on the BDD representation
of the state set, and the guards will be generated on the basis of
the simplified BDD. The SIMPLIFY operator is applied for this
purpose, which is based on Coudert and Madre’s restrict func-
tion [27]. Given two BDDs and ,
simplifies under a constraint , so that .
Hence, is logically equal to on the domain defined by
and is often smaller than . In this manner, we can simplify
the BDD representations of the state sets by constraining them
under , i.e., the states that we care about. Although the

operator does not always yield the most simplified
BDD, in most cases, the guards are significantly simplified.

B. IDD Generation

As mentioned in the previous section, BDDs are used to im-
prove the efficiency of various operations. However, our desire
is to obtain a model that has the automata elements as its variable
domain. For this reason, we use IDDs [7]. IDD is an extension
to a BDD where the number of terminals is arbitrary and the do-
main of the variables in the graph is an arbitrary set of integers.
For our purpose, we use an IDD with two terminals, 0-terminal
and 1-terminal.
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To represent a state in the closed-loop
automaton , each IDD-variable is associated to
an automaton that has as its domain. This domain can
be mapped to an integer that is represented as an IDD. In other
words, each outgoing edge from node represents a state in

. Hence, the maximum number of edges from a node is
. As for BDDs the number of edges and nodes for an IDD

can also be reduced. For simplicity, we use the names of the
states on the IDD-edges rather than integers in the sequel.

We emphasize that in this work we have only utilized the
structure of an IDD; particularly, it has only been used as an
interface between the BDD and the guard. Hence, we do not
perform any IDD-operations.

����������		
����

1. If bdd is 0

2. then return 0-IDD

3. If bdd is 1

4. then return 1-IDD

5. �
�

�
� ����
����

6. ��� � ������ � �� �		 ������ �� ��

7. ���������		
���
������� �
�

�
� ����

8. ���������		
����
������ �
�

�
� ����

9. return ���

�		-��-������ ��

1. �
�

���� � ��

2. for each 	 in ��

3. do if �� � �
	� is not 0

4. then add 	 to �
�

����

5. return �
�

����

Using IDDs to generate guards has some advantages in com-
parison to BDDs: 1) they make it easier to handle and manipu-
late propositional formulae; 2) they exploit some of the common
subexpressions in a guard yielding a more factorized and smaller
formula; and 3) they depict a more understandable model of the
state set, since the nodes and edges represent names of the au-
tomata and states, respectively. On the other side, different ma-
nipulations can be carried out more efficiently on BDDs com-
pared to IDDs.

A BDD is converted to an IDD by traversing it in a top-down
depth-first manner and performing the following main steps.

1) For each new BDD-node that is reached, create an IDD
rooted by , .

2) Continue traversing until a variable is reached where
.

3) Create an IDD rooted by , .
4) Extract the sub-BDD between and that represents

some states of automaton , i.e., .
5) Add to ’s children and label the edge with ����.
6) Repeat the procedure from step 1.

The result is correct under the assumption that the BDD has a
fixed variable ordering.

shows a pseudo algorithm that works as the
mentioned procedure (some parts of the algorithms are self-ex-
planatory and are therefore not explained in the sequel). If
is not 0 or 1, the algorithm starts to extract the root of the BDD,

–the BDD variable that is used to represent automaton –
and creates an IDD rooted by (lines 5 and 6). Then, the BDD
is traversed in a depth-first manner. and

give the low and high children of . and
are two sub-BDDs that keep track of the variables belonging to
a single automaton, used to compute the states belonging to an
automaton. Since only the paths that lead to the 1-terminal is of
interest, in the algorithm we disregard the 0-terminal of the IDD.
In the algorithm, while traversing the BDD,
the sub-BDDs that correspond to the states in a single automaton
are created (lines 3, 15 and 16). In line 4, the sub-BDD is con-
verted to its corresponding states, ����, by - - . If
the current BDD node has not been visited, a new IDD rooted by

, , is created and then rest of the BDD is traversed to
compute (lines 7–9). In line 10, is added as
one of the ’s children and the edge between them is labeled
by ����. If the BDD node has been visited before and if
the edge connecting and already exists, the label
of the edge is extended by ����, but if there does not exist such
an edge a new edge is created (lines 11–14).

The time complexity of the algorithm is
, where

is the automaton with most number of states. Since
the algorithm works in a depth-first manner without
checking a BDD node more than one time, it performs

checks. Since the
number of edges in a BDD is twice as many as its nodes, the
algorithm will perform checks.
In each check, - - is called which has time
complexity . This
shows that the time complexity of the algorithm only depends
on the number of states of the biggest automaton. Since the
automata in the models, typically, do not contain many states,
the IDD generation can be performed efficiently.

C. Heuristic Minimization Techniques

Since the minimization is carried out on the Boolean vari-
ables, some information, related to the structure of the automata
is lost, which impacts the size of the guard. We introduce two
heuristic techniques in an attempt to obtain smaller guards.

1) Complement States (CS): The corresponding proposi-
tional formula for an IDD edge (containing some states that
belong to a single automaton) will be the logical disjunction
or conjunction of those elements depending on the type of
the guard. In cases where the number of states on an edge

is greater than the complement (remaining)

states of , , the guard generated based on the
latter state set will be smaller. If the propositional formula for

is , then, the complement formula

based on will be . For
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instance, if holds for automaton in
Fig. 1(a), we can instead write .

��������� ��� ���� �� � ���

1. ��� � ����	���


2. if ��� is not 0

3. then if ��� is 1 or �� �� ��

4. then �
�
���� � ���������� ��

5. ��������	�� �� �� ���� �� ��� ����������� ��

6. if ��� has not been visited

7. then ���	
���� ����� � ��� ��� ����� �� ��

8. ������������	��������� �� ������ �
�
� �

���	
���


9. ��������-���	����-����� �� ����� �
�
� �

���	
���


10. add ���	
��� to the children of ��� and label the
edge with �

�
����

11. else if the edge “���� ���	
���” already exists

12. then 
���
	���� ���	
���
 �

���
	���� ���	
���
��

�
����

13. else add ���	
��� to the children of ���

14. 
���
	���� ���	
���
� �
�
����

15. else ��������� ��� 	
�	���
�
�� 	 �� �

�
� � ���

16. ��������� ���	����	���
��� 	 � �
�
� �

���


Since this heuristic is applied to each edge on the IDD, the
final guard will consist of a mix of both equality

and non-equality terms.
2) Independent States (IS): We begin to explain

this heuristic by Example III.2. In the example, we

have ,

, and
. An interesting

feature about this case is that the substate is not included

in . Hence, it suffices to merely include in
the guard without concerning about the other terms. In other
words, if , no matter what the current states of the
other automata are, event should be disabled.

Definition V.1 (Independent State): An independent state is
a state in an automaton , where is determined by the fol-
lowing equation:

where and or vice versa, i.e.,
and . The independent state is .

Hence, for the corresponding propositional formula of a state
belonging to or , it suffices to merely include the inde-

pendent state (if there exists such a state) .

Fig. 3. Recursive representation of an IDD.

D. Guard Generation

The last step of obtaining the guard is to convert the IDDs
to propositional formulae. For a given IDD, a top-down depth
first search is used to traverse the graph and generate its corre-
sponding propositional formula. The algorithm starts from the
root and visits the nodes whilst generating the expression and
ends at the 1-terminal.

The pseudo algorithm - shows how is
generated based on an IDD. can be similarly computed.
For each node in the IDD, the corresponding expressions of the
edges belonging to the same level (the children of that node) are
logically disjuncted and if the edges belong to different levels
they are logically conjuncted. Hence, the propositional formula
for the IDD in Fig. 3 is

where is the corresponding expression of the edge that lead to
one of ’s children and is the corresponding expression from
the node to the 1-terminal, that is recursively computed. By fol-
lowing the lines 4, 9, 14, 19, 22 ,and 25–30 of the algorithm,
the mentioned procedure can be realized. If the condition for
the CS heuristic is satisfied (line 7), described in Section V-C,
the expression of the edge is generated based on the remaining
states of the automaton (line 8). is computed according to(1).
When the IS heuristic can be applied (line 12) all the states in the
label should be independent states as described in Section V-C.
In the algorithm, we represent the independent states by their
corresponding expression and set to in-
dicating that represents independent states. If IS is
applicable, the IDD will not be traversed anymore and the gen-
erated expression can be replaced by all of the expressions com-
puted in the preceding IDDs. For instance, in Fig. 3, if there ex-
ists an independent expression in , say , the expression can
be reduced to

Thus, in the algorithm, when an independent expression is iden-
tified, it will backtrack to the first sub-IDD that has less than two
children and replace the entire path by the independent expres-
sion (lines 12–18). The parentheses handling for the statements
are not included in the algorithm. The algorithm uses a lookup
table that saves the corresponding expressions of the sub-IDDs.
So, if an IDD is already visited, its corresponding expression
will be obtained by the lookup table and thus the algorithm
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will call each sub-IDD only once. Consequently, since the algo-
rithm generates the guard in a depth first manner, the time com-
plexity of the algorithm will be

.

�������������	
����

1. if ��� is 1-terminal

2. then return empty string

3. � � �

4. for each ����� in ��������
����

5. do �� � �� � ���

6. ����� � �	
��
���� ������

7. if CS heuristic is applicable

8. then 	
�
���� � ��� �� ������

9. else 	
�
���� � ��
������

10. ���� � ����� ������

11. if ����� has not been visited

12. then if IS is applicable

13. then �����	
�
����� � ���

14. else 
��� � �������������	
������

15. if �����
����

16. then 	
�
���� � 
���

17. if ��� has less than 2 children

18. then �����	
�
����� � ���

19. else ���� � 
���

20. else ���� � ������
������

21. if ���� is not empty

22. then 
���	���� 	
�
���� � � � � � ����

23. else 
���	��� � 	
�
����

24. � � � � �

25. ����� � ����� ������

26. if 
���	 is not empty

27. then ����� � 
���	���

28. for � � � to �����

���	�

29. do ����� � ����� � � � � � 
���	���

30. return �����

VI. FROM GUARDS TO EFA

A major advantage of representing the supervisor as a set
of guards is that they can be attached to the original models,
leading to a modular supervisor represented by extended finite
automata (EFAs) [15]. An EFA is a modeling formalism with
automata extended with variables, guard expressions and action
functions used to update the variables. There are no “restric-
tions on how variables are shared between extended automata,
thus all extended automata are allowed to update all variables
as long as the composition is well defined” [15]. EFAs gives
“compact representations of huge state-spaces, and hence sim-
plify the modeling of systems of industrially interesting sizes”
[15].

From a controller implementation perspective, there are two
main advantages of having a modular supervisor represented by
EFA.

1) Representing a system by EFAs can make it easier to im-
plement a supervisor on a controller, because the guards
can easier be transformed to controller programming lan-
guages that are based on logic expressions.

2) Typically, a modular supervisor consumes less memory in
a controller. The reason is that the synchronization will be
performed online in the controller, see [17], [28], and [29],
which will alleviate the problem of exponential growth of
the number of states in the synchronization.

Furthermore, if the plants and specifications are modeled by
EFAs, then the users can work on a seamless framework where
they start by modeling the system by EFAs and end by getting
the supervisor in form of EFAs. The users can then repeat this
procedure iteratively by adding modifications to the resulting
supervisor and perform synthesis again.

Basically, the guards can be attached to the plants and speci-
fications in three main steps.

1) Introduce variables which hold the current state of au-
tomaton .

2) For each transition, add an action function that updates
to the new state.

3) Attach to all transitions that have as their event.
From an implementation perspective, the first two steps can
be performed implicitly so that they become transparent to
the user. The EFA framework has been implemented in the
supervisory control tool Supremica [30], [31]. For more
details about EFAs refer to [15].

VII. CASE STUDY—CAR MANUFACTURING CELL

The guard generation procedure discussed in the previous
sections will be applied to a relatively complicated example in
a car manufacturing cell.

We have generated the guards with different implementa-
tions:

• . All the state sets are represented by BDDs and the op-
erations are performed on the BDDs.

• . minimizing the BDD by utilizing don’t-care states
using the SIMPLIFY operator.

• . generating IDDs and applying heuristic tech-
niques.

For each case, the adaptive guard has been computed and the
sizes have been compared.

The program is implemented in JAVA programming language
using Supremica libraries [30], [31], which uses Java-BDD[32]
as the BDD package. The example was conducted on a standard
PC (Intel Core 2 Quad CPU @ 2.4 GHz and 3 GB RAM) run-
ning Windows XP.

Consider a car manufacturing cell with five manufacturing
devices (machines): two robots, a fixture, a turntable, and a con-
veyor. The task of the cell is to spot weld plates to both sides
of the floor of a car. To avoid collisions between the machines,
some physical volumes (zones) are defined in the cell so that
only one resource at a time may be in a specific zone. In order
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Fig. 4. The automaton model for operation �.

TABLE II
THE SIZE OF THE GENERATED GUARDS FOR THE CAR MANUFACTURING

CELL. THE NUMBERS WITHIN THE PARENTHESES INDICATE THE

SIZES OF THE CORRESPONDING BDDS (� AND � ) AND IDDS �� �

to accomplish the task, the machines should operate in a spe-
cific order. The cell has been structured into sequences of oper-
ations [33], [34]. “An operation represents a piece of work that
a machine should perform without interrupts and without com-
munication with other machines” such as welding of a plate or
the movement of a fixture [4]. Each machine executes a number
of operations according to specific orders and interactions with
other machines. An expanded version of the cell is described in
detail in [33].

In this model, the operations are considered as the plants and
the orders in which they should be executed are considered as
the specifications. The automaton model for an operation con-
sists of two events: meaning that operation has started and

meaning that operation has finished its work. Events
and are controllable and uncontrollable, respec-

tively. Fig. 4 shows the automaton model for an operation. In
this example, the model contains 24 plant automata, i.e., opera-
tions, and 46 specification automata modeling the relations be-
tween the individual operations.

The closed-loop automaton consists of 8871 reachable
states, where 7646 of those are blocking. After the synthesis,
the nonblocking supervisor consists of 1225 states, 48 control-
lable events, and 3480 transitions. Table II shows the size of
the guards for different implementations. The events that are
always enabled by the supervisor (when the guard becomes
true) are not included in the table. The numbers within the
parentheses indicate number of nodes for the corresponding
BDDs ( and ) and IDDs . The supervisory synthesis,
which is merely computed once for all events, was performed
by BDD operations and was completed in 2 s. The computation
time for generating the guards for all events was less than a
second.

From Table II, it can be observed that by converting the sim-
plified BDDs to IDDs and applying the heuristic techniques the
guards become smaller. For instance, by comparing and
for event , we can see that the guard is significantly re-
duced when applying the heuristics. Another point is that the

Fig. 5. Corresponding BDD (generated based on � ), IDD and EFA for
event �����. (a) BDD. (b) IDD. (c) EFA of operation 75 after synthesis, i.e.,
adding guard.

sizes of the BDDs have been reduced extremely after applying
the operator (compare and ), which in turn im-
pacts the sizes of the guards.

As an example, we explain how is generated, and in
this case will yield the minimal guard. Fig. 5 shows

and its corresponding IDD; together with the gen-
erated EFA for event .

The BDD is transformed to its corresponding IDD by algo-
rithm . In this example, we assume that for a
three-state automaton , ,

, and .
Initially, for the BDD-node , an IDD rooted by is cre-

ated. The next new BDD-node that does not represent is ,
thus a new IDD rooted by is created. There are two paths
from to : , which represents states
and of automaton . Hence, is added as one of ’s chil-
dren and the edge is labeled by (for simplicity, we mix
the two edges and represent the states on a single edge). Con-
tinuing the traverse from the BDD-node , the next new BDD
node that does not represent is the 1-terminal. From , there
are two paths to the 1-terminal representing states and of
automaton . Thus, the IDD node 1 is added as one of ’s chil-
dren and the edge is labeled by , . Similarly, the other paths
are traversed and the IDD-edges are created.

If we transform the IDD to its corresponding expression,
without considering the heuristic techniques, the following
expression is obtained:

(10)

In this expression, the states and of automaton are inde-
pendent states. However, this conclusion cannot be derived di-
rectly because is not given (due to lack of space). Thus,
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by applying the IS heuristic, the above expression is simplified
to

(11)

and, finally, the CS heuristic simplifies the expression to

(12)

due to the fact that . Hence, since both terms
in (12) are related to a single automaton, we get

(13)

This expression is indeed more understandable and tractable for
a user compared to a BDD or an expression with 6 terms (be-
fore the heuristics was applied), see Table II. Fig. 5(c) depicts
the generated EFA, described in Section VI, where has
been added to the transition in operation 75 that contains event

. Consequently, nearly 8000 blocking states are avoided
by only a number of small guard expressions.

Worth mentioning that the algorithm has also been applied
to larger examples where the guards have been computed ef-
ficiently. The above example was, however, more illustrative
and industrially relevant, and was therefore selected. In a larger
example, where the number of reachable states and the states
of the supervisor were around and , respectively, the
generated guards became small and tractable as well (similar to
Table II) and were generated in almost 3 s [35].

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we introduced a method for generating tractable
and comprehensible propositional formulae, i.e., guards, repre-
senting the supervisor’s behavior. The overall procedure of our
method can be divided into five steps. First, the supervisor is
generated using BDDs. Second, for each event, a BDD is gen-
erated specifying the states where the event must be forbidden
or allowed to occur. Third, this BDD is then simplified by using
a don’t-care BDD. The don’t-care BDD is constructed based
on a set of don’t-care states, such as states that can never be
reached from the initial state. This minimization process is ef-
ficiently performed by BDD-based operations. Fourth, the sim-
plified BDD is converted to an IDD, which makes it easier to
generate and manipulate the propositional formulae. Finally, the
guard is generated by transforming the IDD to its corresponding
propositional formula. At this step, some heuristic techniques
are also applied, which typically reduces the size of the guard
significantly.

Furthermore, the guards can be added to the original models
by creating EFAs with a modular structure. This step often
makes it easier and more memory efficient to implement the su-
pervisor in a controller. The case study shows that by applying
this approach, the guards are computed efficiently and become
more tractable for the users due to smaller sizes.

There are some directions in which we could extend and
apply our method. For instance, it is possible to apply additional
heuristics to further decrease the size of the guards. Further-
more, in this paper, we have assumed that the initial models are
modeled by DFAs and can then be extended to EFAs. However,

from a user and modeling perspective it would be better to use
EFAs from the beginning. The next step is to, given a system
modeled by EFAs, return a supervisor represented by the given
EFA, extended with additional guards on the transitions [36].
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