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Abstract—This paper proposes a framework for compositional
synthesis of least restrictive controllable and nonblocking super-
visors for modular discrete event systems models. The problem
of state-space explosion is mitigated by abstracting individual
components using synthesis abstraction before computing too
large synchronous products. The paper improves and generalises
previous work by introducing renaming to avoid nondeterministic
intermediate results, making it possible to use more means of
abstraction. Four classes of abstraction rules are discussed in
the generalised framework, and an example demonstrates the
feasibility of the method for practical problems.

I. INTRODUCTION

Supervisory control theory [1] provides a general framework
to compute least restrictive control strategies to control a given
plant such that its behaviour satisfies a given specification.
Synthesis for systems with a large number of components
is impeded by an inherent complexity problem known as
state-space explosion. To overcome the problem of state-space
explosion and also to find more comprehensible supervisors, it
is desirable to reduce the complexity using abstraction. How-
ever, abstraction of automata often introduces nondeterminism,
making it difficult to apply standard synthesis methods. This
paper proposes a method of abstraction that avoids nondeter-
minism, making it possible to use more abstraction techniques
for supervisor synthesis.

Supervisory control theory is generalised for nondetermin-
istic models in [2]–[4]. In [2], [3], even though the plant may
be nondeterministic, the specification must be deterministic.
This condition is further relaxed in [4], where the plant and
specification can be nondeterministic. All of these works
synthesise deterministic or nondeterministic supervisors for
nondeterministic systems. In contrast, this paper seeks to
find a deterministic supervisor for a deterministic plant and
specification.

Abstraction is used in [5]–[11] to remove unnecessary
information and reduce the size of systems. [5], [6] use natural
projection, while [7] uses weak observation equivalence for
abstraction. The works [8], [9] propose automata equiva-
lences tailored for supervisor synthesis, called supervision
equivalence and synthesis equivalence respectively. In [7]–[9],
synthesis is considered in a nondeterministic setting, which
leads to some problems when interpreting results and ensuring
maximal permissiveness. These problems are overcome to
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some extent in [10], [11], where synthesis abstraction is used
to abstract automata. The methods of [5], [6], [10], [11] require
all automata and their abstraction results to be deterministic,
which makes some desirable abstraction impossible.

This paper adopts the idea of distinguishing sensors to avoid
such nondeterminism. Distinguishing sensors are proposed
in [12] as a modelling aid. By renaming certain events using
different names in different contexts, it is possible to create
models that are more suitable for synthesis. In this paper,
nondeterministic automata are made deterministic by renam-
ing. This improves the scope of abstraction over previous
compositional synthesis methods [10], [11], and gives rise to
a fully automatic method to synthesise nonblocking and least
restrictive modular supervisors.

This paper is organised as follows. First, Sect. II introduces
the relevant notation. Then Sect. III presents a framework of
compositional synthesis, describes possible means abstraction
and the use of renaming to avoid nondeterminism. Afterwards,
Sect. IV applies the approach to a practical example, and
Sect. V adds some concluding remarks.

II. PRELIMINARIES AND NOTATION

A. Events and Languages

Discrete event systems are modelled using events and lan-
guages [1]. Events are taken from a finite alphabet Σ, which is
partitioned into two disjoint subsets, the set Σc of controllable
events and the set Σu of uncontrollable events. The special
event ω ∈ Σc denotes termination.

The set of all finite strings of elements of Σ, including the
empty string ε, is denoted by Σ∗. A subset L ⊆ Σ∗ is called a
language. The concatenation of two strings s, t ∈ Σ∗ is written
as st. For Ω ⊆ Σ, the natural projection PΩ : Σ∗ → Ω∗ is the
operation that removes from strings s ∈ Σ∗ all events not in Ω.

B. Nondeterministic Automata

This paper models discrete event systems using nonde-
terministic automata, in order to show how nondeterminism
arises during abstraction and how it can be avoided.

Definition 1: A (nondeterministic) finite-state automaton is
a tuple G = 〈Σ, Q,→, Q◦〉, where Σ is a finite set of events,
Q is a finite set of states, → ⊆ Q × Σ × Q is the transition
relation, and Q◦ ⊆ Q is the set of initial states.

The transition relation is written in infix notation x
σ→ y,

and is extended to strings in Σ∗ by letting x
ε→ x for all x ∈ Q,



and x
sσ→ z if x

s→ y and y
σ→ z for some y ∈ Q. Furthermore,

x
s→ means that x

s→ y for some y ∈ Q, and x → y means
that x

s→ y for some s ∈ Σ∗. These notations also apply to
state sets, X

s→ for X ⊆ Q means that x
s→ for some x ∈ X ,

and to automata, G
s→ means that Q◦ s→, etc. The language

of an automaton G is L(G) = { s ∈ Σ∗ | G
s→ }.

A special requirement is that states reached by the termi-
nation event ω do not have any outgoing transitions, i.e., if
x

ω→ y then there does not exist σ ∈ Σ such that y
σ→. This

ensures that the termination event, if it occurs, is always the
final event of any trace. The traditional set of marked states
is Qω = {x ∈ Q | x

ω→} in this notation. For graphical
simplicity, states in Qω are shown shaded in the figures of
this paper instead of explicitly showing ω-transitions.

Definition 2: An automaton G is called deterministic, if
|Q◦| ≤ 1 and x

σ→ y1 and x
σ→ y2 always implies y1 = y2.

When automata are brought together to interact, lock-step
synchronisation in the style of [13] is used.

Definition 3: Let G1 = 〈Σ1, Q1,→1, Q
◦
1〉 and G2 = 〈Σ2,

Q2,→2, Q
◦
2〉 be two automata. The synchronous composition

of G1 and G2 is defined as

G1 ‖ G2 = 〈Σ1 ∪ Σ2, Q1 × Q2,→, Q◦
1 × Q◦

2〉 (1)

where

(x, y) σ→ (x′, y′) if σ ∈ (Σ1 ∩ Σ2), x
σ→1 x′, y

σ→2 y′ ;
(x, y) σ→ (x′, y) if σ ∈ (Σ1 \ Σ2), x

σ→1 x′ ;
(x, y) σ→ (x, y′) if σ ∈ (Σ2 \ Σ1), y

σ→2 y′ .

C. Supervisory Control Theory

Given a plant automaton G and a specification automa-
ton K, supervisory control theory [1] provides a method to
synthesise a supervisor that restricts the behaviour of the
plant such that the specification is always fulfilled. Two
common requirements for the supervisor are controllability
and nonblocking.

Definition 4: Let G and K be two automata using the same
alphabet Σ. K is controllable with respect to G if, for every
string s ∈ Σ∗, every state x of K, and every uncontrollable
event υ ∈ Σu such that K

s→ x and G
sυ→, it holds that x

υ→
in K.

Definition 5: Let G = 〈Σ, Q,→, Q◦〉. A state x ∈ Q is
called reachable in G if G → x, and coreachable if x

tω→
for some t ∈ Σ∗. G is called reachable or coreachable, if
every state x ∈ Q has the respective property. G is called
nonblocking if every reachable state is coreachable.

For a deterministic plant G and specification K, it is shown
in [1] that there exists a unique least restrictive controllable
sublanguage

supCG(K) ⊆ L(K) (2)

such that supCG(K) is controllable with respect to G and
nonblocking, and this language can be computed using a fixed-
point iteration.

In [9], this result is generalised to nondeterministic auto-
mata. For nondeterministic automata, synthesis produces a

subautomaton instead of a language, and the controllability
condition is modified accordingly.

Definition 6: [9] Let G1 = 〈Σ, Q1,→1, Q
◦
1〉 and G2 = 〈Σ,

Q2,→2, Q
◦
2〉 be two automata. G1 is a subautomaton of G2,

written G1 ⊆ G2, if Q1 ⊆ Q2, →1 ⊆ →2, and Q◦
1 ⊆ Q◦

2.
Definition 7: [9] Let G = 〈Σ, QG,→G, Q◦

G〉 and K = 〈Σ,
QK ,→K , Q◦

K〉 be automata such that K ⊆ G. Then K is
called controllable in G if, for all states x ∈ QK and y ∈ QG

and for every uncontrollable event υ ∈ Σu such that x
υ→G y,

it also holds that x
υ→K y.

The upper bound of controllable and nonblocking subau-
tomata is again controllable and nonblocking, and this implies
the existence of a least restrictive synthesis result.

Theorem 1: Let G = 〈Σ, Q,→, Q◦〉 be an automaton.
There exists a unique subautomaton supCN (G) ⊆ G such
that supCN (G) is nonblocking and controllable in G, and such
that for every subautomaton S ⊆ G that is also nonblocking
and controllable in G, it holds that S ⊆ supCN (G).

Thus, supCN (G) is the unique synthesis result for a
plant G. In order to apply this synthesis to control problems
that also involve specifications, the transformation proposed
in [8] is used. A specification automaton is transformed into
a plant by adding, for every uncontrollable event that is not
enabled in a state, a transition to a new blocking state ⊥. This
essentially transforms all potential controllability problems
into potential blocking problems.

Definition 8: [8] Let K = 〈Σ, Q,→, Q◦〉 be a specifica-
tion. The complete plant automaton K⊥ for K is

K⊥ = 〈Σ, Q ∪ {⊥},→⊥, Q◦〉 (3)

where ⊥ /∈ Q is a new state and

→⊥ = → ∪ { (x, υ,⊥) | x ∈ Q, υ ∈ Σu, x � υ→} . (4)

Proposition 2: [8] Let G, K, and K ′ be deterministic
automata over the same alphabet Σ, and let K′ be reachable.
Then K ′ ⊆ G‖K⊥ is nonblocking and controllable in G‖K⊥

if and only if K ′ ⊆ G ‖ K is nonblocking and controllable
with respect to G.

According to this result, synthesis of the least restrictive
nonblocking and controllable behaviour allowed by a specifi-
cation K with respect to a plant G can be achieved by com-
puting supCN (G ‖ K⊥). If G and K are both deterministic,
it can be shown that

L(supCN (G ‖ K⊥)) = supCG(K) . (5)

III. RENAMING IN COMPOSITIONAL SYNTHESIS

The compositional approach proposed in [10], [11] exploits
the modular structure present in many discrete event systems
models to avoid state-space explosion and synthesise modular
supervisors. Unlike previous approaches [8], [9], the compo-
sitional method in [10], [11] can synthesise least restrictive
modular supervisors, but it requires deterministic automata
throughout all abstraction steps. This section briefly outlines
the compositional method in [10], [11], and then introduces
renaming to avoid nondeterminism and extend the scope of
applicable abstractions.
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A. General Compositional Approach

A modular system consists of a modular specification K =
K1 ‖ · · · ‖ Km and a modular plant G = G1 ‖ · · · ‖ Gl. As
shown in Sect. II-C, the specifications can be translated into
plants, so the synthesis problem consists of finding the least
restrictive controllable and nonblocking supervisor for a set of
plants,

G = G1 ‖ · · · ‖ Gn. (6)

In the compositional algorithm of [10], [11], the modular
system (6) is abstracted step by step. Each automaton Gi

may be replaced by an abstracted version G̃i. When no more
abstraction is possible, synchronous composition is computed
step by step, and each intermediate result is abstracted again.

Eventually, the procedure leads to a single automaton G̃, the
abstract description of the original system. Once G̃ is found,
the final step is to use G̃ instead of the original system, to
synthesise supCN (G̃), which leads to a synthesis result for
the original system (6).

The abstraction steps to simplify the individual compo-
nents Gi must satisfy certain conditions to guarantee that
the synthesis result obtained from the final abstraction G̃ is
a correct supervisor for the original system. The sufficient
condition of synthesis abstraction is introduced in [10].

Definition 9: [10] Let G and G̃ be two deterministic auto-
mata with alphabet Σ. Then G̃ is a synthesis abstraction of G
with respect to the local events Υ ⊆ Σ, written G �synth,Υ G̃,
if for every deterministic automaton T = 〈ΣT , QT ,→T , Q◦

T 〉
such that ΣT ∩ Υ = ∅ the following holds,

L(G ‖T ‖ supCN (G̃ ‖T )) = L(G ‖T ‖ supCN (G ‖T )) (7)

Synthesis abstraction requires that the abstracted automa-
ton G̃ yields the same synthesised language as the original
automaton G, no matter what the behaviour of the remainder
of the system T is. The abstraction is done with respect to
a set Υ of local events, which are known to be used only in
the automaton G being abstracted. Several suitable abstraction
rules are described in [10], [11]. However, to guarantee that the
synthesis abstraction is preserved after applying these rules,
the abstracted automata are required to be deterministic in all
the abstraction steps. Therefore these rules cannot be applied
when the merging of the states results in nondeterminism
which makes some abstractions impossible.

Example 1: Consider automata G, G̃, and T in Fig. 1. All
events are controllable, and events α and β in G are local
events, so states q0 and q1 in G are synthesis observation
equivalent [11]. Merging these states results in nondeterminis-
tic automaton G̃ such that G �synth,{α,β} G̃. Fig. 1 also shows
S = supCN (G̃‖T ). Since this supervisor enables event γ after
both α and β, the closed-loop system is blocking, so S is not
a correct supervisor.

B. Renaming

In [12], distinguishing sensors are proposed to replace a
single event by different events to develop more suitable

models. This idea can be used to remove nondeterminism as
it arises in example 1.

Example 2: The abstraction G̃ in Fig. 1 is nondeterministic,
because there are two transitions from q01 with event γ. Now
consider automaton H in Fig. 1. Its alphabet {α, β, γ1, γ2} is
obtained by replacing one of the γ-transitions with γ1 and the
other one with γ2. Fig. 1 also shows H̃ , the abstracted version
of H , which is a deterministic automaton. Having replaced
events in one component, any automata in the remainder
of the system also need to be modified. Fig. 1 also shows
automaton T ′, which is the adjusted version of automaton T ,
where all occurrences of γ are replaced by both γ1 and γ2.

The key to avoid nondeterminism in this example is to
introduce new events that are linked to the original nonde-
terministic transitions by renaming. This idea is formalised in
the following definition.

Definition 10: Let Σ1 and Σ2 be two sets of events. A
renaming ρ : Σ2 → Σ1 is a controllability-preserving map,
i.e., a map such that ρ(σ) is controllable if and only if σ is
controllable.

This definition is extended to languages over Σ∗
2 and to

automata with alphabet Σ2 in the standard way.

When introducing distinguishing sensors or renaming, some
events are replaced by new events that do not appear in
the original plant model. Then it is no longer clear how a
supervisor synthesised from the renamed model can control
the original plant. To make this possible, a distinguisher is
introduced that enables the final supervisor to choose the
correct transitions.

Definition 11: Let ρ : Σ2 → Σ1 be a renaming. An automa-
ton G2 with alphabet Σ2 is a ρ-distinguisher if, for all traces
s, t ∈ L(G2) such that ρ(s) = ρ(t), it holds that s = t.

To guarantee the ρ-distinguisher property, each transition
labelled by events from Σ1 \Σ2 is renamed with a unique, not
already existing label. In example 2, the renaming ρ is such
that ρ(γ1) = ρ(γ2) = γ, and ρ(σ) = σ for all other events.
This renaming ensures ρ(H) = G, and H is a ρ-distinguisher.

The idea of a ρ-distinguisher is to enable a renamed super-
visor to communicate correctly with the original unrenamed
plant. If the plant executes an event γ, then the distinguisher
is in a state that enables either γ1 or γ2, but not both, so
the supervisor can execute the correct one among its renamed
transitions.

After applying a renaming on component G1 in a com-
posed system such as (6), new events are introduced, so the
remaining components need to be modified to use the new
events. When G1 is replaced by H1 such that ρ(H1) = G1,
all other components Gj are replaced by ρ−1(Gj) according
to the following definition.

Definition 12: Let G = 〈Σ1, Q,→, Q◦〉 be an automaton,
and let ρ : Σ2 → Σ1 be a renaming. Then ρ−1(G) = 〈Σ2, Q,

ρ−1(→), Q◦〉 where ρ−1(→) = { (x, σ, y) | x
ρ(σ)−→ y }.

Example 3: Automaton T ′ in Fig. 1 is equal to ρ−1(T ).
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G G̃ T S H H̃ T ′ S̃ ρ(S̃)

q0 q1

q2 q3

(α)

(β) γγ
q2 q3

q01

(α, β)

γ γ γ

(α, β)

γ
q0 q1

q2 q3

(α)

(β)γ1 γ2

q2 q3

q01

(α, β)

γ1 γ2
γ1γ2

q0 q1

q3

α

β γ2

q0 q1

q3

α

β γ

Fig. 1. Abstraction of G results in the nondeterministic automaton G̃, which is unsuitable as synthesis abstraction. Renaming event γ into γ1 and γ2 gives H ,
which leads to the suitable deterministic abstraction H̃ .

C. Renaming and Compositional Synthesis

In order to support renaming in the compositional method,
synthesis problems can no longer be represented only as a
set of plants as suggested in (6). There are also renamings,
supervisors, and distinguishers to be taken into account. Each
step in the modified synthesis procedure considers:

• a set G = {G1, . . . , Gn} of uncontrolled plants;
• a set S = {S1, . . . , Sm} of collected supervisors and

distinguishers;
• a renaming ρ : ΣG∪ΣS → Σ from the combined alphabet

of G and S into the alphabet Σ of the original system
before renaming.

Definition 13: A synthesis triple is a triple (G;S; ρ), where
G and S are sets of automata and ρ : ΣG ∪ ΣS → Σ is a
renaming, such that S is a ρ-distinguisher.

The following definitions provide an appropriate notion of
abstraction for synthesis triples.

Definition 14: Let (G;S; ρ) be a synthesis triple. Then
(i) L(G;S; ρ) = L(ρ(G ‖ S)) = ρL(G ‖ S);

(ii) supCN (G;S; ρ) = ρ(supCN (G) ‖ S).
Here, sets of automata represent the synchronous composition
of their elements, e.g., S = {S1, . . . , Sm} stands for ‖m

i=1Si.
Definition 15: Let (G1;S1; ρ1) and (G2;S2; ρ2) be two

synthesis triples. Then (G2;S2; ρ2) is synthesis equivalent
to (G1;S1; ρ1), written (G1;S1; ρ1) �synth (G2;S2; ρ2), if
L(supCN (G1;S1; ρ1)) = L(supCN (G2;S2; ρ2)).

The compositional synthesis algorithm is designed to cal-
culate a modular supervisor for a modular system like (6).
The initial synthesis triple is (G0; {}; id), where G0 =
{G1, . . . , Gn} is the uncontrolled plant, and id : Σ → Σ is the
identical renaming, i.e., id(σ) = σ for all σ ∈ Σ. To construct
a supervisor compositionally, the initial triple is abstracted
repeatedly such that synthesis equivalence is preserved. The
algorithm terminates once G = {G̃} consists of a single
automaton representing the abstracted and renamed description
of the original system. The following result shows that the
supervisor calculated from G̃, together with the supervisors
in S yields the same behaviour as a monolithic supervisor for
the original system.

Proposition 3: Let G = {G1, . . . , Gn} be a set of automata,
and let (G0; {}; id) �synth (Gk;Sk; ρk). Then

L(supCN (Gk;Sk; ρk)) = L(supCN (G)) . (8)

Proof: As (Gk;Sk; ρk) �synth (G0; {}; id), it follows
from Def. 15 and 14 that

L(supCN (Gk;Sk; ρk)) = L(supCN (G0; {}; id))
= L(id(supCN (G) ‖ {})) = L(supCN (G)) .

This result shows that a least restrictive supervisor can be
obtained by repeated abstraction of the initial synthesis triple
(G0; {}; id). The requirement that Sk is a ρk-distinguisher in
Def. 13 ensures that this supervisor can be implemented to
control the original unrenamed plant.

Note that the final supervisor never needs to be calcu-
lated explicitly. It can be represented in its modular form
{supCN (G̃)}∪Sk, and synchronisation can be performed on-
line, tracking the synchronous product states as the system
evolves. In this way, synchronous product computation and
state-space explosion can be avoided.

Example 4: Consider again automata G and T in Fig. 1,
let G0 = {G,T}, and consider the initial synthesis triple
(G0; {}; id). As suggested in example 2, automaton G is
replaced by H in Fig. 1, using renaming ρ : {α, β, γ1, γ2} →
{α, β, γ} with ρ(α) = α, ρ(β) = β, and ρ(γ1) = ρ(γ2) = γ.
It can be shown that (G0; {}; id) �synth (G1;S; ρ) where G1 =
{H, ρ−1T} and S = {H}. After this renaming, synthesis
observation equivalence [11] can be applied, which results in
automaton H̃ shown in Fig. 1. This changes the synthesis triple
to (G2;S; ρ) where G2 = {H̃, ρ−1T}. The figure also shows
S̃ = supCN (G2) ‖ S and ρ(S̃) = supCN (G2;S; ρ), which is
the least restrictive nonblocking and controllable behaviour.

D. Abstractions Preserving Synthesis Equivalence

Compositional synthesis requires suitable means to rewrite
synthesis triples into equivalent simpler ones. Therefore, this
section describes synchronous composition and abstraction as
proposed in [10], [11], and then adds to this renaming to avoid
nondeterminism, and selfloop removal to remove certain events
from a model.

The simplest method to rewrite a synthesis triple is by
synchronous composition. It is always possible to compose
any two automata in the set G of uncontrolled plants, and the
result is a synthesis equivalent triple.

Proposition 4: Let G1 = {G1, . . . , Gn} and G2 = {G1 ‖
G2, G3, . . . , Gn}, let ρ be a renaming, and let S be a ρ-
distinguisher. Then (G1;S; ρ) �synth (G2;S; ρ).

The second method of rewriting synthesis triples is by
synthesis abstraction [10], [11]. An automaton G1 can be
replaced by a synthesis abstraction H1 provided that the
original automaton G1 is added as a supervisor component
to the set S.

Proposition 5: Let G = {G1, . . . , Gn} and G′ = {H1,
G2, . . . , Gn}, let Υ be a set of events not used in G2, . . . , Gn

such that G1 �synth,Υ H1, let ρ be a renaming, and let S be
a ρ-distinguisher. Then (G;S; ρ) �synth (G′;S ∪ {G1}; ρ).
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M2

M1

!put2

B2

!put1

B1

!put3

H3

!put4

H4

H1 H2
B3 B4

get3fetch2fetch1 get4

get2get1 fetch3 fetch4

input2 output2

output1 input1

W1

Fig. 2. Manufacturing system overview.

M1

fetch1

fetch2

get3

get4

input1

output1

M2

fetch3

fetch4

get1

get2

input2

output2

Hi

fetchi !puti

W1

output1

output1

!resume !suspend

Bi

geti

geti

!puti

!puti

!puti

Fig. 3. Automata for manufacturing example.

As explained above in Sect. III-B, an automaton G1 can
be rewritten by renaming into H1, where the renaming ρ is
such that ρ(H1) = G1 and H1 is a ρ-distinguisher. Then H1

is added to the set S of supervisors as a distinguisher, and the
renaming ρ is composed with the previous renamings.

Proposition 6: Let ρ : Σ2 → Σ1 and ρ1 : Σ1 → Σ be re-
namings, let G1 = {G1, . . . , Gn}, let G2 = {H1, ρ

−1G2, . . . ,
ρ−1Gn} where H1 is a ρ-distinguisher such that ρ(H1) = G1,
and let S be a ρ1-distinguisher. Then (G1;S; ρ1) �synth (G2;
ρ−1(S) ∪ {H1}; ρ1 ◦ ρ).

It is a feature of the compositional approach in [10],
[11] that it avoids hiding and the associated problems of
nondeterminism. However, this makes it impossible to remove
any events from automata, which eventually may make it
difficult to apply other abstraction steps. With synthesis triples,
it becomes clear that events can be removed once they only
appear on selfloops in all components. This is formalised by
the following rewrite method of selfloop removal.

Proposition 7: Let (G;S; ρ) be a synthesis triple with G =
{G1, . . . , Gn}, and let Λ ⊆ Σ be a set of events that only
appear in selfloops in G, i.e., if Gi = 〈Σi, Qi,→i, Q

◦
i 〉 and

x
λ→i y for some λ ∈ Λ then x = y. Then (G;S; ρ) �synth

(G|Σ\Λ;G∪S; ρ), where G|Σ\Λ is obtained from G by removing
Λ from the alphabets of all automata in G, and deleting all
transitions labeled by events in Λ.

In Prop. 7, the supervisor set after abstraction, G ∪ S,
is larger than necessary. In fact, it is enough to include as
additional supervisors only those automata from G that disable
in some reachable state a controllable event contained in Λ.

IV. EXAMPLE

In this section, compositional synthesis is applied to a manu-
facturing system consisting of two machines (M1 and M2) and

M̃2

fetch3

fetch4

get1

get2

input2
output2

ρ−1M1
fetch1

fetch2

get3

get4
input1

output11
output12

W ′
1 output11

output12

!resume !suspend
W̃1 output11

output12

!resume
!suspend

Fig. 4. Abstraction results of some of the automata of Fig. 3.

four pairs of handlers (Hi) and buffers (Bi) for transferring
workpieces between the machines. This is a modified version
of a system studied previously in [14], [15]: a switch (W1)
has been added. Fig. 2 gives an overview of the system, and
an automata model is shown in Fig. 3.

The manufacturing system can produce two types of work-
pieces. Type I workpieces are first processed by M1 (input1).
Then they are fetched by H1 (fetch1) and placed into B1

(!put1). Next, they are processed by M2 (get1), fetched by
H4 (fetch4) and placed into B4 (!put4). Finally, they are
processed by M1 once more (get4), and released (output1).
Using a switch W1, production can be suspended (!suspend) or
resumed (!resume) by the user. Similarly, type II workpieces
are first processed by M2, passed through H3 and B3, further
processed by M1, passed through H2 and B2, and finally
processed by M2. Uncontrollable event are prefixed by !, all
other events are controllable.

The initial synthesis triple is (G0; {}; id) where G0 =
{M1,W1,M2,H1, B1, . . . , H4, B4}. In this model, output2
is a controllable local event, so synthesis observation equiva-
lence [11] can be used to replace M2 by the abstraction result
M̃2 such that M2 �synth,{output2} M̃2, shown in Fig. 4. The
new synthesis triple is (G1;S1; id) where G1 = {M1,W1, M̃2,
H1, B1, . . . , H4, B4} and S1 = {M2}. Now event output2
only appears in the selfloop in M̃2, so selfloop removal can
be applied, resulting in the new synthesis triple (G2;S2; id)
where G2 = {M1,W1, M̃2|Σ\{output2},H1, B1, . . . , H4, B4}
and S2 = {M2, M̃2}.

Events !suspend and !resume are uncontrollable local events
in W1, so uncontrollable observation equivalence is applica-
ble. However, this abstraction causes nondeterminism, so a
renaming is applied first. Let output11 and output12 be new
events, and let ρ be a renaming such that ρ(output11) =
ρ(output12) = output1 and ρ(σ) = σ for σ ∈ Σ \ {output1}.
Fig. 4 shows a ρ-distinguisher W ′

1 such that ρ(W ′
1) = W1. Au-

tomaton M1 also uses event output1 and therefore is replaced
by ρ−1M1, also shown in Fig. 4; the other automata in G2 are
unchanged when ρ−1 is applied. The distinguisher W ′

1 ensures
that only one of the events output1 or output2 is enabled in
every state. Therefore, when the plant later sends event output
to the synthesised supervisor, the distinguisher can replace this
by output1 or output2 as appropriate.

The new synthesis triple after renaming is (G3;S3; ρ) where
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!put1

!put1
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Fig. 5. H1 ‖ B1 and its abstraction result.

G3 = {ρ−1M1,W
′
1, M̃2|Σ\{output2},H1, B1, . . . , H4, B4} and

S3 = {M2, M̃2,W
′
1}. Now uncontrollable observation equiv-

alence [11] leads to the deterministic abstraction result W̃1

such that W ′
1 �synth,{!suspend,!resume} W̃1, shown in Fig. 4.

Abstraction leads to the new synthesis triple (G4;S4; ρ) where
G4 = {ρ−1M1, W̃1, M̃2|Σ\{output2},H1, B1, . . . , H4, B4} and
S4 = S3 ∪ {W ′

1} = S3. Now events !suspend and !resume
only appear in selfloops in W̃1, so selfloop removal can
be applied and gives the new synthesis triple (G5;S5; ρ)
where G5 = {ρ−1M1, W̃1|{!suspend,!resume}, M̃2|Σ\{output2},
H1, B1, . . . , H4, B4} and S5 = S4 ∪ {W̃1} = {M2, M̃2,W

′
1,

W̃1}.
At this point, no further abstraction is possible and some

automata need to be composed. Composing H1 and B1 results
in the new synthesis triple (G6;S6; ρ) where G6 = {ρ−1M1,
W̃1|{!suspend,!resume}, M̃2|Σ\{output2},H1 ‖ B1,H2, B2, . . . ,H4,
B4} and S6 = S5. Now event !put1 is an uncontrollable
local event in H1 ‖ B1, and thus H1 ‖ B1 can be abstracted
to HB1 using uncontrollable observation equivalence [11].
Fig. 5 shows the composition H1 ‖ B1 and its abstraction
result HB1. The modified synthesis triple is (G7;S7; ρ) where
G7 = {ρ−1M1, W̃1|{!suspend,!resume}, M̃2|Σ\{output2}, HB1,
H2, B2, . . . , H4, B4} and S7 = S6 ∪ {H1 ‖ B1} =
{M2, M̃2,W

′
1, W̃1,H1 ‖ B1}. The abstraction steps leading

to (G6;S6; ρ) and (G7;S7; ρ) are repeated for the remaining
subsystems, resulting in the final synthesis triple (G13;S13; ρ)
where G13 = {ρ−1M1, W̃1|{!suspend,!resume}, M̃2|Σ\{output2},
HB1, . . . ,HB4} and S13 = {M2, M̃2,W

′
1, W̃1,H1 ‖ B1, . . . ,

H4 ‖ B4}.
The final step is to calculate the supervisor for the final

synthesis triple (G13;S13; ρ),

supCN (G13;S13; ρ) = ρ(supCN (G13) ‖ S13) . (9)

The final synthesis step to compute supCN (G13) explores
the state space of G13, which has 14600 states. This is in
contrast to monolithic synthesis and modular synthesis without
renaming [10], [11], which explore state spaces of 61776 and
21900 states respectively.

The number of states of the final supervisor (9) is 18432,
but there is no need to construct this synchronous product.
The resultant supervisor can be represented modularly using
the components supCN (G13) and the members of S13. The
largest of these automata is supCN (G13) with 919 states.

The supervisor resulting from (9) improves on the solution
in [14] because it is nonblocking, and unlike [15], it can be

computed fully automatically and is guaranteed to be least
restrictive.

V. CONCLUSIONS

The compositional synthesis approach based on synthesis
abstraction [10], [11] is generalised to support renaming. It is
shown how renaming can avoid abstraction steps that would
result in nondeterministic automata, so renaming makes it
possible to apply certain abstraction steps in cases where it
would not have been possible in previous work. Abstraction
rules proposed in previous work are generalised in the new
framework, and abstraction rules for renaming and selfloop
removal are added to the framework. In future work, the
authors would like to further generalise the framework to take
the original plant model fully into account, and to support
halfway synthesis [8].
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