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Abstract— The paper analyzes statistical properties of the 

VHF-band radar backscattering from coniferous trees by 
incorporating forest ground truth data into a physical-optics 
model that assumes horizontally transmit and receive 
polarizations and dominant double-bounce scattering from 
vertical stems standing on undulating ground surface. The 
analysis shows that a statistically adequate model for the tree 
backscattering amplitude can be presented as a mixture of 
generalized gamma or lognormal distribution and the 
mixture model can be reduced to a single density model if the 
trees with trunk volumes exceeding an appropriate threshold 
are to be taken into account. The generalized gamma density 
is shown to provide appreciably better fit to the exceedance 
functions associated with the PO-model data than that for 
the lognormal density. The results can be used to design 
statistically adequate models of forest clutter for VHF SAR 
systems. 
 

Index Terms— Backscattering, coniferous forest, finite 
mixture model, generalized gamma distribution, lognormal 
distribution, physical-optics (PO), radar cross section (RCS), 
synthetic aperture radar (SAR), Very High Frequency 
(VHF) 
 

I. INTRODUCTION 

ver the past decade, much attention has been drawn 
toward the studies of low-frequency SAR systems for 

accurate mapping of forest biomass [1]–[9]. The physical 
basis for using these systems is that low-frequency radar 
signals are better able to penetrate the forest canopy and 
the strength of radar backscatter in low-frequency band is 
strongly correlated with the forest biomass in tree trunks 
and large branches. Recent works [10]–[12] on change 
detection using data from low-frequency SAR such as the 
VHF-band (20–90 MHz) CARABAS II [13], [14] and 
P-band (200–500 MHz) LORA [15], [16] have also shown 
great potential of these systems in detecting targets 
concealed by tree canopies. 

A need for design and performance characterization of 
algorithms for detection of targets hidden under foliage 
has demanded the development of accurate models for 
low-frequency radar backscattering from forests. The 
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availability of such models also allows one to assess target 
detection performance over a wide range of environmental 
conditions by using synthetic data generated by means of 
appropriate models. VHF-band radar backscattering from 
forests (forest clutter), consists of two components: 
distributed responses and discrete scattering terms of 
typically larger magnitude, such as tree trunk responses. 
This paper focuses only on the latter. 

A new approach to the synthesis of statistical forest 
clutter models has recently been proposed in [17]. The 
procedure suggested for the synthesis includes both a 
statistically relevant model for clutter scene and a model of 
SAR image formation process. As has been shown, the fit 
error for the clutter model synthesized by using the 
suggested approach is considerably less than that achieved 
without including the image formation process. 

The lognormal distribution is chosen in [17] to model 
the backscattering from tree trunks. As is also pointed out 
in [17], the lognormal distribution could be replaced with a 
new one that captures the variations of tree backscattering 
to a great degree. In particular, an important feature to be 
captured by the model is the effect of ground topography, 
which is not taken into account in [17]. As has been shown 
in an early study [18] and later in [19] – [23], the 
HH-polarized scattering from mature forests at 
low-frequency is dominated by a ground-trunk 
double-bounce mechanism when vertical trees are 
standing on horizontal flat ground. The results also 
indicate that due to the dominant scattering mechanism 
there is strong dependence of the tree backscatter on 
ground surface topography. 

Two distribution models are used in our analysis: the 
generalized gamma (GGD) and lognormal distribution 
(LOGN). The choice of the GGD is motivated by the fact 
that it includes as special cases [24]: gamma, exponential, 
Weibull, chi-squared, as well as Rayleigh distributions and 
tends to a lognormal distribution under some conditions. 
Hence, one should expect that GGD will be able to capture 
the specific statistical features of tree backscattering 
resulted from diverse physical phenomena. To find out 
how a model, that has demonstrated a good fit in case of 
clutter scene on a horizontal flat terrain, is able to work in 
case of topographical ground, the LOGN is also used in the 
analysis. 

The purpose of this paper is to ascertain a statistically 
adequate model of the VHF-band tree backscattering 
taking into account the effect of trunk volume distribution 
and ground topography. To achieve this purpose we 
perform statistical analysis of several tree backscattering 
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sets generated by incorporating forest ground truth data 
into a recently proposed physical-optics (PO) model [23] 
for low-frequency radar backscatter from coniferous 
forests. This model has been validated in [23] against SAR 
image data captured with CARABAS-II and LORA SAR 
systems (both systems measure essentially HH-polarized 
backscatter) over a coniferous forest stand with 
well-characterized forest and ground topography. The 
model allows one to generate radar backscatter for a single 
tree at the input of a SAR system, i.e. before the image 
formation. We believe that using tree backscattering data 
in their “clean” form, when the data are not distorted by the 
process of SAR image formation, is required in selecting 
statistical adequate models. Once these models are 
selected, the procedure suggested in [17] can be used to 
find out which of them provides better fit to data from 
measured SAR image, i.e. to data that include the effect of 
image formation process. 

The PO model used here calculates the strength of the 
double-bounce scattering from vertical stems standing on 
undulating ground surface and assumes deterministic 
ground topography [23]. According to this model, a single 
tree radar cross section (RCS) σ  for the horizontally 
polarized components of the transmitted and received 
electric fields can be computed from 

2
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where m  and n  is the number of model sampling points 
in the system frequency band and Doppler cone angles, 
respectively, and ( , )hhS i k  is the scattering amplitude 

predicted by the PO scattering model at the ( , )i k -th 
sampling point. To compute ( , )hhS i k  several datasets are 
required; see for details [23, pp. 2611-2612]. These 
include a dataset of the SAR system parameters, 
parameters related to the SAR imaging geometries, 
parameters characterizing the electrical properties of soil 
and trees, forest ground truth data at a single tree level and 
measurements of ground topography. The first three 
datasets used in this paper for the computations are exactly 
the same that have been used in [23] to perform the model 
verification for the SAR system CARABAS-II. The last 
two datasets are different and briefly described in Section 
II. 

II. GROUND TRUTH DATA 

A. Forest Description 
The forest ground truth data used in this paper are from the 
Remningstorp forest estate area, located in the province of 
Västergötland, southern Sweden (lat. 58˚30΄ N, lon. 
13˚40΄ E). The forests in this area are dominated by Scots 
pine (Pinus sylvestris), Norway spruce (Picea abies L. 
Karst), and birch (Betula spp.), which are typical for 
Scandinavian forests. The soil type is till with a field layer 
consisting of blueberry (Vaccinium myrtillus) and 
cowberry (Vaccinium vitis-idaea).  

The measurements at the single tree level were 
performed in the Remningstorp forests during fall 2006 
and spring 2007 [25]. Due to a severe storm on 14 January 
2007, i.e. between the two inventories, the data from 2006 
have been updated based on a field visit during the fall of 
2007. All trees with a diameter larger than 5 cm at breast 
height (1.3 m above ground) have been recorded together 
with tree species and stem positions. The stem positions 
were measured with a positioning error on the order of 
5–10 cm. In total, 17 areas have been inventoried and the 
database consists in total of 4358 trees. Ten largest forest 
stands corresponding to 80 m × 80 m square plots are 
analyzed in this paper. For each of these stands only trees 
with valid measurements of diameter, trunk volume and 
position are selected for statistical analysis. Some ground 
truth data including the number of test trees for the 
selected forest stands are listed in Table I. The test trees 
present a subset of trees, for which the height was also 
measured. The tree height was measured by an ultrasound 
ranger together with an electronic angle decoder. The 
errors in the height measurements did not exceed a few 
decimeters. When the number of test trees was less than 
the total number of selected trees a third-order polynomial 
approximation was used to estimate tree heights from 
measurements of stem diameter. Trunk volumes were 
computed based on the tree measurements using 
species-dependent functions [25]. 

B. Topographical Data 
Topographical data used for the computations with the 

PO model are in the form of digital elevation models 
(DEM). The DEMs were generated over all the selected 
forest stands using the TopEye helicopter-borne laser 
scanner [26]. The acquisition was done in April 2007. The 
system used a wavelength of 1064 nm with a beam 
divergence of 1.0 mrad. The beam was constantly scanned 
in cross-track direction, producing an approximately 
z-shaped trace on the ground. First and last return were 
recorded, and for each pulse, the positions of the 
corresponding reflection points were translated into 
Cartesian coordinates using the measured distance and 
data from inertial navigation system and differential global 
positioning system with a nearby reference station. The 
estimated positioning error was on the order of 10–30 cm, 
both horizontally and vertically. The flight altitude was 
130 m above ground. The average laser-spot density was 
30–50 m−2 on ground. This enables a 0.25m×0.25m 
horizontal grid for laser measurements. Ground-surface 
height was extracted from the laser data points using the 
progressively irregular triangular-network densification 
method [27], [28]. To speedup computations with the PO 
model, the surface was resampled to a 5m×5m horizontal 
grid.  

Table I summarizes the ground topography for the 
investigated forest stands in terms of root mean square 
(RMS) slope computed from the corresponding DEMs. 
The RMS slope is a highly generalized characteristic. The 
real ground topography shows high complexity, which can 
not be described by a single parameter. Clearly, the DEMs 
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contain accurate and complete description of ground 
topography. 

III. STATISTICAL ANALYSIS 

A. Methodology 
This section addresses the statistical analysis of the tree 
backscatter for the forest stands listed in Table I. The 
analysis focuses on identifying to what degree a particular 
theoretical distribution fits to the distribution of 
“observed” data, which are represented by a set of 
backscattering amplitudes computed at the individual tree 
level for each of the selected forest stands. The 
backscattering amplitude A (in meters) corresponding to 
a single tree is given by 

A σ= , (2) 

where σ  is the single tree RCS given by (1).  
To perform analysis we apply a fitting procedure based 

on the goodness-of-fit tests. The goodness-of-fit tests 
evaluate the quality of fit between a specified theoretical 
(hypothesized) distribution and the distribution of the 
observed data. A test-specific fit statistic can be used as a 
quantitative measure for the quality of fit. In our analysis 
the problem involves a comparison of the empirical 
distribution function computed for a set of tree 
backscattering amplitudes against a particular 
hypothesized distribution with unknown parameters. A 
conventional approach to implementing a goodness-of-fit 
test in this case is using a two-step procedure. First, one 
should estimate the unknown parameters from observed 
data by using the method of maximum likelihood, and then 
apply a goodness-of-fit test for known parameters using 
instead of the unknown parameters their maximum 
likelihood estimates. A significant disadvantage of this 
approach is that it does not utilize the goodness-of-fit test 
to its highest potential because no optimality criteria for 
the quality of fit are involved in this two-step procedure. 

The modified goodness-of-fit tests are used in this paper 
for the analysis. These modified tests are based on the 
approach suggested in [29]. The principal idea of that 
approach is to combine the estimation of the hypothesized 
distribution parameters and a goodness-of-fit test 
procedure in such a manner as to find the estimates of 
parameters, which maximize the p -value of the 
goodness-of-fit test. Thus, such a modified goodness-of-fit 
test strives to optimally (in the sense of the p -value 
maximization) fit the hypothesized distribution to the 
distribution of the observed data. 

We start the analysis from estimating the probability 
density function (pdf) of the tree backscatter by using a 
Matlab implementation of the kernel density (KD) 
estimation [30]–[32].To help in understanding of the effect 
of ground topography on the tree backscatter we also 
compute the KD-estimates of the pdf for the corresponding 
trunk volumes. Fig. 1 (a) and (b) plots some examples of 
these estimates for the tree backscatter and trunk volume 
pdfs, respectively. These examples indicate that 
statistically adequate description for the VHF tree 

backscatter and trunk volume distributions can be 
specified in terms of a finite mixture model. By visual 
inspecting the pdf plots for all the selected forest stands we 
have approximately estimated the number of terms (see 
Table II) in the corresponding mixture distributions. 

Next, a statistical procedure based on a simple heuristic 
approach is performed to find out if a 2-term mixture 
distribution can be statistically adequate model for the tree 
backscattering by using data sets associated with the 
studied forest stands. As a criterion for the quality of 
model fit we use the criterion of maximum p -value of a 
modified Kolmogorov-Smirnov (MKS) goodness-of-fit 
test. A modified chi-squared (MCHI2) goodness-of-fit test 
proposed in [29] is also used in our analysis with the 
following addition. After fitting a model by using the 
chi-squared goodness-of-fit test from [29], a conventional 
Kolmogorov-Smirnov (KS) goodness-of-fit test is run in 
order to compute the p -value and test statistic for the 
MCHI2-fitted model in terms of the quality metric of the 
KS goodness-of-fit test.  

The pdf ( )mq x  associated with a 2-term mixture 
distribution has the following form [33], [34] 

1 1 1 2( ) ( | ) (1 ) ( | )mq x w q x θ w q x θ= + − , (3) 

where 1w  and 11 w−  are the mixing weights, and 1θ  and 

2θ  are the vectors of parameters for the first and second 
terms of the mixture, respectively. Distribution models 
considered in the analysis are the generalized gamma and 
lognormal distributions. When the hypothesized model is 
assumed to be a generalized gamma distribution the pdf 

( | )q x θ  in (3) is given by [24] 

1( | , , )
( )

c

ac
ac

x
bcq x a b c x

b a
e

⎛ ⎞
⎜ ⎟

− ⎝ ⎠
−

=
Γ , (4) 

where 0a >  and 0c >  are the shape parameters, 

0b >  is the scale parameters, so that the vector of 

parameters is [ , , ]θ a b c= , and ( )aΓ  is the gamma 

function. For the lognormal model the pdf ( | )q x θ  is 
[24] 

[ ]2

2

ln( )

21( | , )
2

x μ

σq x μ σ
xσ π

e
−

−
= , (5) 

where μ  and σ are the mean and standard deviation, 
respectively, of the associated normal distribution and the 
vector of parameters is [ , ]θ μ σ= . 

The method proposed in [29] for the estimation of 
parameters in the distribution (4) employs a simple 
relation between the generalized and gamma variates. If a 
random variable X  has a generalized gamma distribution 

with parameters , ,a b c , then the random variable 
cY X=  has a gamma distribution with 

parameters , ca b , i.e. the pdf of Y  is given by [24] 
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=
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where α a= and cβ b=  are the parameters of 
distribution. Using this relation is reasonable because the 
estimation of the parameters ,α β  in the gamma density 

(6) is much simpler than that for the parameters , ,a b c  in 
the generalized density (4). As is suggested in [29], 
estimates of the parameters in (6) can be constructed by 
using simple equations [24] 

( )2[ ] [ ], [ ] [ ]α E Y VAR Y β VAR Y E Y= = , (7) 

where [ ]E Y and [ ]VAR Y  are the mean and variance of 

the random variable Y , respectively. 
We now turn to the description of the MCHI2 (MKS) 

goodness-of-fit test procedure when the null hypothesis 
distribution is assumed to be a generalized gamma one. Let 
ξ  be the observed dataset for which we want to optimally 
fit the generalized gamma distribution with 

parameters , ,a b c  using the MCHI2 or MKS 
goodness-of-fit test. The algorithm for the MCHI2 tests 
can be sketched as follows (see [29] for details).  
1. Loop on the parameter c , where c  takes on values 
from the specified interval ( [0.5,50]c∈  in our analysis). 

2. Compute
cζ ξ= , where c is a fixed value from step 1. 

3. Compute the estimates ˆˆ,α β as 

( )2 2ˆˆ ,ζ ζα ζ s β s ζ= = , where ζ and ζs  are the sample 

mean and sample standard deviation computed for ζ . 
4. Run conventional chi-squared goodness-of-fit test (at a 
specified significance level α ) for the sample ζ  

assuming the pdf (6) in the form ˆˆ( | , )q x α β  for the null 
hypothesis.  
5. Keep the p -value and test statistic from step 4 and the 
associated estimates for the parameters in the generalized 
gamma distribution as 1/ˆ ˆˆ ˆ ˆ[ , , ] [ , , ]ca b c α β c= . 

6. At the end of the loop on c , return the vector ˆˆ ˆ[ , , ]a b c  
for which the p -value of the performed goodness-of-fit 
test is maximum. 
7. Perform conventional KS goodness-of-fit test with the 
pdf (4) in the form ˆˆ ˆ( | , , )q x a b c  in order to compute 
the p -value and test statistic for the MCHI2-fitted GGD 
model in terms of the quality metric of the KS 
goodness-of-fit test. 
Note: To implement the MKS test the algorithm should be 
changed: at step 4, the conventional chi-squared test has to 
be replaced with the conventional KS test and step 7 may 
be excluded. 

Below we sketch the algorithm that implements the 
MCHI2 (MKS) goodness-of-fit test in case when the null 

hypothesis distribution is assumed to be a lognormal one. 
1. Compute the maximum likelihood estimates ˆMLμ  and 

ˆMLσ  of the parameters in the distribution (5) for the 

dataset ξ . 
2. Loop on the parameter μ , where μ  takes on values 

from the interval ˆ ˆ[0.5 ,1.5 ]ML MLμ μ . 
3. Solve the following maximization problem. For a fixed 
value of μ  specified at step 2, find such a value of the 

parameter σ , ˆ ˆ[0.5 ,1.5 ]ML MLσ σ σ∈ , which maximizes the 
p -value for the conventional chi-squared test (at a 

specified significance level α ) for the sample ξ  

assuming the pdf (5) ( | , )q x μ σ  for the null hypothesis. 

4. Keep maxp , which is the maximum p -value, and 
associated values of μ  and σ  from step 3 as 

ˆ ˆ[ , ] [ , ]μ σ μ σ= . 

5. At the end of the loop on μ , return the vector ˆ ˆ[ , ]μ σ  

for which maxp  is maximum maxmax( )p . 
6. Perform conventional KS test with the pdf (5) in the 
form ˆ ˆ( | , )q x μ σ in order to compute the p -value and test 
statistic for the MCHI2-fitted LOGN model in terms of the 
quality metric of the KS test. Set maxmax( )p p= , where 
p  is the p -value computed at this step. 

Note: To implement the MKS test this algorithm should be 
changed: at step 3, the conventional chi-squared test must 
be replaced with the conventional KS test, and step 6 
should be excluded. 

Fig. 2 shows the flow chart of the statistical procedure 
that is performed for optimum 2-term mixture fitting by 
using the MCHI2 and MKS goodness-of-fit tests. As can 
be seen from this figure, the procedure starts from dividing 
the full sample of the tree backscattering amplitudes into 

two subsets by using a threshold tA . Then, these subsets 
are inputs for the MCHI2 and MKS goodness-of-fit tests, 

which generate such estimates
2

1̂
χθ ,

2

2
ˆ χθ and 

1̂
KSθ , 2

ˆKSθ (subscripts stand for the numbers of subsets) 

that maximize the p -values 
2

1
χp ,

2

2
χp  and 1

KSp , 2
KSp , 

respectively, with the pdf (4) or (5) for the null hypothesis. 
These estimates are the 
vectors 1 1 1 1

ˆ ˆˆ ˆ[ , , ]θ a b c= , 2 2 2 2
ˆ ˆˆ ˆ[ , , ]θ a b c=  for the 

generalized gamma density, and the vectors 

1 1 1
ˆ ˆ ˆ[ , ]θ μ σ= , 2 2 2

ˆ ˆ ˆ[ , ]θ μ σ=  for the lognormal density 

(upper indices KS and 2χ are omitted).  
At the next step the algorithm searches for the optimum 

estimates 
2

1ˆ χw and 1ˆ KSw  of the mixing weight 1w  that 

maximize the p -values 
2χ

mp  and 
KS
mp  for the KS 

goodness-of-fit test with the pdf given by the expressions 
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2 2

1 11 2
ˆ ˆ( | ) (1 ) ( | )χ χw q x θ w q x θ+ − and

1 1 1 2
ˆ ˆ( | ) (1 ) ( | )KS KSw q x θ w q x θ+ − , respectively, for the 

null hypothesis. Hence, 
2χ

mp  (
KS
mp ) is the 

corresponding p -value for a 2-term mixture distribution. 

Then a value of mp  is calculated as 
2

max( , )χ KS
m m mp p p=  and stored along with the 

associated estimates of parameters, which are also stored 

as 1̂θ  and 2θ̂ . The sequence of these steps is being 

iterated in the threshold tA  until the maximum of mp  is 
reached. Then, the Monte Carlo test is performed to 
statistically verify the optimum p -value and the 
significance level α . 

Since even a 2-term mixture distribution is not an easily 
tractable statistical model (it includes at least 5 parameters) 
it is reasonable to find out the suitability of a single pdf 
model specified in terms of the generalized gamma or 
lognormal distributions. The single pdf model is a special 
case of the model (3) with 1w =1. It can be shown, by 
using [2, equation (20)] for typical parameters of the 
CARABAS system, soil, and trees, that the average 
normalized backscattering amplitude ( nA ) from trees with 

trunk volume 30.2mV <  is on the order of –22 dB. 

Hence, nA  does not exceed the noise-equivalent 
backscattering level, which is about –20 dB for normal 
CARABAS images. Thus, one can refine a set of the tree 
backscattering amplitudes by selecting for the analysis 
only those above the noise floor, i.e. which correspond to 
the trees with 2.0≥V m3. Then the modified 
goodness-of-fit tests with a single pdf model can be 
applied to a selected subset of the backscattering 
amplitudes as well as to a corresponding subset of the 
trees. 

Fig. 3 shows the flow chart of statistical procedure used 
in the paper to study the statistical adequacy of a single pdf 
model for the tree backscattering corresponding to the 
trees with trunk volumes exceeding 0.2 m3. 
 
B. Numerical Results 

Table III presents the results of 2-term mixture model 
fitting obtained by using the statistical procedure in Fig. 2 
for the generalized gamma and lognormal distributions. 
The table contains the optimum values of the normalized 
threshold ( /1mtA ), the numbers of trees (in the form 

1 2N N+ ) corresponding to the subsets of backscattering 
amplitudes after optimum thresholding, the optimum 
mixing weight 1ŵ  (below the values for 1 2N N+ ), the 
estimates for the parameters of the first and second terms 

(these estimates are denoted by ˆˆ ˆ, , , 1,2i i ia b c i =  and 

ˆ ˆ, , 1,2i iμ σ i =  for the general gamma and lognormal 

distribution, respectively), the maximum p -values and 
corresponding fit statistic for the general gamma and 
lognormal distribution (columns marked as GGD and 
LOGN, respectively). The fit statistic D in terms of the 
KS test quality metric is given by 

max | ( ) ( ) |PO TM
x

D F x F x= − , (9) 

where ( )POF x is the empirical cumulative distribution 
function (empirical cdf) computed for the data generated 

by means of the PO model and ( )TMF x  is the theoretical 
cdf associated with a probability density model specified 
for the null hypothesis. 

For the purpose of the false alarm rate prediction one 
can rewrite (9) as 

max | [1 ( )] [1 ( )] |TM PO
x

D F x F x= − − − , (10) 

where1 ( )TMF x−  and 1 ( )POF x−  are, by the definition, 
the theoretical and empirical exceedance functions, 
respectively. The exceedance function, corresponding to 
the forest clutter cdf, is equal to the probability of false 
alarm ( )FAP τ  at any given threshold τ  

[17]: ( ) 1 ( )FAP τ F τ= − . As follows from (10), the fit 

statistic D can be also interpreted as a fit quality measure 
that determines the maximum absolute difference between 
the “measured” and “theoretical” (computed for a 
hypothesized forest clutter model) false alarm 
probabilities. It should be noted, that maximizing 
the p -value for a KS test also leads to minimizing the 

statistic D , other conditions being equal. A substantial 
advantage of this statistic is that, in contrast to the 
squared-error metric suggested in [17], it is a direct 
measure of the difference between the “measured” and 
“theoretical” false alarm probabilities at any threshold. 
Hence, using the statistic D  in the procedure proposed in 
[17] for forest clutter synthesis will lead to minimizing that 
maximum difference over any specified interval for the 
threshold. In particular, such an interval can be specified 
by appending (9) with the following weighting 
function: ( ) 1f x = , 1 2[ , ]x τ τ∈ , zero elsewhere. The left 

endpoint 1τ  and right endpoint 2τ  should match the 
expected variations in target distributions [17]. 

The exceedance plots for the data generated by using the 
PO model and optimally fitted 2-term mixture models 
based on the GGD and LOGN pdfs are shown in Fig. 4. 

Table IV provides the results of fitting by using the 
single density model for tree backscattering data sets 
corresponding to truncated samples of trees (these are the 
samples of trees with trunk volume 30.2 mV ≥ ). Fig. 5 
shows the exceedance plots for optimally fitted single 
density models and those for the subsets of data extracted 
from the corresponding full sets of tree backscattering 
amplitude computed from (2). Fig. 6 displays the 
KD-estimates of pdf for the truncated samples of (a) tree 
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backscattering and (b) trunk volume, respectively. The 
estimates for the number of terms in the corresponding 
distributions are given in Table V.  

The Monte-Carlo (MC) estimates (5000 of independent 
trials are performed) for the maximum p -values and for 
the significance level are given in Table VI and Table VII 
for 2-term mixture density model and single density 
model, respectively. For ease of comparison the maximum 
p -values from Table III and Table IV are also presented 

in Table VI and Table VII. The results in Table III and 
Table IV are obtained at a significance level 
of 0.05α = . Analyzing the data in Table VI and Table 
VII shows that the MC estimates are in full conformity 
with those obtained by fitting. 
 

IV. DISCUSSION 

The results of the preliminary statistical analysis (Section 
III, Table II and Fig. 1) show that a statistically adequate 
model for the tree backscattering amplitude should be 
specified in terms of a finite mixture distribution. As can 
be seen from Table II, this assertion is also valid for the 
trunk volume distribution. Hence, the multimodality of 
VHF-band tree backscattering distributions should not 
exclusively be considered as the effect of ground 
topography, rather it is a combined effect of the primary 
mixture distribution for the tree trunk volume and 
topography of ground surface, other conditions being 
equal.  

Analyzing Table II also shows that the ground 
topography modifies the number of components in the tree 
backscattering distribution with respect to the associated 
trunk volume distribution in two ways. Increasing or 
decreasing this number depends, probably, on a specific 
combination of the spatial distribution of trees with small 
or large trunk volumes and topographic features over an 
area of interest. 

Inspecting Table III yields that a 2-term mixture model 
provides good fits (for both the GGD and LOGN): the 
maximum p -values are higher than 0.8 and the 
associated fit statistics do not exceed 0.0333 even when 
the number of terms in the respective mixture of 
distributions exceeds 2. The explanation is that in all those 
cases there are only two significant terms, i.e., terms with 
relatively large mixing weights, as Fig. 1 (a) illustrates for 
the stand 10. The quality of fitting is mainly determined by 
these significant terms since the minor terms make a 
relatively low contribution to the total distribution 
function. Nevertheless, we do not know any likely reasons 
that may preclude the existence of such forest stands 
and/or ground topographies when a 2-term model is not 
able to provide such high quality fits like those in Table 
III.  

The exceedance plots in Fig. 4 (a) and (b) for the 2-term 
mixture model show that the GGD-based model 
outperforms the LOGN-based one over the region of large 
backscattering amplitudes despite the fit statistic for the 
latter is less than that for the former; as can be seen, the 

plot for the GGD exceedance function goes markedly 
closer to the plot of exceedance function associated with 
the PO-model data. It should be noted that this result is 
observed for all the studied forest stands. The region of 
large backscattering amplitudes is that domain for the 
exceedance function where accurate prediction of the false 
alarm rate is of most importance [17]. 

As can be seen from Table IV, the single density model 
applied to the tree backscattering samples associated with 
the samples of truncated trunk volumes provides good fits 
for both the GGD and LOGN except the forest stand ID = 
18. Yet again, Fig. 5 shows that within the domain of large 
tree backscattering amplitudes the exceedance plots for the 
GGD-based single density model provides a markedly 
better fit than the LOGN-based model does. Moreover, the 
former model has demonstrated this advantage over the 
latter one for all the investigated forest stands. 

Table V shows that for several stands the trunk volume 
thresholding reduces the number of terms in the trunk 
volume distributions though it does not definitely lead to 
decreasing the number of terms in the associated tree 
backscattering distribution. But even if the thresholding 
does not reduce the number of terms in the tree 
backscattering distribution it may lead to such a mixture of 
distribution (for the tree backscattering amplitude) that 
consists of one or two significant terms, which have 
closely spaced distributions, for which the difference of 
mean values is small enough with respect to the standard 
deviations of the distributions, as is illustrated in Fig. 6 (a). 
This explains why a single density model can provide 
good fits. A poor quality fit for the stand ID=18 can be 
explained by that the difference between the mean values 
associated with the significant terms is so large that a 
single density model is not able to capture well the 
statistical variation of tree backscattering for such a 
pronounced mixture distribution. At the same time the 
2-term model provides a very good fit for the tree 
backscattering associated with this forest stand (see Table 
III). 

It should also be noted that the results of this paper 
supplement those published in numerous works on 
statistical models of SAR image data, see e.g., some recent 
works [35]–[41], in particular [40], which has shown that 
the generalized gamma distribution is the best-fit model 
compared to gamma, Weibull and lognormal distributions 
for estimating speckle noise in SAR images. The present 
paper suggests that the generalized gamma distribution, 
finite mixture model structure, and modified KS 
goodness-of-fit test can be also relevant for building 
models that adequately describe backscattering statistics in 
SAR imagery.  
 

V. CONCLUSION 

The results reported in this paper have shown that an 
adequate probabilistic model that is able to capture the 
essential statistical variations of the VHF-band tree 
backscattering should generally be specified in terms of 
finite mixture distributions. The reason for this is a 
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combined effect of the natural multimodality of the trunk 
volume distribution and ground surface topography. 
Specifically, a 2-term mixture distribution specified in 
terms of generalized gamma or lognormal pdf has been 
shown to be a quite adequate statistical model for the 
VHF-band tree backscattering amplitude. 

It has also been shown that under a reasonable 
assumption the general mixture model can be reduced to a 
single density model with a generalized gamma or 
lognormal distribution. In particular, such a single density 
model is suitable for the VHF-band SAR system 
CARABAS-II in order to model forest clutter from trees 
with trunk volume above 0.2 m3 that corresponds to the 
noise-equivalent backscattering for normal CARABAS II 
images. 

From this paper, one can draw the following inferences 
for the VHF-band forest clutter modelling. First, in 
designing a forest clutter model one should compare at 
least two choices for the density function: lognormal and 
generalized gamma pdf. The latter is a more complex, it 
includes 3 parameters, but it has been shown to be able to 
provide more accurate false alarm rate prediction than the 
former. This should not be surprising since the extra 
degree of freedom allows for more flexibility in the model 
fit that, in turn, results in improving the fit quality. Second, 
the fit statistic defined by formula (10) should be 
considered as a reasonable alternative to the weighted 
squared-error metric defined in [17]. Using the statistic 
(10) in the clutter synthesis procedure proposed in [17] 
will guarantee that the maximum difference between the 
measured and predicted false alarm probabilities (taken 
over a specified interval of threshold values) does not 
exceed a certain level, which is to be minimized during the 
procedure of synthesis. 

It is important to comment on the implication of this 
paper for the forest stem volume (biomass) retrieval by 
inversion of low-frequency SAR data. The information on 
the forest biomass is “encrypted” into SAR image data in a 
very complicated manner. First, the natural statistical 
distribution of trunk volume exhibits features that are 
specific for multi-term finite mixture distributions. 
Second, this natural distribution is modified by the ground 
topography, when electromagnetic waves interact with the 
forest scene, and then by the SAR image formation 
process. Thus, biomass retrieval from inversion of SAR 
image data requires taking into account the natural 
complexity of trunk volume distribution and all the 
distortions of the biomass related information in SAR 
images. 

Additional information and results related to the present 
paper will be included in the doctoral thesis being prepared 
by A. Wyholt and G. Sandberg. 
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TABLE I
SOME FOREST GROUND TRUTH DATA 

Forest Stand 

ID Inventory 
Number 

Number of 
Selected 

Trees 

Number of 
Test Trees 

Average 
Diameter  

(cm) 

Average 
Height  

(m) 

Average  
Trunk Volume  

(m3) 

RMS slope 
(deg) 

1 3926 262 262 29.14 22.16 1.125 4.30 
5 4626 530 530 19.07 16.82 0.418 3.21 

9 4327 332 32 29.25 23.29 0.838 4.13 

10 5932 389 30 24.05 20.21 0.478 4.34 

12 4430 339 43 32.73 27.35 1.050 3.37 
14 2728 333 333 16.03 14.16 0.147 2.75 

15 5721 370 370 19.20 15.91 0.289 7.46 

16 4430 401 38 29.87 25.32 0.844 4.06 

17 5729 360 30 23.73 21.25 0.496 4.14 

18 5332 305 33 32.50 24.52 1.079 4.35 

 

TABLE II
ESTIMATES FOR NUMBER OF TERMS IN MIXTURE DISTRIBUTIONS 

Stand ID 1 5 9 10 12 14 15 16 17 18 

Tree Volume 3 2 4 2 4 2 2 3 2 5 
Number 
of terms 

Backscatter 2 2 4 3 5 2 2 4 2 5 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) (b) 
 
 
Fig. 1. KD-estimates for probability density function of (a) tree backscattering amplitude and (b) trunk volume 
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Fig. 2 Statistical procedure for optimum 2-term mixture model fitting by using modified goodness-of-fit tests 
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Divide the total sample S = {Ai, i=1, 2,..., N} of the 
backscattering amplitudes for a specified forest stand into 

two subsets S1 and S2 
S1 = {Ap, p=1, 2,…, N1: Ap ≤At } 
S2 = {Aq, q=1, 2,…, N2: Aq >At } 

N is the total number of trees for a stand, N1+N2 = N 

Take the subset S1 and perform MCHI2 and MKS tests to find the 

vectors of estimates 
2

1̂
χθ and 1̂

KSθ , respectively. Repeat these tests for 

the subset S2 to find the vectors of estimates 
2

2
ˆ χθ  and 2̂

KSθ . 

Perform MKS test with pdf 
2 2

1 11 2
ˆ ˆ( | ) (1 ) ( | )χ χw p x θ w p x θ+ −  to find such an estimate 1ŵ of 

1w  that maximizes the test p -value and keep 1ŵ  and the maximum p -value 2χ
mp  

Repeat MKS test with pdf 1 1 1 2
ˆ ˆ( | ) (1 ) ( | )KS KSw p x θ w p x θ+ −  to find such an estimate 1ŵ  that 

maximizes the test p -value and keep these new 1ŵ  and the maximum p -value KS
mp  

Compute 2

max( , )χ KS
m m mp p p=  and keep the 

associated parameters: 1ŵ , 1̂θ , 2̂θ  

Next threshold 
At 

Is mp  a maximum? 

Fix max mp and associated 
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Run Monte-Carlo (MC) simulations of the performed statistical 
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Fig. 3 Statistical procedure for optimum single density model fitting by using modified goodness-of-fit tests 
 
 

Identify trees with 
trunk volume 

30.2mV ≥  for a 
given forest stand 

Select a subsample of 
backscattering amplitudes for 

the identified trees 

Perform MCHI2 and MKS tests to 
optimally fit a specified distribution and fix 

the maximum p -values 
2χ

mp  and KS
mp  , 

and associated estimates
2ˆ χθ and ˆKSθ  

Select the maximum p -value 
2

max( , )χ KS
m m mp p p=  and 

associated estimate θ̂  

Run MC simulations for the performed statistical 
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TABLE III 
RESULTS OF 2-TERM MIXTURE MODEL FITTING BY USING MODIFIED GOODNESS-OF-FIT TESTS 

Forest Area Generalized Gamma Distribution (GGD) Lognormal Distribution (LOGN) Maximum p-value Fit Statistic 

1̂a  1̂b  1̂c  1μ̂  
1σ̂  Stand 

ID 
Number 
of Trees 1m

tA  1 2N N+

1ŵ  
2â  

2̂b  2ĉ  1m
tA  1 2N N+

1ŵ  
2μ̂  2σ̂  

GGD LOGN GGD LOGN 

14.1900 1.7674e-6 0.5102 -8.0484 0.6306 1 262 0.0012 83+179 
0.3197 1.6579 0.0170 1.2555 0.0031 90+172 

0.3435 -3.8304 0.6304 0.9999 0.9981 0.0190 0.0235 

6.3799 1.1172e-5 0.5000 -7.8196 0.8169 5 530 0.0024 266+264 
0.5083 6.4569 7.7150e-4 0.6884 0.0032 272+258 

0.5131 -4.5260 0.5956 0.9869 0.9999 0.0193 0.0136 

3.4594 4.5399e-4 0.8488 -6.0875 0.7364 9 332 0.0042 72+260 
0.2149 3.2793 0.0054 0.9480 0.0058 93+239 

0.2792 -4.0312 0.5730 0.8907 0.9409 0.0313 0.0286 

0.9292 7.9458e-4 2.7084 -6.6238 0.5615 10 389 0.0012 16+373 
0.0411 2.1730 0.0040 1.1756 0.0024 42+347 

0.1107 -4.9592 0.5473 0.9964 0.9612 0.0202 0.0252 

1.8246 6.0412e-4 1.3963 -5.4014 0.2773 12 339 0.0015 3+336 
0.0088 1.2703 0.0172 1.5465 0.0064 43+296 

0.1269 -4.0134 0.5284 0.9802 0.9457 0.0250 0.0280 

3.0401 1.2027e-4 0.9541 -8.0268 0.6061 14 333 0.0010 67+266 
0.2012 12.3897 3.8826e-5 0.5673 0.0010 67+266 

0.2012 -5.7787 0.5235 0.9363 0.9971 0.0289 0.0215 

0.9105 0.0012 1.2706 -6.9965 1.1143 15 370 0.0039 193+177 
0.5215 2.4864 0.0068 1.3229 0.0062 218+152 

0.5892 -4.3262 0.4111 0.8116 0.9737 0.0327 0.0247 

0.4596 6.0235e-4 1.5302 -5.5726 0.5240 16 401 0.0011 5+396 
0.0165 0.8087 0.0184 2.5376 0.0062 42+359 

0.1066 -4.2308 0.4384 0.8582 0.9356 0.0298 0.0264 

2.4186 8.8740e-4 2.7841 -6.1491 0.8151 17 360 0.00176 40+320 
0.1117 7.6182 1.9464e-4 0.5000 0.0051 97+263 

0.2737 -4.4137 0.6045 0.9999 0.9874 0.0173 0.0233 

0.0354 0.0084 36.0334 -5.2155 0.6130 
18 305 0.00855 76+229 

0.2449 5.7090 0.0036 0.9707 
0.0115 105+200 

0.3444 -3.8146 0.3726 
0.9498 0.8770 0.0292 0.0333 

 

 

 
 (a) (b) 
 

Fig. 4. Exceedance plots for PO model data and optimally fitted 2-term mixture model for generalized gamma and lognormal distribution: (a) forest stand ID = 
5 and (b) forest stand ID = 10 
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TABLE IV 
RESULTS OF SINGLE DENSITY MODEL FITTING BY USING MODIFIED GOODNESS-OF-FIT TESTS 

Forest Area  Generalized Gamma Distribution 
(GGD)  Lognormal Distribution 

(LOGN) Maximum p-value Fit Statistic 

Stand 
ID 

Number 
of Trees 

in Sample 
 â  b̂  ĉ   μ̂  σ̂  GGD LOGN GGD LOGN 

1 172  3.3747 0.0066 0.9148  -3.8303 0.6304 0.9918 0.9747 0.0322 0.0358 

5 266  5.4125 0.0012 0.7422  -4.5560 0.6254 0.9764 0.9506 0.0287 0.0312 

9 277  0.5420 0.0288 2.3100  -4.2263 0.7415 0.7655 0.5052 0.0395 0.0489 

10 354  2.8945 0.0029 1.0583  -4.9832 0.5797 0.9995 0.8258 0.0187 0.0329 

12 333  1.3519 0.0165 1.5113  -4.1260 0.6311 0.9745 0.5761 0.0259 0.0423 

14 85  59.0763 1.5317e-6 0.5000  -5.2589 0.2330 0.7543 0.9815 0.0712 0.0488 

15 173  2.3604 0.0075 1.3882  -4.4011 0.5027 0.9914 0.8777 0.0322 0.0439 

16 389  0.9091 0.0176 2.4289  -4.2978 0.4859 0.7379 0.7908 0.0343 0.0326 

17 302  8.4572 0.0002 0.5000  -4.5285 0.6836 0.9761 0.9995 0.0270 0.0201 

18 279  1.4771 0.0158 1.4943  -4.0675 0.6060 0.3015 0.1274 0.0576 0.0696 

 

 

 
 

 (a) (b) 
 
Fig. 5. Exceedance plots for PO model data and optimally fitted single density model for generalized gamma and lognormal distribution: (a) forest stand ID = 
5 and (b) forest stand ID = 10 
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TABLE V
ESTIMATES FOR NUMBER OF TERMS FOR TRUNCATED SAMPLES 

Stand ID 1 5 9 10 12 14 15 16 17 18 

Tree Volume 1 1 3 2 2 1 2 2 2 5 
Number 
of terms 

Backscatter 2 2 3 3 2 2 2 1 2 3 

 

TABLE VI
MONTE-CARLO ESTIMATES OF p -VALUE AND CONFIDENCE LEVEL FOR 2-TERM MIXTURE MODEL 

Forest Stand ID 1 5 9 10 12 14 15 16 17 18 

Result of fit 0.9999 0.9869 0.8907 0.9964 0.9802 0.9363 0.8116 0.8582 0.9999 0.9498 GGD MC estimate 0.9998 0.9850 0.8838 0.9949 0.9779 0.9299 0.7726 0.8462 0.9999 0.9427 

Result of fit 0.9981 0.9999 0.9409 0.9612 0.9457 0.9971 0.9737 0.9356 0.9874 0.8770 
p -value 

LOGN MC estimate 0.9973 0.9999 0.9390 0.9549 0.9458 0.9964 0.9613 0.9313 0.7382 0.8095 

GGD MC estimate 0.0526 0.0532 0.0488 0.0484 0.0534 0.0488 0.0536 0.0506 0.0468 0.0528 Confidence 
level  LOGN MC estimate 0.0508 0.0516 0.0504 0.0494 0.0516 0.0546 0.0514 0.0518 0.0520 0.0478 

 

TABLE VII
MONTE-CARLO ESTIMATES OF p -VALUE AND CONFIDENCE LEVEL FOR SINGLE DENSITY MODEL 

Forest Stand ID 1 5 9 10 12 14 15 16 17 18 

Result of fit 0.9918 0.9764 0.7655 0.9995 0.9745 0.7543 0.9914 0.7379 0.9761 0.3015 GGD MC estimate 0.9618 0.9349 0.7188 0.9901 0.9682 0.7496 0.9895 0.7288 0.9724 0.3057 

Result of fit 0.9747 0.9506 0.5052 0.8258 0.5761 0.9815 0.8777 0.7908 0.9995 0.1274 
p -value 

LOGN MC estimate 0.9728 0.9456 0.5025 0.8292 0.5773 0.9776 0.8765 0.7847 0.9993 0.1287 

GGD MC estimate 0.0536 0.0534 0.0554 0.0498 0.0508 0.0476 0.0494 0.0428 0.0486 0.0538 Confidence 
level LOGN MC estimate 0.0493 0.0489 0.0516 0.0521 0.0482 0.0499 0.0524 0.0497 0.0504 0.0457 

 

 
 

 

 
 

 (a) (b) 
 
Fig. 6. KD-estimates for probability density function for truncated sets of trees: (a) tree backscattering amplitude and (b) trunk volume 
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