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Abstract

The X-level Approach Reaction Noise Estimator (XARNES) method has been
developed previously to study reaction noise in well mixed reaction volumes. The
method is a typical moment closure method and it works by closing the infinite
hierarchy of equations that describe moments of the particle number distribution
function. This is done by using correlation forms which describe correlation effects in
a strict mathematical way. The variable X is used to specify which correlation effects
(forms) are included in the description. Previously, it was argued, in a rather informal
way, that the method should work well in situations where the particle number
distribution function is Poisson-like. Numerical tests confirmed this. It was shown that
the predictive power of the method increases, i.e. the agreement between the
theory and simulations improves, if X is increased. In here, these features of the
method are explained by using rigorous mathematical reasoning. Three derivative
matching theoremsare proven which show that the observed numerical behavior is
generic to the method.

Introduction
Noise is an integral part of the workings of the living cell biochemistry [1]. There are

many types of noise and this work focuses on the intrinsic noise. If reactant copy num-

bers are low they can fluctuate widely [2]. These fluctuations can severely influence the

dynamics of the cell and need to be carefully controlled [3].

Describing intrinsic noise has attracted a lot of effort. A range of theoretical methods

have been developed to study intrinsic noise. However, an accurate characterization of

the reaction noise is not easy. A direct solution of the chemical master equation for

the system is often not possible since the number of configurations can be exponen-

tially large. Numerical simulation methods can be used to avoid this problem, and are

often implemented by using the Gillespie algorithm [4]. However, to obtain accurate

prediction for moments of the particle number distribution function, e.g. the variance,

sampling with a relatively large number of runs (simulations) is needed. This becomes

impractical if the number of particle types is very large. A range of methods have been

suggested to complement or replace these techniques. The focus of this work is on

moment closure techniques [5-15].
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The main idea behind moment closure approaches is to construct the equation sys-

tem that can describe various moments of the particle number distribution function.

In such a way there is no need to directly solve the master equation or perform a lar-

genumber of computer simulations. The problem is that the equation system that

describes these moments is, in principle, infinite. The main issue is to cut (or close)

the hierarchy. This is done in two ways. First, one can try to make some specific

assumptions about the reacting system which can be used to express higher order

moments in terms of lower order ones. This procedure defines the moment closure

function for the problem. Second possibility is to take the distribution function cen-

tered approach and assume that the particle number distribution function has a well-

defined form, parameterized by a finite set of parameters. Variational calculus can be

used to obtain the parameters [7,16]. In both cases the complicated many body

dynamics is reduced to a set of ordinary differential equations that govern quantities of

interest.

Two moment closure methods that were suggested previously will be of a particular

interest. The PARNES method [14,15] is based on the assumption that pair effects

dominate the dynamics. The method has been generalized into the XARNES method

[17] so that higher order correlation effects can be included in the description. In fact,

various choices for X result in a series of methods, e.g. X = P (pair effects), T (triplets),

Q (quadruples), etc. Thus the PARNES method is the special case of the XARNES

method with X = P. Both methods are based on the rather generic formalism of corre-

lation forms which is used in statistical physics to model spatially extended many body

effects. Each correlation form describes a particular correlation effect (single, pair, tri-

ple, and so forth). Correlation forms are used to perform a cluster like expansion of

relevant quantities of interest. In the previous studies, the original correlation form

formalism [18,19] used to model spatially extended diffusion controlled reactions has

been adapted for describing well mixed reaction volumes.

A moment closure method works well in the intended domain of application, but it

might easily fail if used elsewhere. Thus for a moment closure method to be useful it

is necessary to, if possible, specify precisely in which situations the method is expected

to work well. In [17] it was argued that the XARNES method should describe well sys-

tems with a Poisson-like particle number distribution function. This was confirmed by

numerical studies. In here, it will be shown rigorously that such behavior is generic to

the method. Also, there are some ambiguities while adapting the correlation form

formalism to the well mixed situation, and the procedure is not unique. The problem

is that a large number of spatial degrees offreedom need to be projected onto a much

small number of variables, and there are many ways how this can be done. In here, it

will be shown that the choice made in the previous studies is in some sense optimal.

To show all of the above the derivative matching procedure introduced in [9-11] will

be used. In particular, the procedure from the technical report [9] willbe closely fol-

lowed. This report was formalized in much shorter form in [10]. A very general multi-

plicative ansatz was suggested for the moment closure function. The precise form of

the ansatz was found by using the derivative matching procedure. The function was

parameterized by a finite set of parameters which were found by matching time deriva-

tives of exact and approximate moments. This was done for the system in the pure
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state. The condition for a good match was derived in the form of a generic formula

that involves the moment closure function parameters.

The same formula was obtained in a different context where the XARNES method

was suggested [17]. This fact motivated the present work. The derivative matching pro-

cedure will be applied to investigate the accuracy of the XARNES method. There are

some important differences in the setups in [10,11] and the present work. In here, the

original procedure from [10,11] will be carried in the opposite direction. The XARNES

method is based on the well-defined multiplicative ansatz for factorial moments. It will

be shown that the ansatz implies good derivative matching properties. Also, while the

original work focused on the pure state in here the Poisson state will be of interest.

The mathematical setup
A reaction system is defined as follows. It is assumed that reacting particles mix well

and that particle positions are irrelevant. A configuration of the system can be speci-

fied by listing how many particles of each type there are in the system

�n = (n1, n2, · · · , ni, · · · , nT) (1)

where variables ni, i = 1, 2,..., T, are positive definite integers used to denote the par-

ticle numbers. A configuration of the system changes in time due to the presence of

reactions.

The full list of reactions is given by r1, r2,..., rR and a reaction ra is formally defined

in the usual chemical notation as

uα1X1 + . . . + uαTXT
λα→ vα1X1 + . . . + vαTXT (2)

The positive definite vectors

�uα = (uα1, uα2, · · · , uαR) (3)

�vα = (vα1, vα2, · · · , vαR) (4)

with a = 1,2,..., R contain the stoichiometry coefficients for the reactions. It is

assumed that the dynamics can be modeled as the Markov process where la is the

reaction rate for a reaction ra having the unit ofinverse time. The dynamics defined in

such a way is stochastic.

One possible way to describe the dynamics and characterize noise is to construct the

master equation, solve it, and obtain the particle number distribution function P(�n, t)

which describes all stochastic properties of the system. However, both the computation

and the direct inspection of the particle number distribution function is often tedious.

It is more useful to investigate certain properties of the distribution function.

In practice this is done by computing various observables, or ensemble averages, as

〈f (�n)〉 ≡
∑

�n
f (�n)P(�n, t) (5)

where f is the function that suitably parameterizes an observable of interest. A typical

observable could be some low level moment such as the mean or the variance. Clearly,

the direct use of (5) is not practical for large systems and one needs to avoid this

route somehow. The idea is to project the details of the dynamics and obtain a coarse
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grained description by monitoring a selected set of observables instead of all configura-

tions. These observables will be classified, i.e. labeled, in a precise mathematical way.

For a fixed number of particle types, it is useful to introduce the vector space of all

admissible labels. Formally, this is done through the following set of definitions.

Definition 1. The space of vectors that are used to label various correlation effects

or, depending on the context, observables, will be denoted by Ω,

� ≡ { �m|mi ≥ 0, i = 1, 2, · · · , T} (6)

where a variable mi is a positive definite integer. For example, the average number of

particles of a type i will be labeled as �ei = (0, 0, · · · , 0, 1, 0, · · · , 0) where the digit 1

appears on the i-the place.

Definition 2. It is useful to introduce the order, or norm, of a vector �m ∈ � as the

sum of its components,

∥∥ �m∥∥ =
T∑

i=1

mi (7)

This order will be used to classify various correlation effects. It is clear from the defi-

nition that∥∥ �m1 + �m2
∥∥ =

∥∥ �m1
∥∥ +

∥∥ �m2
∥∥ (8)

The full set of observables will be split into two disjoint subsets. The first subset

contains the observables that are being included in the projection and the second set

contains the observables that are omitted. The observables in the second set need to

be expressed somehow in terms of the observables in the first set. The following defi-

nitions will be used to classify such sets.

Definition 3. The set of vectors �m ∈ � that contains all vectors with orders

0,1,2,...,ξ will be denoted by Ωξ,

�ξ = { �m ∈ �| || �m|| ≤ ξ} (9)

where ξ ≥ 1 is an arbitrary integer used to classify various theories.

Definition 4. In a similar way,

� �m =
{ �m′ ∈ �|m′

1 ≤ m1, m′
2 ≤ m2, · · · , m′

T ≤ mT
}

(10)

will denote the set of vectors �m′ ∈ � that are smaller than a vector �m in the lexical

sense defined above.

The set Ωξ will be used to denote the set of observables being explicitly considered

in the theory. For example, the mean field theory (the classical chemical kinetics) that

neglect effects of fluctuation works with the first order effects where ξ = 1 (X = Sin-

gles). Thus the mean field theory would work by constructing equations for all ρ�ei
with �ei∈�1 . Sets of the type � �m will be used to limit various sums.

Definition 5. Finally, the set of all vectors that are not in Ωξ will be denoted as,

�̄ξ = �\�ξ (11)

A vector from this set will be denoted by the bar character above the vector symbol,

e.g. m̄ ∈ �̄ξ .
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Further, several definitions will prove useful that generalize well known operations

on numbers to similar operations in Ω. These generalizations greatly compactify some

of the mathematical expressions that will be discussed.

Definition 6. Let �ω1 and �ω2 be two arbitrary tuples of real numbers with rank T,

such as �ω = (ω1, ω2, · · · , ωT) . The set of all such vectors will be denoted by RT. For

any pair of such vectors the generalized power will be defined as

�ω �ω2
1 ≡ ω

ω21
11 ω

ω22
12 ω

ω23
13 · · · ωω2i

1i · · · ωω2T
1T (12)

Obviously, Ω⊂RT and this definition can be also used for vectors in Ω. It is clear

from the definition that

�ω �ω1+�ω2 = �ω �ω1 �ω �ω2 (13)

Definition 7. The binomial like coefficient that involves a pair of vectors �m1 and �m2

from Ω is formally defined as( �m1

�m2

)
≡
(

m11

m21

)(
m12

m22

)(
m13

m23

)
· · ·
(

m1i

m2i

)
· · ·
(

m1T

m2T

)
(14)

and it is assumed that a binomial coefficient
(

m1i

m2i

)
in the product is zero if m2i

>m1i.

Definition 8. The factorial-like symbol applied to a vector �m from Ω is generalized

as

�m! ≡ m1!m2!m3! · · · mi! · · · mT! (15)

Definition 9. The product between two real numbers is generalized as

�ω1 � �ω2 = (ω11ω21, · · · , ω1iω2i, · · · , ω11ω21, ) (16)

where �ω1 and �ω2 are two arbitrary vectors from RT. Please note that the result of

the operation is an element in the same set, �ω1 � �ω2 ∈ RT . Also, the following identity

related to this definition will be useful later on,

( �ω1 � �ω2) �m = �ω �m
1 �ω �m

2 (17)

Exact equations of motion
There are several types of observables one could choose to work with. In this work fac-

torial moments will be used. A factorial moment will be labeled by the related positive

definite

vector �m = (m1, m2, · · · , mT) ∈ � and is defined as

p �m =
〈( �n

�m
)

�m!
〉

(18)

It was shown in [17] that the equation system for the exact factorial moments is

given by
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d
dt

p �m(t) =
R∑

α=1

λα

∑
�c∈�R

( �m
�c
)

�α(�c)ρ �m−�c+�uα
(t) (19)

and the structure of the equations will be explained in the following. Γ coefficients in

the sum are given by

�α(�c) =
[(�vα

�c
)

−
( �uα

�c
)] �c!

�uα!
(20)

for all �m ∈ � . A vector �c ∈ �R is a positive definite vector to be referred to as a

contraction vector. Contraction vectors emerge during the field theoretic derivation of

the equations of motion when one uses the Wick theorem. More details regarding the

field theoretic setup can be found in [14,15]. One can derive the same set of equations

in another way (not shown). Sums over contraction vectors will be of the central inter-

est in the following.

The space of all possible contractions is defined by reactions that can occur in the

system.

From the definition of Γ coefficients in (20) one can see that for a fixed �uα or �vα the

sum over the contraction vectors in (19) is restricted.

This is suggestive of the following formal definition of the space ΩR⊂Ω:

�R =
⋃R

α=1

(
��uα

⋃
��vα

)
(21)

Despite the fact that the sum over contraction vectors is finite, the equation system

for exact moments represents, in principle, an infinite hierarchy of equations since on

the right hand side of the equation for a given ρ �m there are terms that involve higher

order moments since it may happen that
∥∥ �m − �c + �uα

∥∥ >
∥∥ �m∥∥ . The hierarchy of equa-

tions for the exact moments appears not particularly useful. However, it can be used

to devise approximation schemes. If higher order moments can be expressed in terms

of few lower order ones then the equation system closes down.

A way of closing the hierarchy: the XARNES method
The XARNES method is based on the closure ansatz which is constructed by using the

concept of correlation forms [14,15,17]:

ln ν �m(t) =
∑

m̂∈�ξ

( �m
m̂

)
wm̂(t) (22)

where wm̂ denotes the correlation form labeled by a vector m̂ ∈ � . The detailed

motivation behind this equation is given in [17]. It is assumed that that correlation

forms with the orders above a given threshold ξ can be assumed small,

w �m (t) ≈ 0 ⇔ ∥∥ �m∥∥ > ξ . Since a moment ν−→m (t) is not exactly equal to the related

moment ρ �m(t) , two different symbols, v and r, are used to denote them. However, if

the approximation above works well, possibly when the number of vectors in Ωξ

becomes large, their values should be close.

Please note that if a factorial moment is zero, the left hand side of Eq. (22) becomes

infinite owing to the singularity of the logarithmic function. This implies that the
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related correlation form becomes also infinite. Clearly, by construction, the XARNES

ansatz is somewhat ambiguous for cases when some factorial moments vanish. In what

follows it will be assumed that all factorial moments are strictly larger than zero but

they can be arbitrary close to zero.

It was shown previously [14,15,17] that the assumption (22) is an implicit ansatz for

defining the function that expresses a higher order non-base factorial moments νm̄(t)

with m̄ ∈ �̄ξ in terms of the base moments �ν(t) ≡ (· · · , νm̂(t),···) with m̂ ∈ �ξ :

vm̄(t) = ψm̄(�ν(t)); m̄ ∈ �̄ξ (23)

where the moment closure function is given by

ψm̄(�ν(t)) =
∏

m̂∈�ξ

vm̂(t)γ m̄
m̂

(24)

and g coefficients are defined as

γ m̄
m̂ =

∑
m̂′∈�ξ

(
m̄
m̂′

) (
C−1)

m̂′ ,m̂ (25)

with the matrix C specified as

Cm̂1,m̂2 =
(

m̂1

m̂2

)
(26)

Also, by construction one has that ψm̂(�ν(t)) = vm̂ (t) .

Finally, by combining (24) with (19) gives the XARNES system of equations,

d
dt

νm̂(t) =
R∑

α=1

λα

∑
�c∈�R

(
m̂
�c
)

�α(�c)ψm̂−�c+�uα(�ν(t)) (27)

for m̂ ∈ �ξ .

It is clear from the form of equation (19) that ρ�0 = 〈1〉 does not depend on time. For

�m = 0 the sum over contraction vectors can only contain one vector, �c = �0 , and since

�α
�0 = 0 the time derivative of ρ�0 vanishes. This expresses the fundamental probability

conservation requirement for any reasonable theory. In contrast to the ρ�0 moment, a

correlation moment with �m �= 0 is a real dynamic quantity. Based on this one might

partition the Ωξ space in two spaces. The first space should consist of the null vector,

while the second space would consist of all other vectors in Ωξ. It is possible to show

that the values of g are same regardless whether the zero vector is singled out or not.

An intriguing similarity
A similar set of equations as the one given by (24-26) has been obtained in a slightly

different context [10,11] where the multiplicative ansatz given in (24) was the starting

point in developing a moment closure method for zero centered moments, η �m , which

in the notation of the present work would be given by

η �m ≡
〈
�n �m
〉

(28)
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The goal was to determine the values of the g coefficients in Eq (24) from the

requirement that time derivatives of exact and approximate moments match at the

time instance when the distribution function resembles the distribution function of the

pure system. It was shown that the derivatives match best if the coefficients g are given

exactly by (25). Thus the equations would be identical if not for the fact that the

related equations in [10,11] are for zero-centered moments.

This remarkable coincidence where the same set of coefficients is obtained in two

different ways is rather intriguing. In particular, this strongly suggests that the

XARNES method might have advantageous properties as it comes to the derivative

matching between the exact and the approximate moments computed for a suitable

initial condition. It will be shown by employing a strict mathematical analysis, in the

same way as done in [10,11], that this is indeed the case for the Poisson initial condi-

tion. This in turn explains the previous numerical observation from [14,15,17] that the

XARNES method performs better when the particle number distribution function is

Poisson-like as compared to the situation when the distribution resembles the one of

the pure system.

Derivative matching setup
In here a similar procedure as in [10,11] will be carried out to show that the XARNES

ansatz expressed in (24) and (25) has some advantageous derivative matching proper-

ties. The original procedure will be implemented as follows. Consider the Eqs. (19) and

(27) at time t = t0 where the particle number distribution function is strictly given by

the uncorrelated multivariate Poisson distribution. In such a case all correlation forms

are zero except the ones specified by vectors �ei, i = 1, . . . , T . Thus the multivariate

(uncorrelated) Poisson distribution is parameterized by parameters

�μ = (μ1, μ2, · · · , μT) ∈ RT where μi = exp(w�ei) . By a trivial application of Eq. (22) one

can see that the exact factorial moments of the reacting system computed at t = t0 are

given by

ρ �m (t0) ≡ �μ �m (29)

for any �m ∈ � .

At t = t0 the base factorial moments that are used in the XARNES method have to

be chosen. This choice specifies the boundary condition for the XARNES equation of

motion in (27). Naturally, for the purposes of comparing time derivatives it will be

assumed that

vm̂ (t0) = ρm̂ (t0) = �μ �m; m̂ ∈ �ξ (30)

since if the values of the exact and the approximate base moments do not match

their derivatives will not likely match either. The question is: given that the values of

the base and the exact moments are same, can one expect that time derivatives of

these quantities match as well?

In order to make some progress in answering this question a couple of identities

involving g coefficients will be needed. These identities are hard to prove by using the

explicit form of these coefficients given in (25). The formalism of generating functions

will be used instead. Before doing that the following two definitions need to be stated,
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Definition 10. Symbol Pε( �ω) will be used to denote a polynomial

Pε( �ω) =
‖�m‖≥ε∑

�m∈�

A �m �ω �m (31)

where A �m are arbitrary real valued coefficients. No other restrictions are imposed on

the sum.

Definition 11. Let Pε( �ω) be a polynomial as defined previously. Symbol
[
�ω �m
]
will

be used to denote the operator that extracts the coefficient in front of a particular �ω �m

term in the polynomial, i.e. A �m :

[
�ω �m0

] ∑
�m∈�∗

A �m �ω �m =

⎧⎪⎪⎨
⎪⎪⎩A

�m0 �m0 ∈ �∗
0 �m0 /∈ �∗

(32)

for any Ω* ⊂ Ω. Likewise,

[
�ω �m0

]
Pε( �ω) =

⎧⎪⎪⎨
⎪⎪⎩A �m0

0

∥∥ �m0
∥∥ ≥ ε∥∥ �m0
∥∥ < ε

(33)

The following lemma is extremely useful for proving a couple of identities that will

be needed later. The lemma has the form of a generating function identity.

Lemma 1. Let coefficients g be defined by Eqs. (22) and (35). In other words, the

only requirement imposed on these coefficients is that they are used to parameterize

higher order factorial moments in terms of the base moments with the XARNES

ansatz implied. In such a case these coefficients obey the following identity∑
m̂∈�ξ

γ m̄
m̂ (1 + �ω)m̂ =

(1 + �ω)m̄ + Pξ+1( �ω)

(34)

where �ω and 1 ≡ (1,1,...,1) are vectors in RT and m̄ ∈ �̄ξ . Eq. (34) will be referred to

as the generating function equation.

Proof. This identity can be proven as follows. First, one combines the XARNES

ansatz (24) rewritten as

ln νm̄ =
∑

m̂∈�ξ

γ m̄
m̂ ln νm̂ (35)

with the definition of the correlation forms (22) to obtain

∑
m̂∈�ξ

γ m̄
m̂ ln νm̂ =

∑
m̂∈�ξ

( �m
m̂

)
wm̂ (36)

By assuming that all correlation forms have predefined values given by

wm̂ = �ωm (37)
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where �ω ∈ RT is arbitrary but fixed, leads to the equation that is central for the

proof of the lemma,

∑
m̂∈�ξ

γ m̄
m̂ ln νm̂ =

∑
m̂∈�ξ

(
m̄
m̂

)
�ωm̂

(38)

First, we focus on the left hand side of the above equation. From (37), and (22) with

ln νm̂1 =
∑

m2∈�ξ

(
m̂1

m̂2

)
�ωm̂2 ,

ln νm̂1 =
∑

m2∈�ξ

(
m̂1

m̂2

)
�ωm̂2 (39)

which by the use of the binomial theorem can be recognized as

ln νm̂ = (1 + �ω)m̂ (40)

This turns the left hand side of (38) into∑
m̂∈�ξ

γ m̄
m̂ ln νm̂ =

∑
m̂∈�ξ

γ m̄
m̂ (1 + �ω)

m̂
(41)

The sum over the vectors in Ωξ in the right hand side of (38) can be extended to

include all vectors in �m̄ . Naturally, these terms have to be subtracted afterwards. By

doing that one obtains

∑
m̂∈�ξ

(
m̄
m̂

)
�ωm̂ =

∑
�m∈�m̄

(
m̄
�m
)

�ω �m −
∑

m̄′∈�m̄\�ξ

(
m̄
m̄′

)
�ωm̄′

(42)

By the use of the binomial theorem the first term on the right hand side of the equa-

tion can be recognized as the first term in the right hand of (34). Likewise, it is trivial

to see that the second term in the equation can be characterized as Pξ+1( �ω) . Thus the

equation above becomes,

∑
m̂∈�ξ

(
m̄
m̂

)
�ωm̂ = (1 + �ω)m̄ + Pξ+1( �ω) (43)

Finally, the Lemma follows by using (38), (41), and (43).

A couple of useful identities will be proven that follow from this Lemma and are sta-

ted as three corollaries. The first two corollaries can be proven easily without using the

Lemma, e.g. as in [10,11]. In here they are proven in a different way to illustrate how

to use the Lemma. The third corollary is a highly non trivial statement that would be

very hard to prove by direct use of the explicit form of g coefficients.
Corollary 1. Let coefficients g be given and let them satisfy the condition of Lemma

1. Then,

∑
m̂2∈�ξ

γ m̄
m̂2

(
m̂2

m̂1

)
=
(

m̄
m̂1

)
; m̂1 ∈ �ξ (44)
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Proof. The proof is trivial. One only needs to apply the operator
[
�ωm̂1

]
on the both

sides of the generating function equation (34).

Corollary 2. Let coefficients g be given and let them satisfy the condition of Lemma

1. Then,∑
m̂∈�ξ

m̂γ m̄
m̂ = m̄ (45)

Proof. The identity can be obtained by evaluating the gradient of Eq. (34) with

respect to �ω at the point �ω = �0 .
Corollary 3. Let the coefficients g satisfy the generating function equation (34). Then

following identity holds

∑
m̂∈�ξ

γ m̄
m̂

(
m̂
�c1

)(
m̂
�c2

)
=
(

m̄
�c1

)(
m̄
�c2

)
(46)

provided vectors �c1 and �c2 satisfy
∣∣�c1 + �c2

∣∣ ≤ ξ .

Proof. First, one has to assume that

�ω = �ω1 + �ω2 + �ω1 � �ω2� (47)

where �ω1, �ω2 ∈ RT are arbitrary but bound by the above constraint. Also, it is useful

to realize that

1 + �ω = 1 + �ω1 + �ω2 + �ω1 � �ω2 = (1 + �ω1) � (1 + �ω2) (48)

By using the above expression in the generating function formula, and (17), one

obtains∑
m̂∈�ξ

γ m̄
m̂ (1 + �ω1)m̂(1 + �ω2)m̂ =

(1 + �ω1)m̄(1 + �ω2)m̄+

Pξ+1( �ω1 + �ω2 + �ω1 � �ω2)

(49)

In the third step one has to apply operators [�ω�c1
1 ] and [�ω�c2

1 ] to the generating func-

tion expression above. Applying the operators to the left hand side of the equation

above gives the left hand side of Eq. (46). Likewise by applying the operators to the

first term on the right hand side of the equation gives the right hand side of Eq. (46).

Thus what is left to show is that the action of the operator onthe remaining second

term results in zero.

The second term has the following structure

Pξ+1( �ω1 + �ω2 + �ω1 � �ω2) =

‖�p+�q+�s‖≥ξ+1∑
�p,�q,�s∈�

A�p,�q,�s �ω�p
1 �ω�q

1( �ω1 � �ω2)�s (50)

where A coefficients can be found but their exact form is not relevant. Next, by

using (17) and (13) the equation becomes
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Pξ+1( �ω1 + �ω2 + �ω1 � �ω2) =

‖�p+�q+�s‖≥ξ+1∑
�p,�q,�s∈�

A�p,�q,�s �ω�p+�s
1 �ω�q+�s

2

(51)

and by a simple change of variables �p + �s = �c1 and �q + �s = �c2 one arrives at

Pξ+1( �ω1 + �ω2 + �ω1 � �ω2) =

‖�c1+�c2‖≥ξ+1∑
�c1,�c2,∈�

A�c1,�c2 �ω�c1
1 �ω�c2

2

(52)

To obtain the final form of the equation, and in particular the condition specified in

the sum, one has to use the fact that
∥∥�c1 + �c2

∥∥ =
∥∥�p + �q + 2�s∥∥ ≥ ∥∥�p + �q + �s∥∥ ≥ ξ + 1 .

Finally, from the last equation one can see that, indeed, the application of the operator[
�ω�c1

1

] [
�ω�c2

2

]
gives zero provided that

∥∥�c1 + �c2
∥∥ ≤ ξ . This proves the corollary. Please

note that it would be very hard, if not impossible, to obtain such a result from the

explicit expression for g coefficients given in (25).

Higher order generalizations of this corollary are possible. For example, by using

1 + �ω = (1 + �ω1) � (1 + �ω2) � (1 + �ω3) (53)

one can easily prove that

∑
m̂∈�ξ

γ m̄
m̂

(
m̂
�c1

)(
m̂
�c2

)(
m̂
�c3

)
=
(

m̄
�c1

)(
m̄
�c2

)(
m̄
�c3

)
(54)

provided that vectors �c1 , �c2 , and �c3 satisfy
∥∥�c1 + �c2 + �c3

∥∥ ≤ ξ .

Now we are ready to prove some derivative matching results. The first question is

whether the XARNES ansatz and the related moment closure function are consistent

for the Poisson initial condition. This is answered in a form of the following Lemma.

Lemma 2. If the base and the exact factorial moments match at t = t0, and the parti-

cle number distribution function at this time instance is the Poisson distribution, i.e.

ρm̂(t0) = νm̂(t0) = �μm̂; m̂ ∈ �ξ (55)

then non-base moments also match:

ρm̂(t0) = νm̂(t0) = ψm̄(v(t0)) = �μm̄ (56)

for all m̄ ∈ �̄ξ .

Proof. The direct use of the XARNES ansatz gives

ln νm̄ =
∑

m̂∈�ξ

m̂γ m̄
m̂ ln �μ = m̄ ln �μ (57)

where (45) was used in the last step.

Finally, we arrive at the central discussion of this work, i.e. the discussion of various

time derivatives of exact and approximate moments and when and how they differ. For

doing this it is instructive to investigate the difference between the exact and the

Konkoli Theoretical Biology and Medical Modelling 2012, 9:12
http://www.tbiomed.com/content/9/1/12

Page 12 of 18



XARNES equation systems. In this context one can easily show that the following

equation system is valid,

p[h]
m̂ − v[h]

m̂ =
R∑

α=1

λα

∑
�c∈�R

(
m̂

�c

)
�α

(�c)×
⎧⎨
⎩
∑

m̂1∈�ξ

[
ρ

[h−1]
m̂1

− ψ
[h−1]
m̂1

]
δm̂1,m̂−�c+�uα+

∑
m̂∈�ξ

[
ρ

[h−1]
m̂ − ψ

[h−1]
m̂

]
δm̂,m̂−�c+�uα

⎫⎬
⎭

(58)

and notation ϕ[h] ≡ dh

dth
ϕ(t)|t=t0

with h = 1,2,3,... is implied where �(t) is any func-

tion, and �[0] ≡ �(t0). The equation system above will be useful for proving a series of

derivative matching theorems, in the similar vein as done in [10,11].

Three derivative matching theorems
Three derivative matching theorems will be proven, one theorem per derivative. The

first two theorems have been proven in [10,11] for the pure state. In here they are pro-

ven for the Poisson state. The third theorem is entirely new.

The structure of the proofs is somewhat different than in [10,11] since in here the

focus is on factorial moments. It seems that the equation system for factorial moments

is more compact than for other types of moments. As an artifact of that, the theorems

do not contain the error terms ε that were used in [10,11]. The theorems proven in

here are more generic since they hold even for multi particle reactions, not just binary

reactions. Again, as stated previously, all components of �μ are taken strictly larger

than zero. If one of the components is zero the XARNES ansatz does not work.

Theorem 1. If the base and the exact factorial moments match at t = t0, and the par-

ticle number distribution function is the Poisson distribution, i.e., if

ρm̂(t0) = vm̂(t0) = �μm̂; m̂ ∈ �ξ (59)

then the first order derivatives in time also match for the base factorial moments:

d
dt

ρm̂(t)|t=t0 = d
dt νm̂(t)|t=t0 (60)

for all m̂ ∈ �ξ .

Proof. The theorem can be easily proven by considering Eq. (58) with h = 1. By

assumptions of the theorem one has that p[0]
m̂ − ψ

[0]
m̂ = 0 which eliminates the sum

over m̂ ∈ �ξ in (58). From Lemma 2 it follows that ρ
[0]
m̄ − ψ

[0]
m̄ = 0 which eliminates

the sum over m̄ ∈ �̄ξ . This finally proves the theorem.

Theorem 2. If the base and the exact factorial moments match at t = t0, and the par-

ticle number distribution function is the Poisson distribution, i.e., if

ρm̂(t0) = νm̂(t0) = �μm̂; m̂ ∈ �ξ (61)
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and if ΩR ⊂ Ωξ, then the second order derivatives in time also match:

d2

dt2
ρm̂(t)|t=t0 = d2

dt2 vm̂(t)|t=t0 ; m̂ ∈ �ξ (62)

Proof. The proof of this theorem is somewhat lengthier. To prove the theorem one

needs to consider Eq. (58) with h = 2. If the assumptions of the theorem are valid, by

theorem 1, p[1]
m̂ − ψ

[1]
m̂ = 0 which eliminates the sum over m̂ ∈ �ξ in (58). Thus what

is left to show is that a difference ρ
[1]
m̄ − ψ

[1]
m̄

with m̄ ∈ r�ξ vanishes.

A straight forward application of the time derivative on the moment closure function

leads to the following expression,

ψ
[1]
m̄ =

∑
m̂∈�ξ

∂ψm̄

∂ψm̂
v[1]

m̂ =
∑

m̂∈�ξ

γ m̄
m̂ �μm̄−m̂v[1]

m̂ (63)

Also, the use of the exact, and the XARNES equation systems to evaluate ρ
[1]
m̄

and

ψ
[1]
m̄

gives

ρ
[1]
m̄ − ψ

[1]
m̄ =

∑
�c∈�R

⎡
⎣( m̄

�c
)

−
∑
m̂∈�ξ

γ m̄
m̂

(
m̂
�c
)⎤⎦×

R∑
α=1

λα�α

(�c) �μm̄+�uα−�c

(64)

This difference is zero provided

∑
m̂∈�ξ

γ m̄
m̂

(
m̂
�c
)

=
(

m̄
�c
)

(65)

for every �c ∈ �R . Please note that this condition is almost identical to the equation

that characterize the g coefficients of the XARNES ansatz. In one replaces �c with m̂ ,

and ΩR with Ωξ in the equation above, then the equation obtained in such a way

would be identical to Eq. (25) or (44). Thus if ΩR ⊂ Ωξ then the equation above is

contained in the condition that defines the g coefficients, and the equation is automati-

cally valid. This proves the theorem.

The third order derivatives will be investigated in the same vein as the first and the

second order derivatives. The result will be formulated in a precise mathematical theo-

rem. However, before stating the next theorem, it is useful to generalize the space of

contraction vectors as follows.

Definition 12. Vector space of sums of contraction vectors �c1 + �c2 + · · · + �ch where

each of the vectors in the sum is from ΩR, will be denoted as

�h⊗R = {�c1 + �c2 + · · · + �ch|�c1, �c2 · · · , �ch ∈ �R} (66)

and h is an integer and obeys h ≥ 1.

Theorem 3. If the base and the exact factorial moments match at t = t0 and the par-

ticle number distribution function is the Poisson distribution, i.e., if
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ρm̂(t0) = νm̂(t0) = �μm̂; m̂ ∈ �ξ (67)

and if Ω2⊗R ⊂ Ωξ, then the third order derivatives in time also match

d3

dt3
ρm̂(t)|t=t0 =

d3

dt3
νm̂(t)|t=t0 ; m̂ ∈ �ξ (68)

Proof. The theorem can be proven by considering Eq. (58) with h = 3. By theorem 2

one has that ρ
[2]
m̂ − ψ

[2]
m̂ = 0 . What is left to show is that all differences ρ

[2]

m̄−ψ
[2]
m̄

with

m̄ ∈ �̄ξ vanish as well. Unfortunately this is a highly nontrivial task.

By the use of the standard calculus one can show that

ψ
[2]
m̄ = ψ

[2]
m̄,† + ψ

[2]
m̄,‡ (69)

where

ψ
[2]
m̄,† =

∑
m̂1,m̂2∈�ξ

(
γ

m̄γ

m̂1
γ

m̄γ

m̂2
− γ

m̄γ

m̂1
δm̂1,m̂2

)
×

μm̄−m̂1−m̂2 v[1]
m̂1

v[1]
m̂2

(70)

and

ψ
[2]
m̄,‡ =

∑
m̂∈�ξ

γ m̄
m̂ �μm̄−m̂ν

[2]
m̂ (71)

By using the XARNES equations, and identity (44) for g coefficients, the ψ
[2]
m̄,† can be

expressed as

ψ
[2]
m̄,† =,

∑
�c1,�c2∈�R

⎡
⎣( m̄

�c1

)(
m̄
�c2

)
−
∑
m̂∈�ξ

γ m̄
m̂

(
m̂
�c1

)(
m̂
�c2

)⎤⎦×
∑
α,β

λαλβ�α(�c1)�β(�c2) �μm̄+�uα+�uβ−�c1−�c2

(72)

which vanishes provided

∑
m̂∈�ξ

γ m̄
m̂

(
m̂
�c1

)(
m̂
�c2

)
=
(

m̄
�c1

)(
m̄
�c2

)
(73)

for any �c1, �c2 ∈ �R . This is indeed true by corollary 3 under the assumptions of the

theorem.

What is left to show is that ρ
[2]
m̄ − ψ

[2]
m̄,‡ = 0 . A strategy for proving this is as follows.

If one could show that the following identity holds for the exact moments

�m̄ ≡ ρ
[2]
m̄ −

∑
m̂∈�ξ

γ m̄
m̂ �μm̄−m̂ρ

[2]
m̂ = 0 (74)
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then it is clear that ρ
[2]
m̄ − ψ

[2]
m̄,‡ = 0 would be true since one could write

ρ
[2]
m̄ − ψ

[2]
m̄,‡ =

∑
m̂∈�ξ

γ m̄
m̂ �μm̄−m̂

(
ρ

[2]
m̂ − ψ

[2]
m̂

)
(75)

and this expression would vanish by Theorem 2.

Somewhat naive recursive application of the exact equations of motion results in

ρ
[2]
m̄ =

∑
α,β

λαλβ

∑
�c1,�c2∈�R

(
m̄
�c1

)(
m̄ + �uα − �c1

�c2

)
×

�α

(�c1
)
�β

(�c2
) �μm̄+�uα−�uβ−�c1−�c2

(76)

By using a tedious manipulation of the binomial coefficients the expression above

can be converted into a more useful form

ρ
[2]
m̄ =

∑
α,β

λαλβ

∑
�c1,�c2,�d∈�R

(
m̄
c1

)(
m̄ − �c1

c2

)
×

(
�uα

d

)
�α

(�c1
)
�β

(
�c2 + �d

)
�μm̄+�uα+�uβ−�c1−�c2−�d

(77)

In fact, it is easier to start from (77) and obtain (76). First, the manipulation requires

that the sum of �c2 and �d is changed, into the sum over �c2 = �c2 + �d and �c3 = �c2. After

that the Vandermonde identity needs to be used which consumes the sum over �c3′ ,

resulting finally in (77).

By using the fact that

(
m̄
�c1

)(
m̄ − �c1

�c2

)
=
(

m̄
�c1 + �c2

)(�c1 + �c2

�c2

)
(78)

Eq (77) can be written in the most useful form as

ρ
[2]
m̄ =

∑
�c1,�c2∈�R

(
m̄

�c1 + �c2

)
×

∑
α,β

�α ,β( �μ, �c1, �c2) �μm̄+�uα+�uβ−�c1−�c2

(79)

The exact form of a coefficient �α,β( �μ, �c1, �c2) can be found if needed and, in fact, it

is a series in �μ . However, the exact form of these coefficients is not relevant for the

discussion that follows.

Let us use (79) in (74). This gives

�m̄ =
∑

�c1,�c2∈�R

⎡
⎣( m̄

�c1 + �c2

)
−
∑

m̂1∈�ξ

γ m̄
m̂1

(
m̂1

�c1 + �c2

)⎤⎦×
∑
α,β

�α,β( �μ, �c1, �c2) �μm̄+�uα+�uβ−�c1−�c2

(80)
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and �m̄ is zero if the following condition is met,

∑
m̂∈�ξ

γ m̄
m̂

(
m̂

�c1,2

)
=
(

m̄
�c1,2

)
(81)

for every �c1,2 ∈ �2⊗R . Eq. (81) is satisfied by the assumption of the theorem which

states that Ω2⊗R ⊂ Ωξ. In such a case equations in (81) are a subset of the equations

satisfied by the g coefficients which are given in (44) and are automatically valid.

The three theorems proven so far are suggestive of the fact that one might try to

prove the following conjecture.

Conjecture 1. If the base and the exact factorial moments match at t = t0, and the

particle number distribution function is the Poisson distribution, i.e., if

ρm̂(t0) = νm̂(t0) = �μm̂; m̂ ∈ �ξ (82)

and if Ωh⊗R ⊂ Ωξ, where h is an arbitrary integer such that h ≥ 1, then the time deri-

vatives with orders D = 0, 1, 2, ..., h + 1 will also match

dD

dtD
ρm̂(t)|t=t0 =

dD

dtD
vm̂(t)|t=t0 ; m̂ ∈ �ξ (83)

Eventual. Inductive proof for general h could be used. However, the problems is that

one would need to inspect a difference ρ
[h]
m̄ − ψ

[h]
m̄

for arbitrary h and show that it

vanishes under some conditions. Presumably, the main condition, apart from the stan-

dard requirements, e.g. such as having the Poisson initial condition, would be that

Ωh⊗R ⊂ Ωξ. For example, one can easily see that an expressions such as the one

shown in (53) will appear if one tries to calculate higher time derivatives of ψm̄ . How-

ever, as demonstrated for the h = 2 (D = 3) case the computation of ψ
[h]
m̄

for higher

values of h is a rather cumbersome and technical procedure. Generalization to higher

orders is apparently very hard but not impossible.

There are couple of reasons why such a conjecture might be valid. First, the struc-

ture of the proofs of theorems 1-3 (the cases h = 0, 1, 2) suggests such a possibility.

Second, there is numerical evidence from a previous study [17] that increase in ξ

improves the accuracy of the XARNES method. In the context of the theorems dis-

cussed in here, increase in ξ implies that the initial Ωξ set becomes larger. This in

turncan make the condition Ωh⊗R ⊂ Ωξ valid for a larger value of h. Finally as a result

of that a larger number of derivatives would match which would explain the observed

accuracy improvements in the studied benchmark cases. Finally, third, this conjecture

has be checked by Mathematica for the T = 1 case and two binary reactions 2X1 ® 0

and 2X1 ® X1, both with h = 0, 1, 2, 3, 4, 5 and ξ = 2, 4, 6, 8, 10 respectively, and one

multi particle reaction 3X1 ® 2X1 with h = 0, 1, 2, 3 and ξ = 3, 6, 9.

Conclusions
The three theorems explain the mechanism behind the numerically observed fact that

the XARNES method works well if the particle number distribution function is close

to the Poisson distribution. Thus if all correlation forms are in some sense small, the

XARNES method will provide a very accurate result.
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For very small molecule counts one should expect problems with moment closure

formulas like (24) with negative g coefficients. The XARNES ansatz can describe such

situation but one needs to consider a limiting processwhere factorial moments

approach zero from the above. For example, one might want to start the systems from

a state with the Poisson distribution, which is natural in many biologically relevant

cases, but with some components of �μ equal to zero. This cannot be done directly

since the XARNES ansatz breaks down. In more practical terms, any decent numerical

Ordinary Differential Equation (ODE) solver should issue a warning for such an initial

state. To start the system from a state wheresome copy numbers are zero it is neces-

sary to consider increasingly smaller values for such copy numbers.

Previous numerical studies showed that there are systems for which the XARNES

ODE system develops a singularity and the numerical solver has to stop [14,15,17].

Unfortunately, the theorems that have been proven cannot say anything about such

singularities since the particle number distribution function becomes increasingly dif-

ferent from the Poisson distribution.
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