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Lignocellulosic carbohydrates, i.e. cellulose and hemicellulose, have 
abundant potential as feedstock for production of biofuels and chemicals. 
However, these carbohydrates are generally infiltrated by lignin. 
Breakdown of the lignin barrier will alter lignocelluloses structures and 
make the carbohydrates accessible for more efficient bioconversion. 
White-rot fungi produce ligninolytic enzymes (lignin peroxidase, 
manganese peroxidase, and laccase) and efficiently mineralise lignin into 
CO2 and H2O. Biological pretreatment of lignocelluloses using white-rot 
fungi has been used for decades for ruminant feed, enzymatic 
hydrolysis, and biopulping. Application of white-rot fungi capabilities can 
offer environmentally friendly processes for utilising lignocelluloses over 
physical or chemical pretreatment. This paper reviews white-rot fungi, 
ligninolytic enzymes, the effect of biological pretreatment on biomass 
characteristics, and factors affecting biological pretreatment. Application 
of biological pretreatment for enzymatic hydrolysis, biofuels (bioethanol, 
biogas and pyrolysis), biopulping, biobleaching, animal feed, and 
enzymes production are also discussed. 
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INTRODUCTION 
 
 Lignocellulosic biomass from agricultural residues is produced in large quantities, 
approximately 73.9 Tg/year in the world (Kim and Dale 2004). These wastes are mostly 
left in the field, causing a disposal problem for the local producing agro-industries. 
However, lignocellulosic biomass actually has a great potential as feedstock for produc-
tion of more value-added products such as low price chemicals, e.g. xylitol, xylose, 
glucose, furfural (Rahman et al. 2006; Sánchez 2009), fuels (Kim and Dale 2004), 
biofibres (Reddy and Yang 2005), ruminant feed (Okano et al. 2009), biopulp (Chen et al. 
2002; Scott et al. 2002; Yaghoubi et al. 2008), or even for enzyme production (Hölker et 
al. 2004).  
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 Lignocelluloses are composed of cellulose, hemicelluloses, lignin, extractives, 
and in general minor amounts of inorganic materials (Sjöström 1993). Cellulose and 
hemicelluloses are polysaccharides that can be hydrolysed to produce simple sugars. 
However, many factors such as lignin (content and composition), cellulose crystallinity, 
degree of polymerization, pore volume, acetyl groups bound to hemicellulose, surface 
area, and biomass particle size limit the digestibility of the hemicellulose and cellulose 
(Rivers and Emert 1988; Anderson and Akin 2008; Zhu et al. 2008; Alvira et al. 2010).  

The aromatic barriers in lignocelluloses, including lignins (consisting of phenyl-
propanoid units of various types) and low molecular weight phenolic acids, limit the 
fibres degradation. Cell walls with syringyl lignin, e.g. leaf sclerenchyma, are often less 
recalcitrant. However, coniferyl lignin appears to be the most effective limitation to 
biodegradation (Anderson and Akin 2008). Therefore, pretreatment methods targeted for 
removing or breaking down the lignin will generally increase the digestibility of cellulose 
fractions of lignocellulosic biomass. It has been pointed out that delignification causes 
biomass swelling, and disruption of the lignin structure, and consequently leads to an 
increase in internal surface area and median pore volume (Zhu et al. 2008). These 
changes could reduce irreversible adsorption of enzyme on lignin (Converse et al. 1990) 
and increase enzyme accessibility to cellulose (Mooney et al. 1998).   

Pretreatment of lignocellulosic biomass can be performed by physical, mechan-
ical, chemical, and biological methods (reviewed by e.g. Mosier 2005; Taherzadeh and 
Karimi 2008; Hu et al. 2008; Hendriks and Zeeman 2009; Alvira et al. 2010). 
Physical/mechanical pretreatments are based on milling, irradiation, and hydrothermal 
treatments. Examples of chemical pretreatments are ammonium fiber explosion (AFEX), 
alkali, acid, and organosolv treatments. Physical/mechanical and chemical pretreatments 
are most studied; they effectively reduce biomass recalcitrance in short time and are thus 
attractive for industrial application. These pretreatments increase accessible surface area, 
and decrease lignin contents and cellulose crystallinity and its degree of polymerization, 
and sometimes, partially or completely hydrolyze hemicelluloses. However, typical 
physical/mechanical and chemical pretreatments such as dilute-acid hydrolysis, require 
high-energy (steam or electricity) and/or corrosion-resistant high-pressure reactors, and 
extensive washing, which increase the cost of pretreatment. Furthermore, chemical 
pretreatments may produce toxic substances, interfering with the microbial fermentation, 
in addition to producing wastewater that needs treatment prior to its release to the 
environment (Keller et al. 2003; Shi et al. 2008). In view of these facts, biological 
pretreatment has attracted interest because of its potential advantages over 
physical/chemical pretreatments such as: (a) greater substrate and reaction specificity, (b) 
lower energy requirements, (c) lower pollution generation, and (d) higher yields of 
desired products (Kirk and Chang 1981). Compared to physical and chemical 
pretreatment methods, biological methods have been less investigated. One possible 
reason for this fact could be slow rates of the pretreatments, which makes the biological 
method industrially unattractive. Another drawback of biological pretreatment is the 
potential carbohydrate loss because of cellulose and hemicelluloses degradation. How-
ever, biomass pretreatment is a global issue that demands an environmentally friendly 
process. Thus, interest has been directed towards a biological method, and recent studies 
show increasing interest in this subject (Lee et al. 2007; Shi et al. 2008; Yu et al. 2009b; 
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Bak et al. 2010; Dias et al. 2010; Ma et al. 2010; Taniguchi et al. 2010).  
Biological pretreatment employs microorganisms and their enzymatic machin-

eries to break down lignin and alter lignocellulose structures. Some of the most promising 
microorganisms for biological pretreatment are white-rot fungi that can mineralise lignin 
to CO2 and water in pure culture (Lundquist et al. 1977; Hatakka 1983). Several white-rot 
fungi such as Phanerochaete chrysosporium, Ceriporiopsis subvermispora, Phlebia 
subserialis, and Pleurotus ostreatus are capable of efficiently metabolising lignin in a 
variety of lignocellulosic materials (Kirk and Chang 1981; Hatakka 1983; Keller et al. 
2003). The fungi have been studied in connection with several ligninolytic enzymes, such 
as lignin peroxidases (LiP), manganese peroxidases (MnP), laccase (Lac), and versatile 
peroxidases (VP) (Higuchi 2004; Wong 2009). Having these enzymes, white-rot fungi 
can have many applications in biopulping, biobleaching, ruminant feeds, xylose, ethanol, 
biogas, and enzymes productions (Kirk and Chang 1981; Reid 1989). Brown-rot fungi are 
also interesting class of fungi. However, these fungi do not degrade by modify lignin  via 
demethylation (Hatakka 2001), and therefore, we do not cover brown-rot fungi in this 
review. 

Biological pretreatments using white-rot fungi have mostly been carried out by 
solid-state fermentation (SSF). In SSF, production of ligninolytic enzymes has been 
shown to be higher than in submerged fermentation (SF) (Xu et al. 2001). The enzyme 
activity and lignin degradation are influenced by a number of factors such as fungal 
strain, nutrient composition (nitrogen, Mn2+, and Cu2+), moisture content, aeration, pH, 
and temperature (Kaal et al. 1995; Zhao et al. 1996; Fu et al. 1997; Dorado et al. 2001; 
Šnajdr and Baldrian 2007; Patel et al. 2009b). Controlling these factors leads to an 
optimum condition in the pretreatment process, which results in good performance of 
white-rot fungi. The present study reviews the biological pretreatment using white-rot 
fungi, as well as its biotechnical applications. In addition, some factors affecting 
pretreatment will also be briefly discussed in this paper.  
 
 
WHITE-ROT FUNGI 
  

Fungi that are active in the biodegradation of wood can be classified into three 
main groups according to their methods of degrading biomass, specifically white-rot, 
brown-rot, and soft-rot fungi. White-rot and brown-rot fungi belong to Basidiomycetes, 
whereas soft-rot fungi belong to Ascomycetes (Hatakka 2001). White-rot fungi are able 
to decompose all wood fractions, including lignin, and leave the wood with a white, 
fibrous appearance. Mostly, white-rot fungi grow on hardwoods e.g. birch and aspen. 
However, certain species such as Heterobasidion annosum, Phellinus pini, and Phlebia 
radiata grow on softwoods such as spruce and pine (Blanchette 1995).   
 White-rot fungi degrade lignin with two modes of action, namely selective and 
non-selective decays (Blanchette 1995). Selectivity of white-rot fungi regarding lignin 
degradation depends on the lignocellulose species (Hakala et al. 2004), cultivation time, 
and other factors (Hatakka and Hammel 2010). Examples of white-rot fungi that possess 
selective decay at least under certain condition are C. subvermispora, Dichomitus 
squalens, P. chrysosporium, and Phlebia radiata. Examples of white-rot fungi that 
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possess non-selective decay are Trametes versicolor and Fomes fomentarius. In selective 
decay, lignin and hemicellulose fractions are selectively degraded while the cellulose 
fraction is essentially unaffected. In non-selective degradation, approximately equal 
amounts of all fractions of lignocellulose are degraded (Blanchette 1995; Hatakka 2001).   
 Related to lignin degradation, white-rot fungi face three major challenges 
associated with lignin structure, i.e. (1) the lignin polymer is large; therefore ligninolytic 
systems must be extracellular, (2) lignin structure is comprised of inter-unit carbon-
carbon and ether bonds, therefore the degradation mechanism must be oxidative rather 
than hydrolytic, and (3) lignin polymer is stereo-irregular, therefore the ligninolytic 
agents must be much less specific than degradative enzymes (Kirk and Cullen 1998). 
Enzymes involved in lignin degradation are lignin peroxidase (LiP, EC 1.11.1.14), 
laccase (Lac, EC 1.10.3.2, benzenediol:oxygen oxidoreductase), manganese peroxidase 
(MnP, EC 1.11.1.13), versatile peroxidase (VP, EC 1.11.1.16), and H2O2-forming 
enzymes such as glyoxal oxidase (GLOX) and aryl alcohol oxidase (AAO, EC 1.1.3.7) 
(Hatakka 2001; Wong 2009). White-rot fungi produce various enzymes involved in lignin 
degradation, but also produce cellulases, xylanases and other hemicellulases. Almost all 
white-rot fungi produce manganese peroxidase (MnP) and laccase (Lac), but only some 
of them produce lignin peroxidase (LiP) (Hatakka 2001).   
 
Lignin Peroxidase 

Lignin peroxidase (LiP, EC 1.11.1.14) was first discovered in the extracellular 
medium of P. chrysosporium grown under nitrogen limitation (Hammel and Cullen 
2008). LiPs (lignin peroxidases) were reported to be produced by some white-rot fungi, 
e.g. P. chrysosporium (Ganesh Kumar et al. 2006), T. Versicolor (Hatakka 2001),  
Bjerkandera sp. (Kaal et al. 1993),  and T. cervina (Miki et al. 2011), but are not 
observed in the culture of other fungi such as D. squalens, C. subvermispora, and 
Pleorotus ostreatus (Cohen 2002; Périé and Gold 1991). LiPs are monomeric homo-
proteins with molecular masses around 40 kDa, and resemble classical peroxidase, in that 
their Fe3+ is pentacoordinated to the four heme tetrapyrrole nitrogens and to a histidine 
residue (Hammel and Cullen 2008). LiPs are oxidised by H2O2 to give a two-electron-
oxidised intermediate (LiP-I) in which the iron is present as Fe4+ and a free radical 
resides on the tetrapyrrole ring (or on a nearby amino acid). LiP-I then oxidises a donor 
substrate by one electron, yielding a radical cation and LiP-II, in which the iron is still 
present as Fe4+, but no radical is present on the tetrapyrrole. LiP-II then oxidises a second 
molecule of donor substrate, giving another radical cation and the resting state of the 
peroxidase. LiP oxidises non-phenolic units of lignin by removing one electron and 
creating cation radicals, which then decomposes chemically. LiP cleaves preferentially 
the Cα-Cβ bond in the lignin molecule, but is also capable of ring opening and other 
reactions (Hatakka 2001; Wong 2009). The general mechanism of LiP catalysed reaction 
is (Wong 2009):  

 
LiP[Fe(III)] + H2O2  LiP-I [Fe(IV)=O.+] + H2O    (1) 
 

LiP-I + AH  LiP-II [Fe(IV)] + A.+ 
 

Lip-II + AH  LiP + A.+ 
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 Lignin peroxidases are known as strong oxidants because the iron in the porphyrin 
ring is more electron-deficient than in classical peroxidases (Millis et al. 1989). Another 
reason could be due to the fact that an invariant tryptophan residue – trp171 in the 
isozyme named LiPA – is present in an exposed region on the enzyme surface, and 
thought to participate in long range electron transfer from aromatic substrates that cannot 
make direct contact with the oxidised heme. This makes LiPs enable to oxidise bulky 
lignin-related substrates directly (Hammel and Cullen 2008). Recent work showed that 
the catalytic efficiency (kcat/Km) for oxidation of a lignin model trimer by LiP was only 
about 4% of the value found for oxidation of a monomeric model (Baciocchi et al. 2003). 
 
Manganese Peroxidase 
 Manganese peroxidase (EC 1.11.1.13, Mn(II):hydrogen-peroxide oxidoreductase, 
MnP) catalyses the Mn-dependent reaction 2Mn(II)+2H++H2O2=2Mn(III)+2H2O (Wong 
2009). MnP was purified from P. chrysosporium (Kuwahara et al. 1984). MnPs are more 
widespread than LiP (Hofrichter 2002). MnPs were reported to be produced by P. 
chrysosporium, Pleurotus ostreatus, Trametes spp., and several species of the families of 
Meruliaceae, Coriolaceae, and Polyporaceae (Hofrichter 2002; Hatakka and Hammel 
2010; Elisashvili and Kachlishvili 2009). Ultrahigh (0.93 Å) resolution structure of MnP 
from P. Chrysosporium was reported by Sundaramoorthy et al. (2010). MnP contains one 
molecule of heme as iron protoporhyrin IX and consists of 357 amino acid residues, three 
sugar residues (GlcNac, GlcNac at Asn 131, and a single mannose at Ser336), two 
structural calcium ions, a substrate Mn2+, and 478 solvent molecules. The catalytic 
cycles of MnP is described below (Wong 2009): 
 

MnP + H2O2  MnP-I + H2O      (2) 
 

MnP-I + Mn2+  MnP-II + Mn3+ 
 

MnP-II + Mn2+  MnP + Mn3+ + H2O 
 

Mn3+ in turn mediates the oxidation of organic substrates: 
 

Mn3+ +RH  Mn2+ + R. + H+      (3) 
 

Addition of H2O2 to native enzyme MnP yields MnP-I. The catalytic cycles thus 
involves the oxidation of Mn2+ by MnP-I and MnP-II to yield Mn3+. The product, Mn3+, 
is released from the active site if various bidentate chelators are available to stabilise it 
against disproportionation to Mn2+ and insoluble Mn4+ (MnO2) (Glenn et al. 1986; 
Hatakka and Hammel 2010). In the reaction, the oxidising power of  MnP is transferred 
to Mn3+ that can diffuse into the lignified cell wall and attack it from the inside (Hammel 
and Cullen 2008). However, MnPs naturally do not oxidise nonphenolic lignin-related 
structures directly as LiPs because they do not have the invariant tryptophan residue 
required for electron transfer to aromatic substrates (Hammel and Cullen 2008). Never-
theless, some reports (e.g. Hofrichter et al. 2001) say that non-phenolic compounds are 
oxidized under certain conditions.   

A recent study (Hu et al. 2009) revealed a low-molecular weight compound that 
promotes Mn activities of P. chrysosporium. This compound, named Pc-reducer, was 
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reported to reduce the hydroxyl radical and the stable nitroxide radical under certain 
conditions. Pc-reducer could also weaken the repolymerisation of fragments from the 
oxidation of Na-lignosulfonate by lignin peroxidases and manganese peroxidases. It has 
the potential to improve the ligninolytic efficiency of peroxidases in P. chrysosporium. 
 
Laccase 
 Laccases (Lac, EC 1.10.3.2, benzenediol:oxygen oxidoreductase) are blue copper-
containing oxidases that catalyse one-electron oxidations of aromatic amines and 
phenolic compounds such as phenolic substructures of lignin. Most white-rot fungi 
produce laccase, with a large variation in the amounts (Wong 2009). The terminal 
electron acceptor in the catalytic reaction is molecular oxygen, which is reduced to water 
(Thurston 1994). The complete crystalline structure of laccase containing all four copper 
atoms in the active site has been published from T. versicolor and Cerrena maxima 
(Bertrand et al. 2002; Piontek et al. 2002). The structure of laccase consists of three 
cupredoxin-like domains, and resembles that of ascorbate oxidase (Bertrand et al. 2002). 
Laccases are glycoproteins and those of white-rot fungi generally have a molecular 
weight between 60-80 kDa and pI 3-6 (Hatakka 2001).  
 

 
 
Fig 1. Mechanism of side chain cleavage of phenolic -O-4 lignin substructure model by Lac of C. 
versicolor. (1), syringylglyceol--guaiacyl ether; (2),-carbonyl dimer, (3), 2,6-dimethoxyhydro-
quinone, (4) glyceraldehydes-2-guaiacyl ether; (5), guaiacol; (6), syringic acid (redrawn according 
to Higuchi, 2004) 
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 The activity and function of laccase has been extensively studied for decades 
(Leonowicz et al. 2001). Laccase catalyse the formation of phenoxyl radicals and their 
unspecific reactions leading finally to Cα-hydroxyl oxidation to ketone, alkyl-aryl 
cleavage, demethoxylation and Cα-Cβ -cleavage in phenolic lignin substructures, as well 
as polymerization reactions (Fig. 1). Laccase is also able to oxidise non-phenolic 
substructures of lignin in the presence of a low molecular weight mediator like hydroxyl-
benzotriazole (Call and Mücke 1997). In nature, the occurrence of laccase is widespread, 
and laccase has been found in fungi, bacteria, and plants. In the fungal kingdom, laccase 
has been found in phytopathogenic, soil, and fresh water inhabiting ascomycetes and in 
several basidiomycetes, including some mycorrhizal and brown-rot fungi. In lignin-
degrading white-rot and litter-decomposing fungi, laccase has been found in almost every 
species studied (Baldrian and Šnajdr 2006).  
 White-rot fungi have usually several laccase encoding genes and secrete laccases 
as multiple isoforms (Hatakka 2001; Palmieri et al. 2000). An interesting exception in the 
occurrence of laccase is the widely studied white-rot fungus P. chrysosporium. In the 
sequenced genome of P. chrysosporium, no close match to known laccase encoding 
genes could be found (Kersten and Cullen 2007). There are few reports of laccase 
produced by P. chrysosporium (Srinivasan et al. 1995), but these results can be partly 
explained by the unspecific nature of 2,2´-azinobis (3-ethylbenzthiazoline-6-sulphonate) 
(ABTS) oxidation reaction and the possibility of variation in strains. However, it seems 
evident that most P. chrysosporium strains do not produce laccase. 
 As laccase is able to oxidise lignin and is produced by the most lignin-degrading 
fungi under ligninolytic conditions, it has been generally accepted to have a role in lignin 
degradation using white-rot fungi. Fungal laccase has been suggested to participate in 
morphogenesis, fungal plant pathogen interaction, stress defence, and detoxification of 
byproducts of lignin degradation (Thurston 1994). Laccase production using white-rot 
fungi can be induced by the addition of Cu2+ (Palmieri et al. 2000) or aromatic 
compounds such as veratryl alcohol (Couto et al. 2001) and 2,5– xylidine (Leonowicz et 
al., 2001; Eggert et al., 1996). In some fungi such as C. subvermispora (Fukushima and 
Kirk 1995) and Ganoderma lucidum (de Souza Silva et al. 2005), laccase production is 
increased in the presence of lignocellulosic material.  
 
Versatile Peroxidase 
 Versatile peroxidase (VP) can oxidise phenolic and non-phenolic aromatic 
compounds as well as oxidise Mn2+. Versatile peroxidases are found in various Pleurotus 
and Bjerkandera species and had been characterised (Cohen 2002; Chen et al. 2010), but 
VPs are not found in P. Chrysosporium (Hammel and Cullen 2008). Phanerohaete 
chrysosporium apparently lacks of VPs, although its genome encodes a putative 
extracellular peroxidase (GenBank accession AY727765) related to Pleurotus VPs. P. 
chrysosporium LiP had MnP activity when a Mn2+-binding site was introduced into P. 
chrysosporium LiP genes by site-directed mutagenesis (Mester and Tien 2001). 
Conversely, P. chrysosporium MnP obtained LiP activity when a tryptophan residue 
analogous to the essential one in LiPs was introduced into P. chrysosporium MnP genes 
(Timofeevski et al. 1999). These results show that hybrid peroxidases with both activities 
could occur naturally (Hammel and Cullen 2008). The P. eryngii VP termed VPL has the 
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three acidic amino acid residues required for Mn2+ binding, and a catalytic efficiency 
(kcat/Km) for Mn2+ oxidation in the general range exhibited by typical MnPs. In addition, 
VPL has a tryptophan residue, trp164, analogous to the LiPA trp171 that participates in 
electron transfer from aromatic donors and consequently enables the enzyme to oxidise 
nonphenolic lignin-related structures (Hammel and Cullen 2008).  

The catalytic mechanism of VP is similar to LiP (Wong 2009). VP oxidise Mn2+ 
to Mn3+, degrade the nonphenolic lignin model veratrylglycerol -guaiacyl ether yielding 
veratraldehyde and oxidise veratryl alcohol and p-dimethoxybenzene to veratraldehyde 
and p-benzoquinone, respectively, as LiP does (Higuchi 2004). 
   
Peroxide-Producing Enzymes 
 White-rot fungi require sources of extracellular H2O2 to support the oxidative 
turnover of the LiPs and MnPs responsible for ligninolysis. This H2O2 is supplied by 
extracellular oxidases that reduce molecular oxygen to H2O2 with the concomitant 
oxidation of a cosubstrate. One such enzyme, found in P. chrysosporium and many other 
white-rot fungi, is glyoxal oxidase (GLOX). GLOX accepts a variety of simple aldehydes 
as electron donors. Some GLOX substrates, e.g. glyoxal and methylglyoxal, are natural 
extracellular metabolites of P. chysosporium (Kersten 1990). Another substrate for the 
enzyme, glycolaldehyde, is released as a cleavage product when the major arylglycerol -
aryl ether structure of lignin is oxidised by LiP (Hammel et al. 1994). 
 Aryl alcohol oxidases (AAOs) provide another route for H2O2 production in some 
white-rot fungi. In certain LiP-producing species of Bjerkandera, chlorinated anisyl 
alcohols are secreted as extracellular metabolites and then reduced by a specific AAO to 
produce H2O2 (de Jong et al. 1994). It is noteworthy that, although many alkoxybenzyl 
alcohols are LiP substrates, chloroanisyl alcohols are not. The use of a chlorinated benzyl 
alcohol as an AAO substrate, thus, provides a strategy by which the fungus separates its 
ligninolytic and H2O2-generating pathways. A different approach is employed by some 
LiP-negative species of Pleurotus, which produce and oxidise a mixture of benzyl 
alcohols, including anisyl alcohol, to maintain a supply of H2O2 (Guillén et al. 1994). In 
yet other fungi, intracellular sugar oxidases might be involved in H2O2 generation (Kirk 
and Farrell 1987). 
  
 
EFFECT OF BIOLOGICAL PRETREATMENT ON BIOMASS 
CHARACTERISTICS 
 
 Biological pretreatment of lignocellulosic biomass using white-rot fungi changes 
the biochemical and physical characteristic of the biomass (Fig. 2). Lignin degradation is 
the point of interest in many studies. For examples, lignin loss of corn straw was up to 
54.6% after 30 days pretreatment with T. versicolor (Yu et al. 2010b); bamboo culm was 
> 20% after 4 weeks pretreatment with Echinodontium taxodii 2538 and T. versicolor 
G20 (Zhang et al. 2007b); and wheat straw was 39.7% decreased after pretreatment with 
P. ostreatus (Zadražil and Puniya 1994). The degradation of lignin by white-rot fungi is a 
non-specific oxidative process that finally results in complete degradation of the lignin.  
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Fig. 2. Schematic diagram of biological pretreatment of lignocelluloses. White-rot fungi decrease 
lignin content and alter chemical and physical structures of lignocelluloses that make 
biodegradation of lignocelluloses more efficient. 
 

White-rot fungi have unique capability to depolymerise, cleave carbon-carbon 
linkages, and mineralize lignin by ligninolytic enzymes. Studies with 14C labeled lignin 
showed that white-rot fungi degraded them into 14CO2 (Lundquist et al. 1977; Agosin, 
Daudin and Odier 1985; Pérez and Jeffries 1990; Hofrichter et al. 1999). Pleurotus 
ostreatus and B. adusta are highly specific lignin degraders based on 14C-lignin-labeled 
degradation analysis (Agosin, Daudin and Odier 1985). Changes in the ratio between p-
hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin units were analysed using 
pyrolysis-gas chromatography-mass spectrometry. It was shown that 10 U of peroxidase 
per mg of straw decreased the proportion of phenolic H units from 31% in the control to 
3% in the treated straw, the G units from 40 to 4%, and completely removed the small 
amount of phenolic S units present in wheat straw (Camarero et al. 2001). It is proposed 
that the susceptibility of the lignin units are in the following order: S>G>H. In general, 
biomass with S-rich lignins is more susceptible to fungal degradation than other lignin 
units (Valmaseda et al. 1991). 

Hemicellulose is easier to degrade than other components in lignocellulosic 
biomass. White-rot fungus such as P. chrysosporium (Kirk and Cullen 1998), Phlebia 
floridensis (Sharma and Arora 2010), C. subvermispora (Mendonça et al. 2008), 
Pleurotus ostreatus (Baldrian et al. 2005), and Pleurotus dryinus (Kachlishvili et al. 
2005) were shown to produce multiple endoxylanases. Compositional analyses of corn 
stover showed that during the 30 days biodegradation, white-rot fungi mainly degraded 
hemicellulose by 24.4 to 34.9% (Yang et al. 2010). Corn stover pretreated using C. 
subvermispora for 18 days lost up to 22.5% of hemicelluloses, and Chinese-willow 
pretreated using Echinodontium taxodii 2538 for 120 days lost 54.8% of its hemicellulose 
(Yu et al. 2009a). Degradation of hemicellulose combined with degradation of lignin may 
decrease recalcitration of lignocelluloses to enzymatic hydrolysis, but xylan loss 
increases the risk of lowering all sugar recovery in the bioconversion process (Yu et al. 
2010a).  
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White-rot fungi also produce a battery of cellulases enzymes with different 
specificities and synergistic characteristics. Cellulases hydrolyse the -1,4-glycosidic 
linkages of cellulose. Non-selective white-rot fungus degrades all lignocelluloses 
components in equal amounts, including cellulose. Otherwise, selective white-rot fungi 
degrade celluloses in negligible amounts (Blanchette 1995), and are suitable for biolog-
ical pretreatment. Biological pretreatment causes microstructural changes of cellulose. 
XRD analyses revealed decreased crystallinity of cellulose after biological pretreatment. 
The crystallinity index of rice straw decreased from 44% in untreated ones to 15% in 
biological pretreated ones using P. chrysosprorium (Zeng et al. 2011). Contrarily, the 
crystallinity index of rice straw was slightly reduced after biological pretreatment using 
D. squelens (Bak et al. 2010). Biological pretreatment of Japanese red pine (Pinus 
densiflora) has been shown to reduce crystallinity of cellulose and increase the numbers 
of pores having size over 120 nm (Lee et al. 2007). 

Surface morphology of lignocellulosic biomass has been examined by scanning 
electron microscopy (SEM). SEM images showed some of the physical changes in the 
surface of the biomass after biological pretreatments. Biological pretreatment of the 
biomass resulted in irregular holes on the surface of the corn straw (Yu et al. 2010b). This 
result indicates that biological pretreatment increases the porosity and surface area of the 
substrate. Biological pretreatment of corn stover with Irpex lacteus enhances pore volume 
and pore size remarkably (Xu et al. 2010). Wheat straw pretreated using P. 
chrysosporium has a more defined surface area, indicating aggressive removal or 
modification of lignin and making accessible the surfaces of hemicellulose and cellulose 
(Zeng et al. 2011). The surface of rice straw can have a rugged appearance and be  
partially broken after biological pretreatment using D. squalens (Bak et al. 2010).  

 
 
FACTORS AFFECTING BIOLOGICAL PRETREATMENT WITH WHITE-ROT 
FUNGI  
  

Activities of white-rot fungi and production of ligninolytic enzymes are 
influenced by several factors such as: fungal strain, concentration and source of nitrogen, 
addition of Mn2+ and Cu2+, aeration, moisture content, acidity (pH), and temperature. 
Therefore, the activity of white-rot fungi could be regulated. Nutritional factors may 
control the mode of lignin degradation on lignocelluloses either selectively or simultan-
eously both in solid-state and submerged fermentation. In a previous work (Kirk et al. 
1978), lignin degradation by P. chrysosporium was reported to be influenced by the 
concentration of nitrogen, agitation, O2 concentration, pH, and vitamins. It is, therefore, 
important to take into consideration those factors on pretreatment of lignocellulose with 
white-rot fungi in order to obtain a high activity of the fungi and production of 
ligninolytic enzymes, and consequently high lignin degradation.  
 
Fungal Strain 
 There are many species and strains of white-rot fungi, of which some produce all 
ligninolytic enzymes and others only partially produce ligninolytic enzymes (Elisashvili 
et al. 2008). For instance, Pleurotus sajor-caju strain Pl-27 and Lentinus edodes strain 
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LS4 produce MnP and Lac, but not LiP, when grown on a defined medium with glucose 
as the sole carbon source (Fu et al. 1997); L. endodes produces MnP and Lac, but not LiP 
(Buswell et al. 1995), while P. chrysosporium produces LiP, MnP, and Lac (Rodríguez et 
al. 1997; Rivela et al. 2000).  

The first step in the utilisation of white-rot fungi is the screening of a large 
quantity of isolates in order to choose the right isolates with the highest ligninolytic 
enzymes production and activity, and high lignin degradation on the specific substrates. 
In such studies, 19 isolates of white-rot fungi were screened for enzymatic hydrolysis of 
straw (Hatakka 1983). After 5 weeks pretreatment with Pleurotus ostreatus, 35% of the 
original straw was converted to reducing sugars, 74% of which was glucose. On the other 
hand, only 12% of the untreated control straw was converted to reducing sugars, 42% of 
which was glucose. Preferential degradation also depends on the substrate. For example, 
Pleurotus sp. preferentially degrade lignin from straw, while they do not delignify the 
hardwood birch or the softwood pine (Hatakka 1983). In another study (Taniguchi et al. 
2005), evaluation of four isolates of the white-rot fungi Pleurotus ostreatus, P. 
chrysosporium, T. versicolor, and Ceriporioposis subvermispora for pretreatment of rice 
straw followed by subsequent enzymatic hydrolysis was performed, and different results 
were reported. P. ostreatus preferred to degrade lignin more than polysaccharides in the 
rice straw, while P. chrysosporium and C. subvermispora degraded lignin and also poly-
saccharides of the straw.  

Screening of the fungi for preferential lignin degradation may be carried out using 
scanning electron microscopy. In such studies (Blanchette 1984), 29 white-rot fungi were 
selectively removed, including lignin from various coniferous and hardwood tree species. 
In another study, 32 isolates of white-rot fungi for wheat straw were evaluated for 
enhancing biogas production (Muller and Trosch 1986). Straw pretreatment with 
Pleurotus ostreatus was found to have the highest rate in lignin degradation. Production 
of biogas from the fungal-pretreated straw was double compared to untreated straw.  

Screening of white-rot fungi using 14C-labelling was also proposed (Temp et al. 
1998). For such screening, the fungal strains can be cultivated in tissue culture plates 
containing 14C-ring-labelled dehydrogenation polymerizate (DHP). The method is 
especially useful for screening new and powerful lignin-degrading microorganisms. 
14CO2 is trapped in barium-saturated filter paper and is detected by exposing the paper to 
X-ray film to show autoradiograms corresponding to the positions of individual wells 
formed by evolved and trapped 14CO2.  

 
Nitrogen Source and Concentration 
 Nitrogen concentration in the culture medium either in solid-state and submerged 
fermentation plays an important role in the production and activity of ligninolytic 
enzymes. However, the effects of nitrogen vary among species and strains of white-rot 
fungi. An earlier study on the effect of medium composition on lignin degradation using 
white-rot fungi revealed that nitrogen concentration, regardless of its type and source, is 
critical for lignin degradation with P. chrysosporium (Kirk et al. 1978). Removed 
nitrogen content of hemp stem wood with protease could improve selective lignin 
degradation of Bjerkandera sp. strain BOS55 (Dorado et al. 2001). On the contrary, 
ligninolytic enzyme (Lac, MnP and peroxidase) activities of Pleurotus ostreatus 
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decreased when the medium was supplemented with inorganic nitrogen source. On the 
other hand, supplementing organic nitrogen (peptone and casein) at low concentrations 
showed positive effects on Lac, MnP, and LiP activities using P. ostreatus (Mikiashivili 
et al. 2006). Different responses of Pleurotus sp. caused by the supplementation of 
different kinds of nitrogen sources was also reported (Stajic et al. 2006a). P. eryngii and 
P. ostreatus produced Lac with the highest activity when (NH4)2SO4 is used as the 
nitrogen source. Production of peroxidases using P. ostreatus was achieved when the 
nitrogen source in the medium was peptone.  

Lac was produced when L. edodes was grown in the presence of high nitrogen 
content (Buswell et al. 1995). Bjerkandera sp. strain BOS55 produced LiP in nitrogen 
(N)-sufficient glucose-peptone medium, whereas no LiP was detectable in N-limited 
medium. The production of LiP was induced by the peptide-containing components of 
this medium and also by the soy bean proteins. Furthermore, the production of MnP was 
stimulated by organic N sources, although lower production was also evident in N-
limited medium. Peptone induced LiP activity at all pH values was tested; however, the 
highest activity was observed at pH 7.3 (Kaal et al. 1993). 

Different responses among species and strain of white-rot fungi on nitrogen 
source and concentrations are possibly due to different nitrogen metabolism. In a 
previous report (Li et al. 1994), LiP expression of P. chrysosporium was regulated at the 
level of gene transcription by nutrient nitrogen. Low nitrogen concentration and organic 
nitrogen are frequently used for ligninolytic enzyme production and activities, and 
improvement of lignin degradation using white-rot fungi. Another study (Kaal et al. 
1993) showed that the induction of LiP depend on the combination of pH and the type of 
N source. An amino acid mixture and ammonium induced LiP only at pH 6.0 or 7.3.  

  
Mn2+ and Cu2+ Addition  
 Inorganic nutrients such as+ Mn2+ and Cu2+ have been studied regarding their 
effects on lignin degradation using white-rot fungi (Jeffries et al. 1981; Tychanowicz et 
al. 2006). Expression and production of MnP are regulated by the presence of Mn2+ in the 
medium. Mn2+ controls the mnp gene transcription that is both growth and concentration-
dependent (Brown et al. 1991; Gettemy et al. 1998). Mn2+ affects production of LiP and 
MnP enzymes (Bonnarme and Jeffries 1990). In the absence of Mn2+, extracellular LiP 
isoenzymes predominated, whereas in the presence of Mn2+, MnP isoenzymes were 
dominant. This regulatory effect of Mn2+ occurred in five strains of P. chrysosporium, 
two other species of Phanerochaete, and three species of Phlebia, Lentinula edodes, and 
Phellinus pini. LiP is formed exclusively when Mn2+ is low (1.6 to 0.3 ppm). Other 
results suggest (Kerem and Hadar 1995) that mineralisation of synthetic lignin is 
enhanced by the addition of Mn2+ (ranging from 30 to 620 mg) by Pleurotus ostreatus. 
Addition of Mn2+ (0.3 mM) into the culture increased lignin mineralisation by 
approximately 125% by Pleurotus pulmonarius (Camarero et al. 1996).  

Coppers are included in crystal structure of Lac (Piontek et al. 2002; Polyakov et 
al. 2009). Addition of Cu2+ was reported to improve ligninolytic enzymes production and 
was the most efficient inducer for Lac (Palmieri et al. 2000). Addition of Cu2+ (25.0 mM) 
increased Lac activity from 270 to 1,420 U/L using Pleurotus pulmonarius (Tychanowicz 
et al. 2006). Addition of 1 mM Cu2+ increased Lac production eight-fold using P. 
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ostreatus cultivated in liquid nitrogen-limited medium (Baldrian and Gabriel 2002). 
Other results suggest (Stajic et al. 2006b) that optimum addition of Cu2+ for Lac 
production using P. ostreatus is 1 mM. Addition of Cu2+ more than 0.3 mM inhibited 
fungal growth and decreased Lac activity with P. ostreatus (Patel et al. 2009b). 
Simultaneous addition of Cu2+ and lignin could significantly increase Lac activity from 8 
U/mL (only Cu2+ added) to 12 U/mL (Cu2+ and lignin added) using Pleurotus ostreatus  
(Tinoco et al. 2010). Nano particles of copper and iron induced production of ligninolytic 
enzymes and reduced hydrolytic enzyme (β-glucosidase, β-xylosidase and cellobio-
hydrolase) significantly (Shah et al. 2010).  

Addition of Mn2+ and Cu2+ with particular concentration to culture of white-rot 
fungi can induce and control ligninolytic enzymes production. Mn2+ concentration can 
affect MnP and LiP activities, whereas Cu2+ can affect Lac activities.    

 
Aeration 
 Aeration is one of the most important parameters that affect production and 
activity of ligninolytic enzymes. The functions of aeration are e.g. oxygenation, CO2 
removal, heat dissipation, distribution of water vapour for regulating humidity, and 
distribution of volatile compounds produced during metabolism. The porosity of the 
medium affects the aeration rate, and therefore, pO2 and pCO2 should be optimised for 
each type of medium, microorganism, and process (Graminha et al. 2008). Lignin 
degradation is an oxidative process, and replacing air with an atmosphere of O2 
stimulates lignin degradation by many white-rot fungi growing on straw and wood 
(Zadražil et al. 1991). Oxygen enrichment of the atmosphere also stimulates degradation 
of non-lignin component as well as lignin degradation (Reid 1989). A study on LiP 
productivity using P. chrysosporium (Couto et al. 2002) shows that the productivity can 
be increased by increasing the aeration rate. On the other hand, productivity of MnP was 
not significantly affected by the aeration. Another study showed that batch operation at 
an aeration level of 0.5 vvm led to maximum MnP and LiP activities of 574 and 116 U/L, 
respectively. It was also shown that aerated P. chrysosporium culture with pure O2 could 
improve intracellular production of LiP and MnP (Belinky et al. 2003). Biotrans-
formation of lignocellulosic wastes into compost using Coriolus versicolor and P. 
flavido-alba were enhanced at low aeration condition (Lopez et al. 2002).    
 
Moisture Contents 
 Moisture content of the solid state fermentation is a critical factor for fungal 
growth and activities, and significantly affects lignin degradation (Shi et al. 2008). 
Moisture content is defined during the initial substrate preparation before inoculation 
with white-rot fungi. The range of moisture content of substrate for SSF using white-rot 
fungi is usually between 60 and 80% (Karunanandaa and Varga 1996). Different reports 
(Xu et al. 2001) emphasise that lower solid/liquid ratio is more beneficial to the produc-
tion of MnP and LiP. SSF of straw is optimum in a medium with water content of 75 
mL/25 g substrate (Zadražil and Brunnert 1981). However, most of the fungi tested could 
digest straw over a wide range of water content. At higher water contents (125-150 
mL/25 g of substrate), an increased production of aerial mycelium was observed. Laccase 
production using P. pulmonarius was positively affected by increasing the initial 
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moisture content from 40% to 60% (Patel et al. 2009b). The effects of substrate moisture 
contents, inorganic salt concentrations, and culture times on the biological pretreatment 
of cotton stalks using P. chrysosporium was investigated (Shi et al. 2008). Moisture 
content and time significantly affected lignin degradation. Higher moisture content of the 
culture (75% and 80%) resulted in degrading approximately 6% more lignin than 65% 
moisture content. However, optimum moisture content depends upon the organism and 
the substrate used for SSF. Increasing the moisture content will reduce the porosity of the 
substrate and limits oxygen transfer. Lac activity using P. pulmonarius decreases when 
moisture content increases from 60% to 80% (Patel et al. 2009b).   
 
Acidity (pH) 
 pH is one of the important parameters in fungal cultivation that is difficult to 
control in solid-state fermentation (Hölker et al. 2004). Most white-rot fungi grow well 
on slightly acidic substrate pHs between 4 and 5 (Reid 1989). Many white-rot fungi 
reduce acidity of the substrate during their growth (Zadražil and Brunnert 1981; Agosin 
et al. 1985). Ligninolytic enzyme activity and production are affected by the starting pH 
of SSF. The starting pH for production of LiP and MnP using P. chrysosporium was 4.0 
and 5.5, respectively, which resulted in the respective maximum activities of the enzymes 
of 2600 U/L and 1375 U/L (Xu et al. 2001). SSF of wheat straw using selected white-rot 
fungi showed a decrease in pH during fermentation. Vararia effuscata and D. squalens 
had very similar growth patterns, and the pH values at the inflexion point were 4.9 and 
4.2, respectively (Agosin et al. 1985). Optimal pH for maximum Lac production using P. 
ostreatus was observed at pH 5.0. However, Lac production decreased when the initial 
pH increased to more than 5.0. A change in pH will alter the tree-dimensional structure of 
the Lac and may reduce their activity (Patel et al. 2009b).  
 
Temperature 
 The effect of temperature on the rate and selectivity of delignification varies from 
one genus to another. Most white-rot fungi are mesophiles, with optimum temperature 
between 15o to 35 oC (Reid 1989). Various optimal temperatures have been reported for 
SSF in the production of ligninolytic enzyme using white-rot fungi. The optimal tempera-
ture for producing the enzyme using P. chrysosporium was 39 oC (Xu et al. 2001). A 
report (Asther et al. 1988) mentions that 37 oC is the optimum for the mycelium-growing 
phase, while 30 oC is optimum for the lignin peroxidase-producing phase using P. 
chrysosporium. However, G. applanatum, Pleurotus ostreatus, and Pleurotus serotinus 
lignin degradation, even on an absolute scale, was less at 30 oC than at 22 oC (Zadražil 
and Brunnert 1981). Only T. hirsuta enhanced degradation at elevated temperature of 30 
oC.  
 Different optimal temperature at SSF for biological pretreatment of 
lignocellulosic biomass is related to fungal physiology, fungal strain, and type of 
substrate. Optimum temperature for Lac activity using P. ostreatus was 28 oC (Patel et al. 
2009b). The metabolism of the white-rot fungi during delignification generates heat and 
it may raise the fermenting material to temperatures that inhibit the growth of the fungi.  
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APPLICATION OF BIOLOGICAL PRETREATMENT USING WHITE-ROT 
FUNGI IN SOLID-STATE FERMENTATION 
  

The combination of solid-state fermentation (SSF) technology with the capability 
of white-rot fungi to selectively degrade lignin has made industrial-scale application of 
lignocellulose-based biotechnologies possible. One of the most important aspects of 
white-rot fungi is related to the use of their ligninolytic system for a variety of applica-
tions (Fig. 2).  

A review, covering advantages and drawbacks of SSF (Hölker et al. 2004), shows 
SSF as a robust technology that outperforms conventional fermentation technologies with 
respect to simplicity, cost effectiveness, and maintenance requirements. These advantages 
make SSF an attractive technology for environmental problems, where money and highly 
educated people are limited (Bhatnagar et al. 2008; Rivela et al. 2000). In this section, 
biotechnological applications and potential of pretreatment of lingo-cellulose using 
white-rot fungi in SSF is described.  

 
 

 
 
Fig. 2.  Suggestion for biological pretreatments of lignocellulosic biomass with white-rot fungi and 
alternative application routes 
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Table 1.  Application of Biological Pretreatment of Lignocellulosic Biomass with 
White-Rot Fungi in Solid-State Fermentation 
Purpose White-rot fungus Substrates References 

Enzymatic Hydrolysis 

 Ceriporia lacerata, Stereum 
hirsutum and Polyporus brumalis 

Japanese red pine  (Lee et al. 2007) 

 Coriolus versicolor bamboo residues (Zhang et al. 2007a) 

 Echinodontium taxodii softwoods and 
hardwoods 

(Yu et al. 2009a) 

 Irpex lacteus wheat straw (Dias et al. 2010) 

 I. lacteus cornstalks (Yu et al. 2010a) 

 Phanerochaete chrysosporium Achras zapota (Ganesh Kumar et al. 
2006) 

 Pleurotus ostreatus rice straw (Taniguchi et al. 2005) 

 Trametes versicolor G20 and 
Echinodontium taxodii 2538  

bamboo culms (Zhang et al. 2007b) 

 T. versicolor, Ganoderma lucidum 
and E. taxodii 

corn straw (Yu et al. 2010b) 

 Various species of white-rot fungi wheat straw (Hatakka 1983) 

Biofuel (Bioethanol, Biogas and Pyrolysis) 

 Ceriporiopsis subvermispora corn stover (Wan and Li 2010) 

 C. subvermispora, Dichomitus 
squalens,Pleurotus ostreatus and 
Coriolus versicolor  

beech wood (Itoh et al. 2003) 

 E. taxodii water hyacinth (Ma et al. 2010) 

 P. chrysosporium cotton stalks (Shi et al. 2008) 

 P. chrysosporium rice straw (Bak et al. 2009) 

 P. chrysosporium wheat straw (Zeng et al. 2011) 

 Pleurotus florida corn straw (Zhong et al. 2011) 

 Pleurotus ostreatus BP2, E. 
taxodii 2538 and I. lacteus CD2 

corn stover (Yang et al. 2010) 

 Various species of white-rot fungi wheat straw (Muller and Trosch, 
1986) 

Biopulping & Biobleaching 

 C. subvermispora rice, wheat and 
barley straw 

(Yaghoubi et al. 2008) 

 C. subvermispora Eucalyptus grandis  (Ferraz et al. 2008) 

 C. subvermispora and P. 
chrysosporium  

wood (Akhtar et al. 1998) 

 C. subvermispora SS-3 E. grandis  (Mosai et al. 1999) 

 P. chrysosporium wheat straw (Chen et al. 2002) 

Biopulping & Biobleaching 

 Bjerkandera sp. strain BOS55 Kraft-Pulp (Moreira et al. 1997) 

 P. chrysosporium wheat straw (Jiménez et al. 1997) 

 P. chrysosporium and T. 
Versicolor 

Kraft-pulp (Katagiri et al. 1995) 
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Table 1.  - continued 
Purpose White-rot fungus Substrates References 

 P. chrysosporium ME446 wheat straw (Qin et al. 2009) 

 P. chrysosporium, Douglas-Fir (de Jong et al. 1997) 

 P. sordida YK-624 Kraft-pulp (Kondo et al. 1994) 

 Pleurotus eryngii wheat straw (Martínez et al. 1994) 

 Several white-rot fungi Loblolly pine (Levin et al. 2007) 

Ruminant Feed 

 C. subvermispora madake bamboo (Okano et al. 2009) 

 C. subvermispora and Cyathus 
stercoreus 

Various biomass (Akin et al. 1996) 

 P. chrysosporium wheat straw (Basu et al. 2002) 

 Phlebia floridensis wheat straw (Sharma and Arora 
2010) 

 Pleurotus eryngii bagasse (Zadražil and Puniya 
1995) 

 Pleurotus ostreatus cottonseed hull (Li et al. 2001) 

 Pleurotus ostreatus barley straw (Ortega Cerrilla et al. 
1986) 

 Pleurotus ostreatus rice husk (Beg et al. 1986) 

 Pleurotus ostreatus, 
D. squalens and B. adusta 

wheat straw (Agosin and Odier 1985) 

 Pleurotus sajor-caju cotton plant stalk (Hadar et al. 1992)   

 Pleurotus sajor-caju and 
Potyporus hirsutus 534  

bagasse (Kewalramani et al. 
1988) 

 Pleurotus sp bagasse (Ortega et al. 1992) 

 Pleurotus tuber-regium (Fr.) Sing. wheat straw (Jalc et al. 1999) 

Enzyme production 

 P. chrysosporium Barley Straw (Rodríguez et al. 1997) 

 Pleurotus sajor-caju PS 2001 bagasse (Camassola and Dillon 
2009) 

 P. chrysosporium steam-exploded 
straw 

(Fujian et al. 2001) 

 Pleurotus ostreatus strain 10969 Juncao  (Liu et al. 2009) 

 Pleurotus ostreatus  (Téllez-Téllez et al. 
2008) 

 Pleurotus sp wheat straw (Bhattacharya et al.) 

Others 

 P. chrysosporium composting (Taccari et al. 2009; 
Zeng et al. 2010) 
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Enzymatic Hydrolysis of Lignocellulose 
Polysaccharides in lignocellulosic biomass, including cellulose and hemicellu-

loses, can be hydrolysed to monomeric sugars such as glucose and xylose, which can be 
further used for the production of ethanol, xylitol, organic acid, and other chemicals. The 
cellulose polymers in the cell wall are directly associated with lignin and hemicellulose 
moieties, resulting in even more complex physical and morphological structures, so that 
the enzymatic hydrolysis is obstructed. The limiting factors that affect enzymatic hydrol-
ysis of biomass have been traditionally divided into two groups: (a) biomass structural 
features and (b) enzymatic mechanisms. Conventionally, structural features have been 
divided into two groups and classified as physical or chemical. The chemical structural 
features are the compositions of cellulose, hemicellulose, lignin, and acetyl groups bound 
to hemicellulose. The physical structural features consist of accessible surface area, 
crystallinity, the physical distribution of lignin in the biomass matrix, degree of 
polymerisation, pore volume, and biomass particle size. In order to improve the rate of 
enzymatic hydrolysis and to increase the yield of fermentable sugar, the process of 
pretreatment is absolutely essential. Pretreatment is required to alter the structural and 
chemical composition of lignocellulosic biomass in order to facilitate rapid and efficient 
hydrolysis of carbohydrates into fermentable sugars (Chang and Holtzapple 2000). The 
main focus of most studies dealing with lignocellulosic biomass conversion has been to 
maximise the availability of the cellulose to cellulase. 

Pretreatment of lignocellulose with white-rot fungi for enzymatic hydrolysis has 
been studied for a long time (Hatakka 1983). Different species of white-rot fungi have 
been used with various lignocellulosic biomass for enzymatic hydrolysis (see Table 1). 
Biological pretreatment of lignocelluloses could increase accessibility of enzyme into 
biomass and increase the sugar yield. An evaluation of biological pretreatment of wheat 
straw using nineteen white-rot fungi followed by enzymatic hydrolysis (Hatakka 1983), 
shows that after pretreatment with Pycnoporus cinnabarinus for five weeks, as much as 
54.6% of the residue could be converted into reducing sugar by enzymatic hydrolysis. A 
recent paper (Dias et al. 2010) revealed that wheat straw biologically pretreated with two 
white-rot fungi (Euc-1 and I. Lacteus) could improve the hydrolysis yield by 
approximately four and three times compared with untreated straw, respectively. In 
addition, biological pretreatment of corn stover using P. chrysosporium improved 
enzymatic hydrolysis three- to five-fold in comparison to that of untreated corn stover 
and reduced the energy requirement for its milling (Keller et al. 2003). Similar 
enhancements with biological pretreatment on rice straw using four white-rot fungi P. 
chrysosporium, T. versicolor, C. subvermispora, and Pleurotus ostreatus was reported 
(Taniguchi et al. 2005). An enhanced degree of enzymatic hydrolysis of straw was 
observed as the content of Klason lignin decreased. Biological pretreatment of bamboo 
using a white-rot fungus Coriolus versicolor B1 under different conditions and 
saccharification was studied (Zhang et al. 2007a). Their study shows that the 
saccharification rate was significantly enhanced and a maximum saccharification rate of 
37.0% was achieved after the pretreatment.  

 
Biofuel: Bioethanol, Biogas and Pyrolysis 

Bioethanol can be produced from lignocellulosic biomass after hydrolysis of poly-
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saccharide components (hemicelluloses and cellulose) into monosaccharides. Increase of 
sugar yield by enzymatic hydrolysis after biological pretreatment indicates a high bio-
ethanol yield. Biological pretreatment of corn stover using C. subvermispora for 35 days 
is able to improve the overall ethanol yield by up to 57.8% (Wan and Li 2010). A similar 
result was obtained when rice straw was biologically pretreated using D. squalens. The 
ethanol production yield and productivity were 54.2% of the theoretical maximum and 
0.39 g/L/h, respectively, after 24 h (Bak et al. 2010). The ethanol yield achieved 0.192 
g/g dry matter from water hyacinth when pretreated with a combination of biological and 
mild acid pretreatment (Ma et al. 2010). 

Biological pretreatment has been used for biogas production. Biogas production 
from biologically pretreated wheat straw increased from 0.293 L/g (untreated) to 0.343 
L/g (pretreated one) using Pleurotus ostreatus (Muller and Trosch 1986). However, 
biological pretreatment of corn straw using Pleurotus florida resulted in 16.58% less 
biogas than after a chemical pretreatment (Zhong et al. 2011).  

Biological pretreatment has been used before pyrolysis of biomass to produce 
fuel. Biological pretreatment of corn stover can optimise the thermal decomposition, 
decrease the reaction temperature and reduce the gas contamination (SOx), making the 
biomass pyrolysis more efficient and environmentally friendly (Yang et al. 2010). 
Biological pretreatment can decrease the activation energy and reacting temperature of 
the hemicellulose and cellulose pyrolysis (up to 36 oC), shorten the temperature range of 
the active pyrolysis (up to 14 oC), and increase the thermal decomposition rate. 
 
Biopulping and Biobleaching 

Biopulping is a SSF process in which wood chips are treated with white-rot fungi 
to improve the delignification process. Biological pulping has the potential to reduce 
energy costs and environmental impact relative to traditional pulping operations (Scott et 
al. 2002). The benefits of biopulping was demonstrated (Scott et al. 2002) using 50-ton 
scale experiments. The tensile, tear, and burst indexes of the resulting papers were 
improved, indicating a higher degree of cellulose conservation during the pulping 
process. In addition, the brightness of the pulp was also increased, indicating an improved 
lignin removal. Moreover, an improved energy savings of 33% for thermomechanical 
pulping (TMP) was reported. Biological pretreatment of wheat straw using P. 
chrysosporium ME466 could alter degradation of lipophilic and hydrophilic extractives. 
Obviously, the biological pretreatment of wheat straw was beneficial to pitch control in 
pulping and papermaking processes, in  view of the degradation of the more lipophilic 
substances (van Beek et al. 2007). Variable optimisation for biopulping of agricultural 
residues using C. subvermispora was also investigated (Yaghoubi et al. 2008). Biological 
pretreatment could increase the physical properties (kappa number, tensile strength, and 
burst factor) and the quality of the pulp from barley straw.  
 Production of biopulp with P. chrysosporium using steam-exploded wheat straw 
as substrate was considered (Chen et al. 2002). Its hemicellulose was partially degraded 
and became partly water-soluble sugar during the steam explosion process. These sugars 
could be used as a carbon resource for growth of the fungus. Compared with non-treated 
wheat straw, degradation of cellulose was decreased and degradation of lignin was 
increased for the steam-exploded wheat straw cultured with P. chrysosporium. Fermented 
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straw could be used directly as the material for pulp making. 
 Some researchers have investigated the use of white-rot fungi for biobleaching 
pulp. Pretreated pulp with white-rot fungi could improve brightness and strength 
properties of the pulp (de Jong et al. 1997; Bajpai 2004). Besides the direct use of fungi 
in biological pretreatment for biobleaching of pulp, application of ligninolytic enzymes 
also has been intensively investigated. Ligninolytic enzymes, mainly Manganese peroxi-
dase (MnP) are the key enzyme for biobleaching of the pulp. Various screening 
experiments have demonstrated that MnP activities and production are correlated to the 
bleaching of the pulp. Semi-purified MnP can also delignify pulp and improve the 
brightness of the pulp (Kondo et al. 1994). Furthermore, application of Lac in totally-
chlorine-free (TCF) sequence processes using a laccase-mediator system could improve 
the brightness up to 82% ISO brightness (compared with 37% in the initial pulp and 60% 
in the peroxide-bleached control) and result in very low kappa number (Camarero et al. 
2004). Lac have been used commercially as a biobleaching agent for pulp and have been 
well reviewed (Call and Mücke 1997).    
 
Ruminant Feed 
 Direct use of lignocellulosic residues as ruminant animal feed, or as a component 
of such feeds, represents one of the oldest and most widespread applications of biomass. 
The idea of using white-rot fungi to improve the digestibility of lignocellulosic waste for 
ruminants was first developed in 1902 by Falck (Cohen 2002), who suggested the use of 
fungi for the improvement of lignocellulosic wastes. Since then, a considerable amount of 
work has been conducted on the upgrading of lignocellulosic matter to feed using white-
rot fungi. The concept of preferential delignification of lignocellulose waste with white-
rot fungi has been applied to increase the nutritional value of forages (Agosin and Odier 
1985; Zadražil and Puniya 1995; Okano et al. 2009). A wide range of lignocellulosic 
biomass have been pretreated with white-rot fungi and used as ruminant feed (See Table 
1). Biological pretreatment of lignocellulose could improve the nutritional value (Okano 
et al. 2009) and in vitro digestibility (Zadražil and Puniya 1995), increase bioavailability 
of nutrients, and decrease anti-nutritional factors (Mandebvu et al. 1999). 
 
Enzyme Production 
 The ability of ligninolytic enzymes to oxidise both phenolic and non-phenolic 
lignin related compounds as well as highly recalcitrant environmental pollutants makes 
these enzymes very useful for their application to several biotechnological processes 
(Mayer and Staples 2002; Minussi et al. 2002; Regalado et al. 2004; Couto and Herrera 
2006). Production and application of Lac has been investigated more intensively than 
other ligninolytic enzyme during the last few decades, and such literature has been 
reviewed (Call and Mücke 1997; Leonowicz et al. 2001). Lac can be implemented in the 
food industry, pulp and paper industry, and textile industry (Couto and Herrera 2006; 
Call and Mücke 1997; Riva 2006; Cañas and Camarero 2010). SSF for enzyme 
production has more advantages than SF, since several studies have shown high product 
yield and simplified downstream processing compared with SF (Hölker and Lenz 2005; 
Couto and Sanroman 2006). Lignocellulosic wastes are generally used as substrate for 
enzyme production (see Table 1).  
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Other Applications 
 The white-rot fungus P. chrysosporium, combined with other microorganisms, 
can be used as compost inoculants for lignocellulosic waste composting materials (Zeng 
et al. 2010; Taccari et al. 2009). When the fungi are inoculated during the second fermen-
tation phase, P. chrysosporium induced significant changes on all parameters of compost 
maturity except C/N ratio. Composting methods  using white-rot fungi have also been 
used for pollutant degradation (Zeng et al. 2007). Inoculation of the benzo[a]pyrene con-
taminated soil composting system with the white-rot fungus P. chrysosporium increased 
the rate of bound residue formation of contaminant carbon. Bound residue formation was 
found to be the predominant transformation mechanism for benzo[a]pyrene in the 
microbially active compost systems, accounting for nearly 100% of the benzo[a]pyrene 
removed (McFarland and Qiu 1995).  
 
 
COMBINATION OF BIOLOGICAL PRETREATMENT WITH OTHER 
PRETREATMENT METHODS 

 
The main drawbacks of biological pretreatment are loss of polysaccharides 

(hemicelluloses and cellulose) and the longer pretreatment duration than chemical/ 
physical pretreatment. In order to reduce the time for pretreatment, polysaccharides loss, 
and to enhance the yield of fermentable sugar, biological pretreatment can be combined 
with chemical/physical pretreatments. Combinations of pretreatment methods between 
biological and chemicals/physical pretreatments can enhance performance of the pretreat-
ment compared to sole pretreatment methods. Chemical/physical pretreatment prior to 
biological treatment allows the substrate to be easily assessable for fungus to degrade the 
lignin component (Reid 1989). Optimisation of these combination methods leads to 
maximum sugar yield and reduces the overall pretreatment cost, i.e. incubation time, acid 
concentration, and/or energy used. These combination methods could significantly 
decrease the time of biological pretreatment and increase the sugar yield after enzymatic 
hydrolysis. When rice straw was pretreated with a steam explosion prior to biological 
treatment using Pleurotus ostreatus, the treatment time required for obtaining a 33% net 
glucose yield was reduced from 60 days to 36 days (Taniguchi et al. 2010). When rice 
straw was pretreated with H2O2 (2%, 48 h), the treatment time was reduced from 60 days 
to 18 days with comparable sugar yield (Yu et al. 2010b). The reduction time is probably 
due to partial degradation of the networks of lignin with sugar moieties as well as partial 
breakdown of the structure during the biological treatment. 

The combined pretreatment of water hyacinth (Eichhornia crassipes) with white-
rot fungi E. taxodii (10 days) and 0.25% H2SO4 was shown to be more effective than the 
sole acid pretreatment method. The reducing sugar yield from enzymatic hydrolysis 
increased by a factor of 1.13 to 2.11 compared to that of acid treatment under the same 
conditions (Ma et al. 2010). Biological pretreatment of beech wood chips prior to 
organosolv pretreatment could increase the ethanol yield by 1.6 times more than without 
biological pretreatment (Itoh et al. 2003). Brown-rot fungi combined with organosolv 
pretreatment has also been used (Monrroy et al. 2010). The biological pretreatment of 
Pinus radiata wood chips prior to the organosolv pretreatment resulted in improved 
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solvent accessibility. A similar result (Yu et al. 2010b) showed that biological pretreat-
ment of corn straw for 15 days using E. taxodii followed by alkali/oxidative pretreatment 
could lead to an increase of 50.7% in reducing sugar compared to alkali/oxidative 
pretreatment alone. Biological pretreatment of cornstalks followed by mild alkaline 
pretreatment with I. lacteus could increase the digestibility of cellulose. The biological 
pretreatment enhanced delignification and glucan digestibility more significantly when 
the alkaline pretreatment was performed at lower severity (Yu et al. 2010a).  

 
 
CONCLUDING REMARKS 
  

 Biological pretreatments of lignocellulosic biomass have been successfully 
implemented for animal feed and biopulping processes. Biological pretreatment has also 
been extensively examined for other purposes, such as enzymatic hydrolysis of 
lignocelluloses. Biological pretreatment has several advantages over conventional 
physical/chemical pretreatment. However, the challenges of biological pretreatments are 
the relatively long time of the pretreatment compared to physical/chemical methods, and 
incurring the risk of sugar loss. Consequently, biological pretreatment requires more 
space and longer processes, which increase the operating costs. This means that this 
method will be beneficial, where it could decrease biomass recalcitrance with a minimum 
loss of polysaccharides and a short time for incubation. Overcoming these challenges, i.e. 
slow process and sugar loss will most likely be the future developments of biological 
pretreatments.  

One way to decrease pretreatment time is by applying a combination of biological 
and chemicals/physical methods. Many genetic, metabolic, physiological, and process 
factors that can be manipulated to improve lignin degradation and reduce sugar loss by, 
e.g. altering lignocellulosic structure and ligninolytic or cellulolytic enzymes, have 
already been investigated, but there is a need for further improvements. Minimization of 
carbohydrate loss during biological pretreatments could be achieved by manipulating the 
culture conditions, addition of certain substrates that can suppress the activity of hydro-
lytic enzymes, or by genetic engineering of white-rot fungi to lower the activity of such 
enzymes. Moreover, the structural differences of various lignocelluloses influences the 
success of biological pretreatment, as therefore, understanding the combination of the 
biological pretreatments and the structural changes of the lignocelluloses during the 
pretreatments will probably be a hot research topic in this field in the future.  
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ABBREVIATIONS 
 
SSF, Solid-state fermentation; SF, Submerged Fermentation; LiP, Lignin peroxidase; 
LiPs, Lignin peroxidases; Lac, Laccase; MnP, Manganese peroxidase; MnPs, Manganese 
peroxidases; VP, Versatile peroxidase; GLOX, Glyoxal oxidase; AAO, aryl alcohol 
oxidase; H, p -hydroxyphenyl; G, guaiacyl; S, syringyl. 
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