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Introduction

The modelling of a modern fusion device is very challenging
both theoretically and numerically, much owing to turbu-
lence driven by sharp gradients in density and tempera-
ture. However, understanding the resulting transport is
crucial for the success of future fusion devices such as
ITER.

In this work, the turbulent transport of trace impurities
in a tokamak device has been studied through quasilinear
(QL) and non-linear (NL) gyrokinetic simulations using the
GENE code [1, 2]. The parameters are chosen for trapped
electron (TE) mode turbulence, driven primarily by steep
electron density gradients relevant to H-mode physics, but
with a transition to temperature gradient driven turbulence
as the density gradient flattens. [3] The results are quan-
titative assessments of the transport properties of several
impurity species, and the dependence thereof on various
plasma parameters.

Theoretical background

Impurity transport: The transport of a trace impurities is
locally described by:

ΓZ = −DZ∇nZ + nZVZ (1)

where ΓZ is the flux, nZ the density of the impurity and
R the major radius of the tokamak [4]. For the domain
studied ∇nZ is constant:

−R∇nZ/nZ = R/LnZ, (2)

leading to the linear impurity flux relation:

RΓZ
nZ

= DZ
R

LnZ

+ RVZ. (3)

Equations (1) and (3) highlights the two main contributions
to impurity transport: [5]

• diffusive transport – diffusion coefficient: DZ,

• convective transport – convective velocity (“pinch”): VZ.

In the core region convection and diffusion balance to give
zero flux. The zero flux peaking factor that quantifies this:

PFZ = −
RVZ
DZ
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ΓZ=0
. (4)

Thus PFZ is interpeted as the gradient of zero flux. This is
illustrated in figure 1.
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FIGURE 1: The impurity flux dependence on ∇nZ, illustrating

PFZ and the validity of the linearity assumption (3) of equation (1)

for ΓZ ∼ 0, and how the parameters of equation (3) are estimated.

Data from NL GENE simulations.

The impurity transport equation (1) can be derived from

Γnj = 〈δnjvE×B〉, (5)

where 〈·〉 means a spatial averaging; see [4, 6] for details.

Gyrokinetic simulations: Non-linear models are necces-
sary to capture the full dynamics of the fusion plasma, in-
cluding actual fluctuation levels. To this end, NL and QL
simulations were performed with the GENE code [1, 2], a
massively parallel gyrokinetic code.

Results

Main parameters: Parameters were chosen with [3] in
mind, to be in the ∇ne driven TEM regime. Unless oth-
erwise noted, R/Lne = R/Lni = 8.0, and R/LTe = 5.0 and
R/LTi

= R/LTZ
= 2.0. QL simulations were performed with

kθρs = 0.2.

Scaling of PFZ with Z: NL and QL results for the ∇ne
driven TEM impurity pinch are similar to those for ∇Te
driven TE mode reported in [6]. Only a very weak scaling is
observed, with PF falling toward saturation for higher Z.
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FIGURE 2: Scaling of PF with impurity charge (Z) shows satura-

tion for heavt impurities.

Scaling of PFZ with ∇ne: As the density profile becomes
more peaked, a corresponding increase in difusion is ex-
pected. Both NL and QL results indicate that this is bal-
anced by the pinch for very steep gradients, leading to a
saturation of PF ∼ 2. This is in contrast to the QL growth
rate γ, which increases uniformly. We note that the impu-
rity peaking is substantially weaker than that of the back-
ground, for R/Lne & 2, and that a flux reversal is observed
for very flat profiles (R/Lne ∼ 2).

It has been observed in [3] that for R/Lne . R/LTe
, tem-

perature gradient driven TEM turbulence dominates. Our
results indicate a smooth transition from density gradient
driven TEM, though the bump in ωr may be a result of the
mode change.
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FIGURE 3: Scaling of PFZ with electron density gradient

(R/Lne) shows saturation for peaked profiles, despite increased QL

growthrate. A flux reversal is observed with both QL and NL for

flat background density profiles.

Background ion flux levels: The PFp for the background
protons can be found by similar means to that of PFZ. Our
results, however, indicate that for R/LTe

= 5.0, lower den-
sity gradients only result in Γp → 0, not in flux reversal.
This means that the pinch Vp = 0 ⇒ PFp = 0.
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FIGURE 4: Scaling of main ion flux with R/Lne shows that for

R/LTe = 5.0 a background pinch is not observed.

Multiple gradients and resolution: Since PFZ is much
lower than the driving R/Lne, the simulation required a cor-
respondingly smaller ∇nZ. An observed effect of this, was
that the k⊥ spectra of the impurities were shifted toward
larger k. As the effect was persistent, despite changes in
resolution, this is not thought to be a purely numerical
artifact.

This observation meant that, in order to investigate sys-
tems with trace species in steep driving gradients, precau-
tions had to be taken to ensure that the trace dynamics
were properly resolved.
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FIGURE 5: The k⊥ spectra of the impurities show a shift toward

larger k, when R/LnZ < R/Lne. The trend is investigated by mea-

suring the quotient between the mean ky of impurity and main

ions, as a function of (R/LnZ)/(R/Lne).

Conclusions and outlook

• PFZ decreases with the impurity charge Z for TE mode
dominated transport

•QL simulations over-estimate PF compared to NL, as
seen in previous studies [6]

• Turbulent peaking factors are much smaller than neo-
classical predictions for high Z

• Peaking of impurities is much smaller than for the back-
ground in th high ∇ne regime

•An impurity flux reversal is observed for flat background
densities (R/Lne ∼ 2)

• The numerical resolution needed to be increased when
studying species with different density profiles

• Future work will focus on more direct comparisons with
experiments, including more details in the physics de-
scription and realistic magnetic geometry, and on self
consistent studies of simultaneous background and im-
purity peaking
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