TURBULENT IMPURITY TRANSPORT DRIVEN BY TEMPERATURE AND DENSITY GRADIENTS
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The modelling of a modern fusion device is very challenging
both theoretically and numerically, much owing to turbu-
lence driven by sharp gradients in density and tempera-
ture. However, understanding the resulting transport is

crucial for the success of future fusion devices such as
ITER.

In this work, the turbulent transport of trace impurities
in a tokamak device has been studied through quasilinear
(QL) and non-linear (NL) gyrokinetic simulations using the
GENE code [1, 2]. The parameters are chosen for trapped
electron (TE) mode turbulence, driven primarily by steep
electron density gradients relevant to H-mode physics, but
with a transition to temperature gradient driven turbulence
as the density gradient flattens. [3] The results are quan-
titative assessments of the transport properties of several
impurity species, and the dependence thereof on various
plasma parameters.

Theoretical background

S

Impurity transport: The transport of a trace impurities is
locally described by:

'y =—DyzVngy +nyVy (1)

where ', is the flux, ny; the density of the impurity and
R the major radius of the tokamak [4]. For the domain
studied Vny is constant:

—RVnZ/nZ — R/an, (2)

leading to the linear impurity flux relation:

r
Hlz DZ—R + RVy. (3)
ny L,

Equations (1) and (3) highlights the two main contributions
to impurity transport: [9]

e diffusive transport — diffusion coefficient: D,
e convective transport — convective velocity (“pinch”): V.

In the core region convection and diffusion balance to give
zero flux. The zero flux peaking factor that quantifies this:

RVz

PF, — — |
Dz Ir,—o

(4)

Thus PF'; is interpeted as the gradient of zero flux. This is
illustrated in figure 1.
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FIGURE 1: The impurity flux dependence on Vny, illustrating
PF; and the validity of the linearity assumption (3) of equation (1)
for 'y ~ 0, and how the parameters of equation (3) are estimated.
Data from NL GENE simulations.

The impurity transport equation (1) can be derived from

Fn] <5nj’UE><B> (5)
where (-) means a spatial averaging; see [4, 6] for details.

Gyrokinetic simulations: Non-linear models are necces-
sary to capture the full dynamics of the fusion plasma, in-
cluding actual fluctuation levels. To this end, NL and QL
simulations were performed with the GENE code [1, 2], a
massively parallel gyrokinetic code.

Results

v

Main parameters: Parameters were chosen with [3] in
mind, to be in the Vn, driven TEM regime. Unless oth-
erwise noted, R/L, = R/L, = 8.0, and R/LT, = 5.0 and
R/Lt = R/Lt, = 2.0. QL simulations were performed with
kgps = 0.2.

Scaling of PF, with 7: NL and QL results for the Vn,
driven TEM impurity pinch are similar to those for VT,
driven TE mode reported in [6]. Only a very weak scaling is
observed, with PF' falling toward saturation for higher ~.
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FIGURE 2: Scaling of PF with impurity charge (/) shows satura-
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tion for heavt impurities.

Scaling of PF; with Vn.: As the density profile becomes
more peaked, a corresponding increase in difusion is ex-
pected. Both NL and QL results indicate that this is bal-
anced by the pinch for very steep gradients, leading to a
saturation of PF ~ 2. This is in contrast to the QL growth
rate v, which increases uniformly. We note that the impu-
rity peaking is substantially weaker than that of the back-
ground, for R/L, 2 2, and that a flux reversal is observed
for very flat profiles (R/L,,_ ~ 2).

It has been observed in [3] that for R/L, < R/Ly, tem-
perature gradient driven TEM turbulence dominates. Our
results indicate a smooth transition from density gradient
driven TEM, though the bump in w, may be a result of the
mode change.
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FIGURE 3: Scaling of PF; with electron density gradient
(R/L,,) shows saturation for peaked profiles, despite increased QL
growthrate. A flux reversal is observed with both QL and NL for
flat background density profiles.

Background ion flux levels: The PF), for the background
protons can be found by similar means to that of PF,. Our
results, however, indicate that for R/Ly = 5.0, lower den-
sity gradients only result in I'), — 0, not in flux reversal.
This means that the pinch V), = 0 = PF), = 0.
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FIGURE 4: Scaling of main ion flux with R/L, shows that for
R/Lr, = 5.0 a background pinch is not observed.

CHALMERS

Multiple gradients and resolution: Since PF; is much
lower than the driving R/L,,_, the simulation required a cor-
respondingly smaller Vn,. An observed effect of this, was
that the k£, spectra of the impurities were shifted toward
larger k. As the effect was persistent, despite changes in
resolution, this is not thought to be a purely numerical
artifact.

This observation meant that, in order to investigate sys-
tems with trace species in steep driving gradients, precau-
tions had to be taken to ensure that the trace dynamics
were properly resolved.
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FIGURE 5: The k, spectra of the impurities show a shift toward
larger k, when R/L,, < R/L,,. The trend is investigated by mea-
suring the quotient between the mean k, of impurity and main
ions, as a function of (R/L,,)/(R/L,,).

Conclusions and outlook

v

e PF'y decreases with the impurity charge Z for TE mode
dominated transport

e QL simulations over-estimate PF compared to NL, as
seen in previous studies [6]

e Turbulent peaking factors are much smaller than neo-
classical predictions for high 7

e Peaking of impurities is much smaller than for the back-
ground in th high Vn,. regime

¢ An impurity flux reversal is observed for flat background
densities (R/Ly, ~ 2)

e The numerical resolution needed to be increased when
studying species with different density profiles

e Future work will focus on more direct comparisons with
experiments, including more details in the physics de-
scription and realistic magnetic geometry, and on self
consistent studies of simultaneous background and im-
purity peaking
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