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Abstract—The idea of building secure systems by plugging
together “secure” components is appealing, but this requires a
definition of security which, in addition to taking care of top-
level security goals, is strengthened appropriately in order to
be compositional. This approach has been previously studied
for information-flow security of shared-variable concurrent
programs, but the price for compositionality is very high: a
thread must be extremely pessimistic about what an environ-
ment might do with shared resources. This pessimism leads to
many intuitively secure threads being labelled as insecure.

Since in practice it is only meaningful to compose threads
which follow an agreed protocol for data access, we take
advantage of this to develop a more liberal compositional
security condition. The idea is to give the security definition
access to the intended pattern of data usage, as expressed
by assumption-guarantee style conditions associated with each
thread. We illustrate the improved precision by developing the
first flow-sensitive security type system that provably enforces
a noninterference-like property for concurrent programs.

Keywords-Information Flow Security; Assumption-Guaran-
tee; Compositional Verification; Flow-Sensitivity

I. INTRODUCTION

Before granting a program read access to confidential
data, one would like to know that such secrets will not be
leaked to untrusted sinks, like, e.g., to users with insufficient
clearance or to untrusted servers in a network. Motivated by
this desire, research on information flow security has made
substantial progress over the last 30 years regarding how
information flow security requirements can be characterized
formally as well as how they can be reliably certified by
verification and program analysis techniques.

Noninterference is certainly the best known property
that formally characterizes information flow security [1].
It requires that secret inputs cannot influence a program’s
output to untrusted sinks and, thereby, ensures that attackers
cannot conclude information about secrets from the output
that they might receive during the execution of the program.
Noninterference could also be used to capture aspects of
integrity, but in this article we focus on confidentiality only.

The interplay between concurrency and information flow
security is intriguing and has attracted many researchers. Al-
ready in the eighties, Sutherland and McCullough proposed
noninterference-like properties for abstract specifications of
concurrent, distributed systems [2], [3]. Their work initiated

a long line of research on noninterference-like properties,
culminating in frameworks for comparing and engineering
such security properties (see, e.g., [4], [5], [6]). Even earlier,
Reitman and Andrews proposed an information flow analysis
for concurrent programs [7], but they did not yet provide
a soundness proof or precise claim about which security
property their analysis enforces. These shortcomings were
overcome 17 years later by Volpano and Smith [8].

Many further analyses were proposed since, but the prob-
lem of certifying information flow security in a concurrent
setting is not yet satisfactorily solved. Some approaches
do not support a compositional analysis [7], [9], although
compositionality is essential for making the analysis scale.
The existing approaches either are overly restrictive or do
not have satisfactory semantic foundations (e.g., [7], [10],
[11]). There are three main facets of the former deficiency:
too conservative assumptions about the environment of the
thread under analysis (e.g., [8], [12], [13], [14]), severe re-
strictions on the communication between threads (e.g., [15],
[16], [17]), or assumptions about the run-time environment
which do not match existing implementations (e.g., [18],
[19]). Moreover, flow-sensitive information flow analyses
that are semantically well founded only exist for sequential
languages so far. This lack of satisfactory theoretical foun-
dations constitutes a major obstacle for reliably certifying
information flow security of concurrent programs in practice.

The overall goal of our research project is to overcome
these limitations. In this article, we propose a solution for
certifying the information flow security of multi-threaded
programs in a compositional and flow-sensitive manner
based on assumptions and guarantees. The use of explicit
assumptions and guarantees enables us to avoid being overly
pessimistic about the environment, introducing inflexible
restrictions for communication between threads, or imposing
nonstandard requirements on the run-time environment.

In summary, the main novel contributions of the article are
1) a novel information flow security property that is com-

positional and compatible with assumption-guarantee
based reasoning, and

2) the first flow-sensitive security type system that prov-
ably enforces a noninterference-like security property
for concurrent programs.
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While compositional verification based on assumptions and
guarantees is popular in other domains (see, e.g., [20], [21],
[22], [23], [24]), we are not aware of any assumption-
guarantee style reasoning to verify the information flow
security of concurrent programs. We illustrate at several
small, but realistic programs that our approach is not only
a conceptual step forward, but indeed leads to a better
precision of security analyses.

We show that our approach is sound given that assump-
tions are matched by valid guarantees.1 That a program’s
pattern of data usage complies with given assumptions and
guarantees can be proved using standard techniques. This
problem is not the focus of the article, but we sketch how
standard solutions can be applied.

We view our contribution as a significant step towards
lifting the precision of information flow analyses for concur-
rent programs to a similar level as modern information flow
analyses for sequential programs. We expect this to facilitate
making the certification of information flow security for
concurrent programs feasible.

II. THE APPROACH AT A GLANCE

Compositional reasoning is essential in the security anal-
ysis of complex systems because it reduces conceptual com-
plexity and thereby contributes to making a program analysis
scale. Compositional reasoning can also be exploited in
software development, for instance, following the appealing
idea that secure systems can simply be built by plugging
together certified components. In either case, compositional
reasoning requires a security condition that, in addition to
expressing top-level security requirements, must also be
compositional. Unfortunately, making a security condition
compositional usually means to considerably strengthen it as
otherwise soundness is endangered, leading to a condition
that might be much more restrictive than prescribed by the
top-level security requirements.

The underlying problem is that, while a non-
compositional analysis of a thread can exploit the thread’s
actual environment (i.e. the other threads of the program),
a compositional analysis must presuppose all environments
in which the thread could possibly operate. This universal
quantification over a large set of environments has led to
fully compositional conditions (like, e.g., the strong security
condition [12]), but at the cost of being rather restrictive.

We use two minimalistic examples to illustrate the prob-
lem of information flow security in multi-threaded programs
occurring with traditional fully compositional reasoning.
Example 1. Consider the thread

c1 = debug:=False;
if (debug) then log:=log + secret

where the value of the variable secret is secret and the
attacker can read the final value of the variable log. When

1Proofs of all theorems in the article are available on the authors’ website.

executing the thread c1 in isolation, the final value of log
is independent of the value of secret. In consequence, the
thread c1 has intuitively secure information flow. However,
if c1 runs in parallel with the thread c2 = debug:=True,
the value of secret is appended to the variable log if c2
is scheduled between the assignment to debug and the if-
statement in c1. Hence, a concurrent program executing the
threads c1 and c2 might leak the secret to the attacker.
In consequence, a security condition that is both adequate
and fully compositional must classify at least one of the
threads c1 and c2 as insecure. For instance, c1 is classified
as insecure by the fully compositional approaches in [25],
[12] because c1 contains an assignment of a secret to a vari-
able whose final value is visible to the attacker, regardless
whether the assignment is actually reachable. ♦

Example 2. Consider the thread
c3 = temp:=key1;

key1:=key2;
key2:=temp;
temp:=0

that swaps the values of the variables key1 and key2, where
key1 and key2 contain secret values and the final value of
the variable temp is observable by the attacker. Although c3
assigns a secret to the publicly visible variable temp, c3 has
intuitively secure information flow as it overwrites temp with
a constant before it terminates. Nevertheless, executing c3
in parallel with the thread c4 = public:=temp (where the
final value of public is visible to the attacker) may result
in an information leak: If c4 is executed between the two
assignments to the variable temp in c3, then the final value of
the variable public equals the value of the secret key1. Note
that also c4 does not leak any secrets when being executed
in isolation. An adequate fully compositional analysis must
nevertheless classify at least one of the two considered
threads as insecure. Programs that, like c3, store secrets in
a variable whose final value is visible to the attacker are
usually classified as insecure (as, e.g., in [25], [19]), even if
the variable’s final value is not secret. ♦

In both examples, reasoning about information flow se-
curity for single threads becomes unsound in a concurrent
setting due to concurrent accesses to the shared memory,
and, hence, a fully compositional security analysis must
reject at least one of the threads in each example. Fortu-
nately, multi-threaded programs usually share memory in a
more coordinated fashion. Therefore, full compositionality
is rarely needed. For instance, in Example 1 it is unlikely
that a programmer would assign to the variable debug after
the initial assignment, if his intention is that debug specifies
once and for all at the beginning of the program whether
debug messages should be output, and, hence, any later
modification of debug would be erroneous. In consequence,
a security analysis only needs to consider environments
that do not assign to debug (in particular, the environment
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consisting of c2 need not be taken into account). Concerning
the thread c3 in Example 2, it is unlikely that a programmer
accesses the temporary variable temp in a concurrent thread
while c3 uses it for swapping the values of key1 and key2,
as this typically constitutes a programming error. Therefore,
a security analysis need only consider environments that
do not access temp during the swapping operation. This
excludes, in particular, the environment consisting of c4.

In this article, we tackle the problem how to exploit
the coordinated way in which threads access the shared
memory in a compositional security analysis. As a solution,
we propose an assumption-guarantee style approach, using
assumptions that threads make about how concurrent threads
access the shared memory, and guarantees that threads
provide about how they access the shared memory.

In a multi-threaded program, the assumptions of a thread
express which concurrent memory accesses definitely do
not occur at a given point during the thread’s execution,
if the remaining threads follow the intended way in which
the program accesses the shared memory. More concretely,
we consider assumptions of the form “At this point, other
threads do not read variable x” and assumptions of the form
“At this point, other threads do not modify variable x .” This
is sufficient to cover typical scenarios in which one thread
exclusively accesses variables during the program execution.

We use the information provided by a thread’s assump-
tions about its environment in the security analysis. Con-
sider, for instance, the security analysis of the thread c1 in
Example 1. In this analysis, we can assume that the variable
debug remains unchanged between any two execution steps
of c1 within the scope of a no-write assumption for debug.
If the no-write assumption holds throughout the execution
of c1, then we can deduce that the insecure assignment
log:=log + secret is unreachable even if other threads execute
concurrently. Hence, we may classify c1 as secure without
losing compositionality for environments that correctly fol-
low the intended access pattern for debug. Considering the
thread c3 from Example 2, in its security analysis we make
the assumption that temp is not read concurrently during the
swapping operation. Knowing that the value of temp is not
read concurrently, it is safe that c3 stores a secret in temp
during the swapping operation.

The guarantees provided by a thread express that the
thread refrains from certain accesses to the shared mem-
ory. We consider guarantees that correspond to the above
assumptions, i.e., “At this point, I do not read variable x”
and “At this point, I do not modify variable x .” Based
on such assumptions and guarantees, we develop a secu-
rity analysis and show that this analysis is compositional
– given that each assumption made within a thread is
matched by the corresponding guarantee in all threads
that may execute in parallel.

Where do the assumptions and guarantees come from?
Assumptions and guarantees of the threads could, e.g., be

specified using annotations in the program’s source code
(capturing the intended pattern of data usage), or be derived
using a static program analysis (capturing some actual
pattern of data usage). For defining security formally, we
assume that information about assumptions and guarantees
is captured in the program semantics. In Section IV, we
provide examples that use annotations in program comments
to specify assumptions and guarantees.

The challenge was to develop a formal security condition
for concurrent programs that adequately deals with assump-
tions and guarantees about accesses to the shared memory
and thereby enables a compositional security analysis that
successfully classifies threads such as c1 and c3 in Ex-
amples 1 and 2 as secure. We provide a solution to this
challenge in the following section.

III. A NOVEL SECURITY CONDITION

In this section, we present our novel security condition. It
is designed to adequately exploit assumptions and guarantees
about accesses to the shared memory, and, as we illustrate
in this article, thereby enables a compositional as well as
flow-sensitive security analysis.

A. Assumptions and Guarantees

To formalize the assumptions and guarantees informally
introduced in Section II, we allow threads to assign modes
to each variable. Each mode represents an assumption or a
guarantee with respect to the corresponding variable. This
approach borrows from the idea of access modes in Unix
systems, where a file is assigned modes representing how
it may be accessed. Similar to files being assigned multiple
access modes (e.g., both read and write access), a thread may
assign multiple modes to a variable (representing, e.g., that
the thread guarantees to neither read nor write the variable).

Formally, we define the set of modes Mod =
{asm-noread , asm-nowrite, guar -noread , guar -nowrite}.
We model a snapshot of the modes of variables during the
execution of a thread with a mode state mds ∈ Mds . Mode
states map each mode m ∈ Mod to a set mds(m) ⊆ Var ,
where Var is a finite set of variable identifiers which we do
not specify further. If x ∈ mds(asm-noread) respectively
x ∈ mds(asm-nowrite), this represents the assumption
that no other thread currently reads respectively writes
the variable x . Moreover, if x ′ ∈ mds(guar -noread)
respectively x ′ ∈ mds(guar -nowrite), this represents the
guarantee that the thread itself currently does not read
respectively write the variable x ′. We assume that no modes
are assigned to variables at the beginning of a thread’s
execution, but that threads acquire respectively release all
modes dynamically at runtime. The initial mode state mds0
is defined by mds0(m) = {} for all m ∈ Mod .
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B. Execution Model

We consider multi-threaded programs that execute a fixed
finite number of threads. A local configuration is a triple

〈c,mds,mem〉

that models a snapshot during the execution of a single
thread, where c ∈ Com is the command that remains
to be executed by the thread, mds ∈ Mds is the mode
state modeling the current assumptions and guarantees of the
thread, and mem ∈ Mem is the memory state modeling the
current memory by mapping variable identifiers to values
from a set Val . The operational small-step semantics for
single threads is defined by a transition relation on local
configurations, denoted _. For being language-independent,
we leave the set Com and the transition relation _ generic.
We only assume a command stop ∈ Com which cannot
make a transition in any local configuration, representing a
terminated thread, and that the mode state does not affect
command and memory state in _-transitions. The latter
assumption captures that modes do not affect the program
execution (modes shall solely provide additional information
for the security analysis). We instantiate our approach with
a concrete programming language in Section IV.

A global configuration is a pair

〈〈(c1,mds1), . . . , (cn,mdsn)〉,mem〉

that models a snapshot during the execution of a multi-
threaded program with n threads. It comprises a list of
pairs consisting of a command ci and a mode state mdsi
each modeling a single thread and its assumptions and
guarantees, as well as a memory state mem modeling the
shared memory. While we are generic in the transition
relation for local configurations, we define a specific transi-
tion relation → for global configurations in Figure 1. This
transition relation models the execution of thread pools via
arbitrarily interleaved executions of the single threads.

As notational convention we denote local configurations
with lc, global configurations with gc, elements of Com
with c, of Mds with mds , of Mem with mem , of Var
with x , of Val with v , and of Mod with m , all possi-
bly with indices or primes. When lc = 〈c,mds,mem〉,
we write lc(m) for mds(m) and lc[x 7→ v ] for
〈c,mds,mem[x 7→ v ]〉. Finally, we denote the reflexive
transitive closure of → with →∗ and write gc→1 gc′ if
gc→ gc′ and gc→k+1 gc′ if gc→ gc′′→k gc′ for some gc′′.

C. Security Property

We consider a security lattice with two security domains,
low and high , where the requirement is that no information
flows from high to low . This is the simplest policy capturing
information flow security, and the results in this article can
be lifted to more complex security lattices in a standard way.
We assume a domain assignment L : Var → {low , high}

that associates a security domain with each variable iden-
tifier. We assume that an attacker can observe the initial
and the final values of low variables, but cannot directly
access the values of high variables (i.e., access control
works correctly). That means, an attacker cannot distinguish
between initial respectively between final memory states that
differ only in the values of high variables. We capture this
upper bound on an attacker’s observational capability by the
following indistinguishability relation on memory states.
Definition 1. Memory states mem1 and mem2 are low-equal
(denoted by mem1 =low mem2) if and only if

∀x ∈ Var : L(x ) = low =⇒ mem1(x ) = mem2(x ).

Many compositional security conditions not only require
that two runs of a secure program starting in low-equal mem-
ory states result in low-equal final memory states (which
captures the idea of noninterference), but require low equal-
ity also at intermediate execution points (compare, e.g., [12],
[15], [26]). The motivation for this requirement is usually
compositionality, as the security analysis of the program’s
environment might depend on the fact that low variables
never store secrets. The requirement, however, may lead to
inaccuracies if the attacker cannot access the memory during
the program execution. We exploit the coordinated way in
which threads access the shared memory to overcome such
inaccuracies without losing compositionality. To this end, we
allow threads to temporarily store secrets in a low variable as
long as concurrent threads do not read that variable, which
is expressed by the assumption represented by the mode
asm-noread . To capture this formally, we introduce the
following relaxed variant of low equality, requiring equality
only on low variables without the mode asm-noread .
Definition 2. Memory states mem1 and mem2 are low-
equal modulo the mode state mds (denoted by mem1 =mds

low

mem2) if and only if

∀x ∈ Var :
(
L(x ) = low ∧ x 6∈ mds(asm-noread)

)
=⇒ mem1(x ) = mem2(x ).

Besides increasing the precision of the security defini-
tion by exploiting how threads coordinate their accesses to
the shared memory, we also introduce a new approach to
formally define the security condition using partial equiv-
alence relations [27]. Following a line of security defini-
tions ([12], [28], [18], [29], [30], [26], etc.), we define
a bisimulation-based indistinguishability relation on single
commands that is not reflexive, and that only relates com-
mands to themselves that have secure information flow.
Like in, e.g., [12], we use strong bisimulations aiming at
a scheduler-independent notion of security, but this choice
is not required for exploiting assumptions and guarantees
and it should be straightforward to adapt the development
to timing-insensitive versions such as that from [31]. In
contrast to previous definitions, we use a two-step approach
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〈ci,mdsi,mem〉_ 〈c′i,mds ′i,mem ′〉
〈〈(c1,mds1), . . . , (ci,mdsi), . . . , (cn,mdsn)〉,mem〉 → 〈〈(c1,mds1), . . . , (c′i,mds ′i), . . . , (cn,mdsn)〉,mem ′〉

Figure 1. Transition relation for global configurations

to distinguish explicitly between execution steps of the
thread’s environment and execution steps of the thread itself:
In the first step, we consider memory modifications by
concurrently executed threads in a closure condition that
exploits assumptions about which variables might actually
be modified (Definition 3). In the second step, we consider
the execution steps of a single thread by defining a bisim-
ulation relation on local configurations, exploiting no-read
assumptions to determine whether secrets may be stored in
low variables (Definition 4).
Definition 3. A binary relation R on local configurations
with equal mode states is closed under globally consistent
changes, if whenever 〈c1,mds,mem1〉 R 〈c2,mds,mem2〉
the following conditions are satisfied for all x ∈ Var :
(1) (x 6∈mds(asm-nowrite)∧L(x )=high)⇒∀v1, v2 ∈Val :
〈c1,mds,mem1[x 7→ v1]〉 R 〈c2,mds,mem2[x 7→ v2]〉

(2) (x 6∈mds(asm-nowrite)∧L(x ) = low)⇒ ∀v ∈Val :
〈c1,mds,mem1[x 7→ v ]〉 R 〈c2,mds,mem2[x 7→ v ]〉

The closure conditions in Definition 3 characterize all
possible memory modifications that might be performed by
an environment that respects a thread’s no-write assumptions
and that does not store secrets in low variables. Firstly,
all variables without a no-write assumption might be mod-
ified, while variables with a no-write assumption remain
unchanged. Secondly, the new value of low variables must
not contain a secret, which is captured by requiring that it
is equally modified on both sides of the relation.
Definition 4. A symmetric binary relation R on
local configurations with equal mode states that
is closed under globally consistent changes is a
strong low bisimulation modulo modes, if whenever
〈c1,mds,mem1〉 R 〈c2,mds,mem2〉 then
(1) mem1 =mds

low mem2 and
(2) if 〈c1,mds,mem1〉 _ 〈c′1,mds ′,mem ′1〉 then there

exist a command c′2 and a memory state mem ′2
such that 〈c2,mds,mem2〉 _ 〈c′2,mds ′,mem ′2〉 and
〈c′1,mds ′,mem ′1〉 R 〈c′2,mds ′,mem ′2〉.

The relation ≈ is the union of all strong low bisimulations
modulo modes; it is the largest such bisimulation.

Strong low bisimulations modulo modes characterize the
following indistinguishability of snapshots during two exe-
cutions of a thread (represented by local configurations): If
local configurations are related by a strong low bisimulation
modulo modes, then they are indistinguishable to an observer
who sees the values of low variables (except those not
read by assumption), and remain indistinguishable after one
transition. This is due to Condition (1) in Definition 4,

ensuring low equality of memories modulo the mode state,
and to Condition (2), ensuring that the configurations after
one transition are also in relation, and, hence, have memories
low equal modulo their mode state. Repeating this argument
shows that the configurations remain indistinguishable after
any number of transitions. In consequence, by observing
low variables that the environment may read one cannot
distinguish the two executions. This remains true if the
memory is modified between transitions, as long as vari-
ables with no-write assumption remain unchanged and low
variables are changed equally in both memories (because
strong low bisimulations modulo modes are closed under
globally consistent changes).

Based on strong low bisimilarity modulo modes, we
define an indistinguishability relation on commands and our
novel security condition that classifies a command as secure
if it is indistinguishable to itself.

Definition 5. Two commands c1 and c2 are low indistin-
guishable for the mode state mds (denoted by c1 ∼mds

low c2) if
〈c1,mds,mem1〉 ≈ 〈c2,mds,mem2〉 for all memory states
mem1 and mem2 with mem1 =mds

low mem2.

A command c is SIFUM-secure if c ∼mds0
low c (where

mds0 is the initial mode state defined in Section III-A).

SIFUM-security (expanding to secure information flow
using modes) adequately captures security in the sense that
the final values of low variables do not depend on the
initial values of high variables, as long as assumptions and
guarantees correctly capture how threads access the shared
memory. Further justification is given in Section III-D.

SIFUM-security classifies intuitively secure programs as
secure that are not classified as secure by existing compo-
sitional analysis techniques for concurrent programs such
as [25], [12], [19], [26]. On the one hand, SIFUM-security
permits that variables temporarily store values at a security
level above their own security domain (exploiting no-read
assumptions). This is the basis for flow-sensitive security
analyses (compare [32]). On the other hand, no-write as-
sumptions are exploited in two ways in order to arrive at a
more precise security analysis. They allow, firstly, to track
the current value of variables with no-write assumption, and,
secondly, to track whether such variables store values at
a security level below their security domain. We provide
realistic examples illustrating these benefits in Section IV.
Beyond this, SIFUM-security is compositional and hence
supports a modular security analysis.
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D. Compositionality

In the remainder of this section we show that multi-
threaded programs executing SIFUM-secure commands have
secure information flow if they use assumptions and guar-
antees in a sound way. How the latter can be checked is
sketched in Section V. Before establishing the composition-
ality result in Theorem 1, we make the notions of secure
information flow for multi-threaded programs and of a sound
use of assumptions and guarantees precise.

We define security for multi-threaded programs by a
simple noninterference-like security condition.

Definition 6. The multi-threaded program executing the
commands c1, . . . , cn is SIFUM-secure if whenever
mem1 =low mem2 and

〈〈(c1,mds0), . . . , (cn,mds0)〉,mem1〉
→k 〈〈(c′1,mds1), . . . , (c′n,mdsn)〉,mem ′1〉

for some k ∈ N, then there exist commands c′′1 , . . . , c
′′
n and

a memory state mem ′2 such that

〈〈(c1,mds0), . . . , (cn,mds0)〉,mem2〉
→k 〈〈(c′′1 ,mds1), . . . , (c′′n,mdsn)〉,mem ′2〉

and mem ′1(x ) = mem ′2(x ) for all x ∈ Var with L(x ) =
low and x 6∈ mdsi(asm-noread) for all i ∈ {1, . . . , n}.

I.e., after any number of transitions the values of low
variables for which no thread makes a no-read assumption
are independent from the values of secrets. In particular, the
following holds for SIFUM-secure multi-threaded programs:

Proposition 1. Assume that the multi-threaded program
executing the commands c1, . . . , cn is SIFUM-secure. Then
whenever mem1 =low mem2 and

〈〈(c1,mds0), . . . , (cn,mds0)〉,mem1〉
→∗ 〈〈(stop,mds0), . . . , (stop,mds0)〉,mem ′1〉

there exists mem ′2 such that mem ′1 =low mem ′2 and

〈〈(c1,mds0), . . . , (cn,mds0)〉,mem2〉
→∗ 〈〈(stop,mds0), . . . , (stop,mds0)〉,mem ′2〉.

Due to space restrictions, the proof of the above theorem
as well as the proofs of all other theorems are omitted in
this article, but they are provided on the authors’ website.

By Proposition 1, if programs release assumptions and
guarantees before termination, SIFUM-security implies that
an attacker who can observe the initial and final values of
low variables cannot conclude anything about secret values.

Intuitively, a multi-threaded program uses assumptions
and guarantees in a sound way if (a) whenever one of
its threads makes an assumption then this assumption is
matched by the corresponding guarantee in all concurrent
threads, and (b) no thread locally violates the guarantees

that it provides. To make this connection between program
executions and the assumptions and guarantees made by
threads precise, we formally characterize requirement (a) in
Definition 8 and requirement (b) in Definition 12. These
definitions characterize the natural conditions under which
we establish the compositionality of SIFUM-security.
Definition 7. A mode state tuple (mds1, . . . ,mdsn) has
compatible modes if for all i ∈ {1, . . . , n} and for all
x ∈ Var the following conditions hold:
(1) x ∈ mdsi(asm-noread) =⇒

∀j 6= i : x ∈ mdsj(guar -noread)
(2) x ∈mdsi(asm-nowrite) =⇒

∀j 6= i : x ∈mdsj(guar -nowrite)

A set of mode state tuples has compatible modes if each
of its elements has compatible modes.
Definition 8. The set of mode state tuples reachable from a
global configuration gc is defined as

{(mds1, . . . ,mdsn) | ∃c1, . . . , cn ∈ Com,mem ∈ Mem :

gc →∗ 〈〈(c1,mds1), . . . , (cn,mdsn)〉,mem〉}.
The global configuration gc ensures a globally sound use

of modes if the set of mode state tuples reachable from gc
has compatible modes.

For capturing that a thread never violates the guarantees
it provides during its execution, we formally define when a
command does not read respectively modify a variable.
Definition 9. A command c does not read the vari-
able x if, for all mds , mem , and lc′, whenever lc =
〈c,mds,mem〉 _ lc′, then one of the following condi-
tions holds:
(1) ∀v ∈Val : lc[x 7→ v ] _ lc′[x 7→ v ]
(2) ∀v ∈Val : lc[x 7→ v ] _ lc′

Note that Condition (1) in Definition 9 covers transitions
in which the value of x is not modified, while Condition (2)
covers transitions in which the value of x is modified.
Definition 10. A command c does not modify the vari-
able x if (for all mds , mem , c′, mds ′, mem ′) when-
ever 〈c,mds,mem〉_〈c′,mds ′,mem ′〉, then mem(x ) =
mem ′(x ) holds.

Moreover, we approximate reachability from the perspec-
tive of a single thread without knowing what its environment
might be. In this approximation, we exploit assumptions
about concurrent modifications of the shared memory to re-
duce the number of possibly reachable local configurations.
More concretely, we take into account that variables with no-
write assumption are not modified by other threads between
execution steps. Note that this approximation is only sound
if the thread is executed in an environment that modifies the
shared memory only as described by these assumptions.
Definition 11. The set lReach(lc) of local configurations
that are potentially reachable from the local configuration lc
is inductively defined as follows:
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(1) lc ∈ lReach(lc)
(2) ∀lc′ ∈ lReach(lc) : ∀lc′′ :

lc′ _ lc′′ =⇒ lc′′ ∈ lReach(lc)
(3) ∀〈c′,mds ′,mem ′〉 ∈ lReach(lc) : ∀mem ′′ ∈ Mem :

(∀x ∈ mds ′(asm-nowrite) : mem ′(x ) = mem ′′(x ))
=⇒ 〈c′,mds ′,mem ′′〉 ∈ lReach(lc)

Definition 12. A local configuration lc ensures a locally
sound use of modes if for all lc′ = 〈c′,mds ′,mem ′〉 ∈
lReach(lc) and all x ∈ Var the following conditions hold:
(1) x ∈ lc′(guar -noread) =⇒ c′ does not read x
(2) x ∈ lc′(guar -nowrite) =⇒ c′ does not modify x

Definition 13. We say that the global configuration
〈〈(c1,mds1), . . . , (cn,mdsn)〉,mem〉 ensures a sound use
of modes if it ensures a globally sound use of modes and
each local configuration 〈ci,mdsi,mem〉 ensures a locally
sound use of modes (for i ∈ {1, . . . , n}).

The following proposition ensures that our approximation
in the definition of local reachability is sound if we consider
global configurations that ensure a sound use of modes.

Proposition 2. Assume that the global configuration
〈〈(c1,mds1), . . . , (cn,mdsn)〉,mem〉 ensures a sound use
of modes and that

〈〈(c1,mds1), . . . , (cn,mdsn)〉,mem〉
→∗ 〈〈(c′1,mds ′1), . . . , (c′n,mds ′n)〉,mem ′〉.

Then 〈c′i,mds ′i,mem ′〉 ∈ lReach(〈ci,mdsi,mem〉) holds
for all i ∈ {1, . . . , n}.

Now we establish the compositionality result:

Theorem 1 (Compositionality). Let c1, . . . , cn be SIFUM-
secure commands such that 〈〈(c1,mds0), . . . , (cn,mds0)〉,
mem〉 ensures a sound use of modes for every memory
state mem . Then the multi-threaded program executing the
commands c1, . . . , cn is SIFUM-secure.

Proof Sketch: We briefly sketch the proof here, the
complete proof is provided on the authors’ website. We
firstly establish the following central result that connects
strong low bisimilarity modulo modes of local configurations
to global configurations that ensure a sound use of modes:

Let 〈〈(c1,1,mds1), . . . , (c1,n,mdsn)〉,mem1〉 and
〈〈(c2,1,mds1), . . . , (c2,n,mdsn)〉,mem2〉 be global
configurations that ensure a sound use of modes.
Whenever 〈〈(c1,1,mds1), . . . , (c1,n,mdsn)〉,mem1〉 →
〈〈(c′1,1,mds ′1), . . . , (c′1,n,mds ′n)〉,mem ′1〉 and there exist
mem1,i and mem2,i for all i ∈ {1, . . . , n} with

- 〈c1,i,mdsi,mem1,i〉 ≈ 〈c2,i,mdsi,mem2,i〉 and
- mem1,i(x ) =mem1(x ) and mem2,i(x ) =mem2(x )

whenever
[
(L(x ) = high) ∨ (mem1(x ) =mem2(x )) ∨

(∀j ∈ {1, . . . , n} : x 6∈ mdsj(asm-noread))
]

holds,
then there exist c′2,1 . . . , c

′
2,n and mem ′2 such that

(1) 〈〈(c2,1,mds1), . . . , (c2,n,mdsn)〉,mem2〉 →
〈〈(c′2,1,mds ′1), . . . , (c′2,n,mds ′n)〉,mem ′2〉 and

(2) for all i∈{1, . . . , n} there are mem ′1,i and mem ′2,i with
- 〈c′1,i,mds ′i,mem ′1,i〉 ≈ 〈c′2,i,mds ′i,mem ′2,i〉 and
- mem ′1,i(x ) =mem ′1(x ) and mem ′2,i(x ) =mem ′2(x )

whenever
[
(L(x ) = high)∨(mem ′1(x ) =mem ′2(x ))

∨(∀j ∈{1, . . . , n} : x 6∈ mds ′j(asm-noread))
]

holds.
For establishing SIFUM-security of the multi-threaded

program executing the commands c1, . . . , cn, it suffices
to inductively apply the above result. Note that for the
induction to go through, the result needs to take into account
that the corresponding local configurations resulting after k
steps in two executions of a multi-threaded program are
not necessarily strong low bisimilar modulo modes. This is
due to the fact that a concurrent SIFUM-secure thread may
store secrets in low variables for which it makes a no-read
assumption. Hence, strong low bisimilarity modulo modes is
only guaranteed after modifying the values of such variables
for mem ′1,i and mem ′2,i.

The compositionality result allows to reduce the security
analysis to the individual analysis of the single threads for
programs in which no thread violates the intended patterns of
memory usage captured by the assumptions and guarantees.

IV. BENEFITS OF THE NOVEL SECURITY CONDITION

To illustrate the benefits of SIFUM-security, we instantiate
our approach for a simple imperative programming language
and exploit the assumptions that concurrent threads do not
read respectively do not write certain variables in the security
analysis of three small but realistic example programs.

A. Instantiating the Approach

We introduce a simple imperative programming language
for implementing multi-threaded programs. Its syntax sup-
ports annotations to specify when threads make assumptions
about concurrent memory accesses and when threads provide
guarantees about their own memory accesses. Annotations
are enclosed in comments (// . . . //) and do not contribute to
the runtime behavior of the program. They affect, however,
the mode state tracked in the security analysis. The syntax
of the programming language is defined by the following
grammar (using a set of expressions Exp over variables that
we do not specify further):

ann ::= acq(m, x )
∣∣ rel(m, x )

c ::= skip
∣∣ x :=e

∣∣ if e then c else c fi
∣∣

while e do c od
∣∣ c; c ∣∣ stop

∣∣ //ann// c

where m ∈ Mod , x ∈ Var , and e ∈ Exp. The symbol stop
is not intended for use in actual programs, we only use it
for defining the language’s formal semantics. The annotation
acq(m, x ) indicates that the thread acquires the mode m for
the variable x , and the annotation rel(m, x ) indicates that
the thread releases the mode m for the variable x . Each
command may be annotated with multiple such annotations.

The operational semantics is formalized by a calculus for
the judgment 〈c,mds,mem〉_ 〈c′,mds ′,mem ′〉, which is
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defined in Figure 2. The derivation rules are based on the
auxiliary judgment 〈c,mem〉 _ 〈c′,mem ′〉 for commands
that are not annotated and that, hence, do not modify the
mode state in their first execution step. The calculus for this
judgment defines a standard semantics for assignments, con-
ditionals, and while loops. For the semantics of sequential
composition, we use evaluation contexts of the form

E ::= • | E ; c.

The command E [c] is defined as the evaluation context E in
which the hole • is replaced with c, i.e., c is the command
that shall next be executed when executing E [c]. We assume
that expression evaluation is total, atomic, and unambiguous,
and express that expression e evaluates to value v in the
memory state mem by the judgment 〈e,mem〉 ↓ v . We
denote with vars(e) the set of variables on which the value
of e depends, i.e.,

[∀x ∈ vars(e) : mem1(x ) = mem2(x )]

=⇒ [∀v ∈ Val : 〈e,mem1〉 ↓ v ⇐⇒ 〈e,mem2〉 ↓ v ]

holds for all e ∈ Exp and all mem1,mem2 ∈ Mem .
The annotations directly preceding a command are evalu-

ated atomically with the first execution step of the command.
Hence, evaluating annotations does not introduce additional
computation steps. Moreover, the evaluation of annotations
only affects the mode state and neither the memory state nor
the control flow. The effect of an annotation on the mode
state is specified by the function update:

Definition 14. We define the mode state update(mds, ann)
as mds[m 7→ mds(m) ∪ {x}] if ann = acq(m, x ), and as
mds[m 7→ mds(m) \ {x}] if ann = rel(m, x ).

From the definition of the operational semantics one
directly obtains that how a program modifies the memory
is not influenced by its annotations:

Proposition 3. Let c1, c
′
1, c2, c

′
2 be commands, where c2

and c′2 are obtained from c1 and c′1 be removing all an-
notations, and let mds be a mode state. Then 〈c2,mem〉_
〈c′2,mem ′〉 if and only if there is a mode state mds ′ such
that 〈c1,mds,mem〉_ 〈c′1,mds ′,mem ′〉.

Moreover, if a command without annotations is strongly
secure [12, Definition 6], then the command is also SIFUM-
secure. However, SIFUM-security classifies more intuitively
secure programs as secure than strong security. This is
illustrated by the examples in the following section that
exploit how threads coordinate their memory accesses.

B. Exploiting Assumptions for Increased Precision

We illustrate with three small but realistic example pro-
grams how the precision of the security analysis increases
when using assumptions and guarantees to express how
threads coordinate their memory accesses. For showing that
the example programs are SIFUM-secure, we exploit the

cdebug =
//acq(asm-nowrite, debug)//
debug:=False;
if (debug) then log:=log + secret else skip fi
//rel(asm-nowrite, debug)//

Figure 3. Thread using a debug flag

assumptions that they make. For each program, we argue
informally why concurrent threads provide the appropriate
guarantees if they use the memory in the way intended for
the program.

We firstly provide two examples that each illustrate
the benefits of only one of the modes asm-nowrite and
asm-noread . An example of a multi-threaded server sub-
sequently serves to illustrate the benefits of both modes
in a more complex scenario. In the example programs, we
abbreviate the command “//ann// skip” with “//ann//”.

We take up Example 1 from Section II, to which we
add annotations that acquire respectively release the mode
asm-nowrite for the variable debug. The resulting com-
mand cdebug is displayed in Figure 3. Its annotations capture
the intention that debug is written only once at the beginning
of the program. Concurrent threads provide appropriate
guarantees if they comply with this intention.

Theorem 2. Assume that L(log) = L(debug) = low and
L(secret) = high . Then cdebug is SIFUM-secure.

Due to Theorem 1, the SIFUM-security of cdebug assures
that cdebug has secure information flow in all environments
respecting the agreement that debug is not modified by
other threads during the execution of cdebug . Note that the
program obtained from cdebug by removing all annotations
is not SIFUM-secure. Moreover, this program is classified as
insecure by existing compositional analysis techniques such
as in [25], [12], [19], [26]. While the compositional analysis
techniques in [15], [14] classify programs like cdebug as
secure, they impose the restriction that the variable log must
not be concurrently accessed by the environment, which is
restrictive as logging is often performed in multiple threads
of a multi-threaded program. Note that in cdebug SIFUM-
security does not restrict concurrent accesses to the log.

For proving Theorem 2, one can construct an appropriate
strong low bisimulation modulo modes iteratively start-
ing from 〈cdebug,mds0,mem1 〉 R 〈cdebug,mds0,mem2 〉
where mem1 =low mem2 , exploiting that globally consis-
tent changes do not reset the value of debug due to the mode
asm-nowrite and, in consequence, the branch containing the
assignment of secret to log need not be explored.

Next, we consider a program with annotations using mode
asm-noread . The command ctemp in Figure 4 subsequently
swaps the values of the two secret variables key1 and key2,
and the values of the two public variables pub1 and pub2.
The swaps are accomplished using a temporary variable
which has mode asm-noread during the execution of ctemp.
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〈skip,mem〉_ 〈stop,mem〉
〈e,mem〉 ↓ v

〈x :=e,mem〉_ 〈stop,mem[x 7→ v ]〉 〈stop; c,mem〉_ 〈c,mem〉

〈e,mem〉 ↓ True

〈if e then c1 else c2 fi,mem〉_ 〈c1,mem〉
〈e,mem〉 ↓ False

〈if e then c1 else c2 fi,mem〉_ 〈c2,mem〉

〈while e do c od,mem〉_ 〈if e then c; while e do c od else stop fi,mem〉

〈c,mem〉_ 〈c′,mem ′〉
〈E [c],mds,mem〉_ 〈E [c′],mds,mem ′〉

〈c, update(mds, ann),mem〉_ 〈c′,mds ′,mem ′〉
〈E [//ann// c],mds,mem〉_ 〈E [c′],mds ′,mem ′〉

Figure 2. Small-step operational semantics

ctemp =
//acq(asm-noread , temp)//;
temp:=key1; key1:=key2; key2:=temp;
temp:=pub1; pub1:=pub2; pub2:=temp
//rel(asm-noread , temp)//

Figure 4. Thread reusing temporary variable

This assumption is, for instance, natural in an environment
where temp is used as a local variable in the thread ctemp.

Theorem 3. Assume that L(key1) = L(key2) = high and
L(pub1) = L(pub2) = L(temp) = low . Then ctemp is
SIFUM-secure.

The example illustrates that SIFUM-security, by allowing
low variables to temporarily store secrets, makes flow-
sensitive security analyses possible. This is not supported by
existing compositional analysis techniques such as in [25],
[12], [19], [26] which classify the program as insecure.

One can prove Theorem 3 by iteratively constructing an
appropriate strong low bisimulation modulo modes, exploit-
ing that low variables with mode asm-noread may store
secrets, and, hence, the assignment of key1 to temp does
not violate the requirements of the bisimulation definition.
We provide a flow-sensitive security type system to automate
the analysis of such programs in Section V.

Finally, to illustrate how both no-write and no-read as-
sumptions can be exploited in the security analysis in
more complex application scenarios we consider a multi-
threaded server application. Command csrv in Figure 5
implements a thread that is part of a multi-threaded server.
The thread serves a client that requests information from
the server. The contents of the variables request and src
are set up by the main server thread (which we do not
display here) specifying the data that is requested and
the network address of the requester, respectively. This
technique is used in multi-threaded server implementations
like NULL HTTPD [33] that spawn worker threads working
on data structures set up by the main server thread. To
simplify the setting, we assume identifiers for two categories
of data (”secret-data” and ”public-data”) and two network

csrv =
acquire(mutex);
//acq(asm-nowrite, src)////acq(asm-nowrite, request)//
//acq(asm-nowrite, auth)////acq(asm-noread , answer)//

if (src 6= ”local” ∧ request = ”secret-data”)
then auth:=False
else auth:=True

fi;
if (auth = False)

then answer:=”not authorized”
else if (request = ”public-data”)

then answer:=publicData
else answer:=secretData

fi
fi;
if (src = ”local”)

then localout:=answer
else nonlocalout:=answer

fi;
answer:=””;
log:=log + src + request;
//rel(asm-nowrite, src)////rel(asm-nowrite, request)//
//rel(asm-nowrite, auth)////rel(asm-noread , answer)//
release(mutex)

Figure 5. Worker thread of multi-threaded server

addresses (”local” and ”nonlocal”). The variables secretData
and publicData, respectively, contain the data identified by
”secret-data” and ”public-data”. The variables localout and
nonlocalout represent output channels to the network ad-
dresses ”local” and ”nonlocal”, respectively. The command
csrv operates in three steps: It firstly checks whether the
request’s source is authorized to access the requested data,
where the policy is that ”secret-data” may only be sent to
”local”. Afterwards, it computes the answer to the request
(which is either the requested data or an error message if
the authorization failed). Finally, it writes the answer to the
channel identified by src, deletes the answer, and logs the
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request. We use a mutex variable mutex2 to ensure exclusive
access to variables that are shared with other threads (as for
instance request and src which are shared with the main
server thread). If threads only access these variables when
holding the mutex variable mutex, they provide guarantees
matching the assumptions of csrv.

Theorem 4. Assume that L(secretData) = L(localout) =
high and L(x ) = low for all remaining variables. Then csrv
is SIFUM-secure.

For establishing the SIFUM-security of csrv, we exploit
that the variable answer has the mode asm-noread and
may hence contain information at both the high and the
low security level until the mode is released. Moreover,
we exploit the assumption that the variables src, request,
and auth are not modified by concurrent threads as long
as csrv holds the mutex variable mutex. This is essential as
otherwise, for instance, the value of request could be mod-
ified from ”public-data” to ”secret-data” after checking the
authorization. This modification would result in secretData
being sent to nonlocalout although this is not authorized,
constituting a type of attack also referred to as a time-of-
check-to-time-of-use (TOCTTOU) attack [35].

The above example illustrates how SIFUM-security can
be beneficially exploited in the security analysis in real-
istic multi-threaded example scenarios. We are not aware
of a compositional analysis technique for multi-threaded
programs that allows a successful information flow security
analysis for the multi-threaded server in the above example.

V. A FLOW-SENSITIVE SECURITY TYPE SYSTEM

Our novel security condition enables us not only to
achieve higher precision in compositional reasoning by
exploiting assumptions and guarantees, but also allows us to
define a security type system for concurrent programs that
is flow-sensitive. To our knowledge, this is the first flow-
sensitive security type system that establishes information
flow security guarantees for concurrent programs.

The typing judgments for commands have the form

` Γ {c} Γ′,

where Γ,Γ′ : Var ⇀ {low , high} are partial functions
representing type environments and c is a command. Type
environments contain flow-sensitive security types (in the
style of [32]) for low variables with mode asm-noread and
for high variables with mode asm-nowrite . The idea is that
dom(Γ) (respectively dom(Γ′)) contains the low and high
variables about which no-read and no-write assumptions are
made, respectively, before (respectively after) the execution
of c. Hence, dom(Γ) may differ from dom(Γ′). Moreover,
if x ∈ dom(Γ), then Γ(x ) is the security type of x before

2Given that our simple language does not support mutexes as primitives,
the operations for acquiring and releasing mutexes can be implemented us-
ing, e.g., Peterson’s algorithm [34] without leaving the language fragment.

the execution of c, and if x ∈ dom(Γ′), then Γ′(x ) is
the security type of x after the execution of c. If x 6∈
dom(Γ), then the security type of x is determined by its
security level L(x ). This is captured by extending a type
environment Γ to the corresponding total lookup function
Γ〈·〉 : Var → {low , high}, which is defined as

Γ〈x 〉 =

{
Γ(x ) if x ∈ dom(Γ),
L(x ) otherwise.

The intuition is that whenever the security type Γ〈x 〉 of a
variable x is low , then x cannot contain a secret value.

The derivation rules for the judgment ` Γ {c} Γ′ use
the auxiliary judgment Γ ` e : t for typing expressions. The
derivation rules for both judgments are displayed in Figure 6.

As usual for a two-level security policy, we assume
low v high and denote the least upper bound operator on
security domains with t. For subtyping, we write ΓvΓ′ if
dom(Γ) = dom(Γ′) and Γ(x )vΓ′(x ) for all x ∈ dom(Γ).
Rule [anno] adjusts a type environment based on an anno-
tation. To this end, we write Γ⊕ ann for the type environ-
ment with (Γ⊕ ann)(x ) = Γ〈x 〉 for all x ∈ dom(Γ⊕ ann),
where dom(Γ⊕ acq(m, x)) = dom(Γ) ∪ {x} and
dom(Γ⊕ rel(m, x)) = dom(Γ) \ {x} if m = asm-noread
and L(x ) = low or if m = asm-nowrite and L(x ) = high ,
and dom(Γ⊕ ann) = dom(Γ) otherwise. The third premise
in rule [anno] requires that security types of variables do
not decrease due to annotations. A decrease of a security
type is possible by rule [assign2]. If the security type of a
variable x has been reset to its original security level (i.e., it
is safe to release the assumption on x ), then rule [anno] can
remove x from dom(Γ). The rules for assignments distin-
guish between variables without and with floating security
type. Rule [assign1] forbids assignments from expressions
with type high to a low variable x if x 6∈ dom(Γ). In
contrast, if x ∈ dom(Γ), rule [assign2] does not restrict
assignments to x . Note that in this case the security type
of x is changed to the type of the expression that is assigned
to x . Rule [if] covers conditionals with low guards and with
high guards. Its third premise prevents implicit information
leaks by requiring that the branches under high guards are
strong low bisimilar modulo modes. The precondition mds
is consistent with Γ holds if and only if dom(Γ) = {x ∈
Var | (L(x ) = low ∧ x ∈ mds(asm-noread)) ∨ (L(x ) =
high ∧ x ∈ mds(asm-nowrite))}. To approximate the third
premise syntactically, the approach proposed in [36] can be
applied. Note that rule [while] requires low loop guards, but
it would be straightforward to support high loop guards by
adding a protect-command to the language, ensuring that
protected loops are executed atomically (cf. [8], [37]).

Theorem 5. Assume that ` Γ {c} Γ′ is derivable, and
let mds be a mode state that is consistent with Γ.
Then 〈c,mds,mem1〉 ≈ 〈c,mds,mem2〉 holds for all
mem1,mem2 ∈ Mem that satisfy mem1(x ) = mem2(x )
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[exp]
Γ ` e :

⊔
x∈vars(e) Γ〈x 〉

[skip]
` Γ {skip} Γ

[assign1]
x 6∈ dom(Γ) Γ ` e : t t v L(x )

` Γ {x :=e} Γ
[assign2]

x ∈ dom(Γ) Γ ` e : t

` Γ {x :=e} Γ[x 7→ t]

[if]

` Γ {c1} Γ′ ` Γ {c2} Γ′

Γ ` e : high ⇒
[
(∀mds : mds is consistent with Γ⇒ c1 ∼mds

low c2) ∧ (∀x ∈ dom(Γ′) : Γ′(x ) = high)
]

` Γ {if e then c1 else c2 fi} Γ′

[while]
Γ ` e : low ` Γ {c} Γ

` Γ {while e do c od} Γ
[anno]

Γ′ = Γ⊕ ann ` Γ′ {c} Γ′′ ∀x ∈ Var : Γ〈x 〉 v Γ′〈x 〉
` Γ {//ann// c} Γ′′

[seq]
` Γ {c1} Γ′ ` Γ′ {c2} Γ′′

` Γ {c1; c2} Γ′′
[sub]

` Γ1 {c} Γ′1 Γ2 v Γ1 Γ′1 v Γ′2
` Γ2 {c} Γ′2

Figure 6. Flow-sensitive security type system

for all x ∈ Var with Γ〈x 〉 = low .
Typing judgments for concurrent programs have the form

` c1, . . . , cn. The single derivation rule is as follows,
where Γ0 is the type environment with dom(Γ0) = {}:

[par]

∀i ∈ {1, . . . , n} : ` Γ0 {ci} Γ0

∀mem:〈(c1,mds0), . . . , (cn,mds0),mem〉 ensures
a sound use of modes
` c1, . . . , cn

Theorem 6. Let c1, . . . , cn be commands such that the judg-
ment ` c1, . . . , cn is derivable. Then the program consisting
of the commands c1, . . . , cn is SIFUM-secure.

The command ctemp from Section IV is typable and,
hence, SIFUM-secure: As long as the low variable temp has
mode asm-noread , its type is flow-sensitive and may vary
during the execution. The typing rules set its type to high
when assigning key1 to temp (compare rule [assign2]), and
resets it to low when assigning pub1 to temp.

Our type system focuses on the novel aspect of flow-
sensitive security types for concurrent programs. Note that
the definition of SIFUM-security facilitates further improve-
ments for increased precision without losing soundness,
which we omit due to space restrictions. It is possible
to soundly integrate abstractions of the current values of
variables with mode asm-nowrite . For instance, considering
command cdebug from Section IV, an analysis could derive
that “debug = True” from the initial assignment to debug,
and later exploit this to determine the value of the guard
expression “debug”. Note that in the above type system,
floating types of high variables can in fact be seen as a two-
valued abstraction of their current value, where the abstract
value is low only if the variable’s value is public.
Local and Global Soundness. So far we have not considered
local and global soundness of the modes. We provide a
straightforward type system for establishing locally sound

use of modes in an addendum to this article that is available
on the authors’ website. It is essentially just a Hoare logic
specialised to reason about guarantees in the mode state:
triples of the form mds{c}mds ′ determine that if c is
executed in mode state mds then mds ′ describes an upper
bound on the guarantees after c has executed.

Establishing global soundness is not the focus of this
work, but here we sketch one simple approach. By analogy
with the type system for establishing locally sound use of
modes, we can effectively provide a safe approximation
of the modes at each program point, where “safe” means
an upper bound on assumptions and a lower bound on
guarantees. We can use this to establish global soundness
by using a may-happen-in-parallel analysis (see, e.g., [38],
[39], [40]) to determine all pairs of program points which
may execute concurrently. To verify global soundness we
simply check that for all such pairs of program points,
the modes given by the type system for those program
points are compatible. The aforementioned may-happen-in-
parallel analyses have been automated, but they are not
compositional. Compositional approaches to checking data-
sharing annotations exist, but are yet somewhat restricted
(see Section VII).

VI. TREATMENT OF INTERMEDIATE OUTPUTS

While we assume an attacker who observes only the final
values of low variables when arguing for the adequacy of
SIFUM-security (compare Proposition 1), we illustrate here
that SIFUM-security also adequately captures security when
extending the execution model with intermediate outputs that
are visible to the attacker. We model an output channel by a
distinguished low variable out ∈ Var storing a String value
to which programs only append information. I.e., whenever
〈c,mds,mem〉 _ 〈c′,mds ′,mem ′〉 then there is a (possi-
bly empty) String s with mem ′(out) = mem(out):s, where
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the colon denotes string concatenation. The intuition is that
outputs are appended to the variable out, i.e., out stores the
sequence of all outputs. We assume that commands do not
acquire the mode asm-noread for out, capturing that outputs
might always be read (e.g., by the attacker). Then we obtain

Theorem 7. Let p = 〈(c1,mds0), . . . , (cn,mds0)〉 be a list
of pairs of commands and mode states such that c1, . . . , cn
are SIFUM-secure and 〈p,mem〉 ensures a sound use of
modes for all mem . Then for all k, all p′, all mem1 =low

mem2, and all mem ′1 with 〈p,mem1〉 →k 〈p′,mem ′1〉 there
exist p′′ and mem ′2 with 〈p,mem2〉 →k 〈p′′,mem ′2〉 and
mem ′1(out) = mem ′2(out).

I.e., an attacker cannot deduce secret information from
observing outputs, as the sequence of outputs after any
number of execution steps does not depend on secrets. (The
theorem follows directly from Theorem 1 and Definition 6.)

VII. RELATED WORK

Here, we focus on approaches that consider rely-guarantee
techniques in a security context, on information flow security
for concurrent programs, and on approaches to reasoning
about concurrent programs using data-sharing annotations.

Rely-Guarantee Reasoning for Security: There are a num-
ber of works which use the general idea of rely-guarantee
reasoning in order to perform modular security analyses.
Jürjens [41] studied a probabilistic noninterference for trace-
based message-passing processes, and used rely-guarantee
reasoning in the proof of compositionality. Guttman et
al [42] annotate Strand-space representations of protocol
participants with rely-guarantee statements related to trust.
In common with the approach here a global soundness is
required for annotated protocols. Garg et al [43] place heavy
emphasis on rely-guarantee proof rules in reasoning about
safety-property-based security properties in a concurrent
first-order functional language.

Information Flow Security for Concurrent Programs:
To our knowledge, the first approach to information flow
analysis for concurrent programs is proposed by Andrews
and Reitman [7], [44]. It considers a flow logic that supports
the derivation of noninterference proofs for programs. They
sketch an extension to concurrent programs based on the
Owicki-Gries method [45]. The idea is that one must show
that any derivation for a given thread is unaffected by
the assignment statements in any other. As well as being
noncompositional, a consequence of this approach is an
assumption that any assignment in one thread may run
concurrently with any other statement. This would make the
opportunities to exploit flow sensitivity limited to thread-
local variables. Moreover, the approach neither provides a
semantically justified soundness result nor a formal seman-
tics for the underlying programming language.

At the end of the 90s, Volpano and Smith developed
security type systems for concurrent programs together with

a semantical soundness proof [8], [25]. Several more seman-
tically sound analysis techniques for concurrent programs
were subsequently proposed ([12], [13], [18], [36], [19],
[29], [30], etc.), providing, e.g., scheduler-independence
results and support for controlled declassification. However,
we are not aware of any prior approaches with a sound
semantic foundation that provide a flow-sensitive security
analysis for concurrent programs, which is possible with our
assumption-guarantee based approach.

A desirable property of security analyses for concurrent
programs that has been widely investigated is scheduler inde-
pendence [12], [18], [15], [19], [26], i.e., the adequacy of the
security analysis for multiple runtime environments differing
in the scheduler. The first such scheduler-independent secu-
rity condition was the strong security condition proposed
by Sabelfeld and Sands [12]. The scheduler independence
of strong security is due to its bisimulation-based security
definition that requires lock step execution of threads. As
SIFUM-security is also based on a bisimulation requiring
lock step execution, we are very confident that the argument
for scheduler independence is also applicable for SIFUM-
security. Quite recently, Mantel and Sudbrock developed
a more flexible scheduler-independent security property,
supporting loops whose guards depend on secrets [26]. We
believe that it is also possible to integrate their improved
approach to scheduler independence with SIFUM-security.

There are some approaches to information flow security
that consider synchronization [44], [28], [16], [46], [47].
These approaches focus on the prevention of informa-
tion leaks that arise if the occurrence of synchronization
depends on secrets. In contrast, our approach allows to
exploit the effects of thread synchronization, as different
types of synchronization primitives (for instance, mutexes,
barriers, and critical regions) can be used to ensure that
the assumptions made by threads about concurrent variable
accesses are justified. The only other approach we are aware
of that exploits synchronization primitives is followed in
[14], where barrier synchronization is added to programs
for making a successful security analysis possible. Russo
and Sabelfeld [19], [47] follow an approach that assumes
a nonstandard interface to the scheduler through which
threads convey security-relevant information. In contrast, we
support standard synchronization primitives to let threads
communicate with other threads directly.

Data-Sharing Annotations: The data-access assumptions
upon which our approach is based are not security specific,
but are nevertheless somewhat different from the classic
properties. As our focus is compositional information flow
security, we do not, in this paper, consider in depth the prob-
lem of verifying the global soundness of modes. Hence, it is
useful to consider related work on correctness of concurrent
programs which make use of similar assumptions, and in
addition provide some form of verification method.

One influential line of work stems from Boyland’s frac-
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tional permissions [48] that permit to divide permissions
among multiple threads: Full permissions permit both writ-
ing and reading, partial permissions permit only reading.
I.e., full permissions correspond to the combination of our
no-read and no-write assumption, and partial permissions
to the combination of our no-write assumption and no-
write guarantee. Other kinds of fractional permissions have
also been investigated: In [49], fractional deny-permissions,
roughly, correspond to the combination of our no-write
assumption and guarantee, and fractional guar-permissions
to neither making no-write assumptions nor providing no-
write guarantees. Based on ideas from concurrent separation
logic [50], compositional logics for reasoning with fractional
permissions have been developed, where a key to compo-
sitionality is to exploit specific synchronization primitives
that permit to safely transfer permissions between threads.
For instance, [49] uses synchronization points provided by
fork/join synchronization to transfer permissions between
dynamically forked threads, and [51] allows to transfer
permissions at synchronization points established by barrier
synchronization. Other approaches exploit atomic statements
[52] and conditional critical regions [50]. Our approach is,
in contrast, not specific to some particular synchronization
primitive – the price we pay for this generality is that we can-
not describe the soundness of modes in a compositional way.
An approach to transferring permissions that is similar to our
approach for transferring modes using the annotations acq
and rel are the inhale and exhale commands in Chalice [53].

The closest form of assumption to those used in the
present paper are the thread-level exclusive ownership (no-
body else will read or write) and read ownership policies
used in recent work of Martin et al [54]. Ownership is
acquired and released via annotations. The soundness of the
annotations are not verified however, but are checked using
a runtime monitor. This is also related to the sharing cast
annotations checked by a combination of static and dynamic
analysis in the SharC tool [55].

VIII. CONCLUSION

Assuring secure information flow for concurrent programs
has been a long standing problem in security research.
Existing compositional solutions reject many intuitively se-
cure programs. This limits the applicability of information
flow security analyses for concurrent programs. Aiming at
overcoming the limitations of existing analysis techniques,
we successfully exploited assumptions and guarantees in
the information flow analysis of concurrent programs. We
developed a novel compositional information flow security
property that is compatible with assumptions and guarantees.
Based on the novel security property, we were able to
successfully analyze realistic concurrent programs that are
intuitively secure but could not be successfully analyzed
with prior approaches. Moreover, based on our approach

we provide the first compositional security analysis for
concurrent programs that is flow-sensitive.

The approach presented in this article is complementary
to the approach pursued in [26]. In [26], the stepwise
bisimulation in the security definition could be relaxed while
remaining both compositional and scheduler-independent.
This enabled a compositional security analysis which is
more flexible than prior scheduler-independent analyses. In
contrast, here our goal is to improve compositional reasoning
by introducing assumptions and guarantees to exploit how
concurrently executing threads coordinate their accesses to
the shared memory, leading for instance to the possibility
of a flow-sensitive security type system for concurrent
programs. We expect the two approaches to be compatible.
A next step in our research project will be to combine these
complementary approaches in a uniform framework.

While our objective was to increase the precision of in-
formation flow analysis for concurrent programs, we believe
that assumption-guarantee style reasoning can also improve
the treatment of other aspects, like, e.g., method calls (in a
concurrent as well as in a sequential setting).

We hope that our contributions will initiate the adoption
of assumption-guarantee based reasoning in information
flow security and enable more widely and better applicable
information flow security analyses for concurrent programs.
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