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Abstract—In filtering algorithms, it is often desirable that the
prior and posterior densities share a common density parame-
terization. This can rarely be done exactly. Instead it is necessary
to seek a density from the same family as the prior which closely
approximates the true posterior. We extend a method for comput-
ing the optimal parameter values for representing the posterior
within a given parameterization. This is achieved by minimizing
the deviation between the parameterized density and a homotopy
that deforms the prior density into the posterior density. We
derive novel results both for the general case, and for specific
choices of measures of deviation. This includes approximate
solution methods, that prove useful when we demonstrate how the
method can be used with common density parameterizations. For
an example with a non-linear measurement model, the method
is shown to be more accurate than the Extended, Unscented and
Cubature Kalman filters.

Keywords: Nonlinear filtering, homotopy, measurement
update, optimization, ordinary differential equations.

I. INTRODUCTION

The problem of computing the best estimate of the state of
a dynamic system from a set of noisy measurements arises
in many fields, such as navigation, radar tracking, computer
vision and biology. The filtering problem can be stated as the
task of finding the best estimate of the system state using all
past measurements.

A common assumption is that the system state evolves ac-
cording to a Markov process, and that noisy measurements of
the system state are taken at discrete time points. Under these
conditions, filtering operates in two phases; prediction and
measurement update. Between measurements, the state of the
system at future time points is predicted using the probability
density of the system state at the last measurement, and the
system equations, giving the so called prior probability density
at the next measurement. The posterior probability density,
which is the probability density of the state conditioned on
all past measurements, including the new measurement, is
computed from the prior probability density and the likelihood
of the measurement, using Bayes’ theorem. Using the posterior
density as input for the next prediction phase, the two phases
are repeated.

For linear systems and Gaussian random variables, the
optimal solution to the filtering problem is given by the
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Kalman filter [6]. Exact solutions to the filtering problem
exist for some other classes of systems [2], but in most
cases, obtaining an explicit solution to the filtering problem is
not possible. Performing the prediction step requires solving
the Fokker-Planck equation (also known as the Kolmogorov
forward equation), which is an intractable problem for all but a
very limited class of systems. There are numerous techniques
for approximating the solution of the filtering problem for
non-linear systems, such as the Extended Kalman filter, the
Unscented Kalman filter, and particle filters [4], [7]. The
solution of the prediction step in the general case can be
approximated by finite element methods applied to the Fokker-
Planck equation, although the computational load becomes
prohibitive even for systems of low dimension [10].

For all the methods mentioned, both exact and approximate,
the probability density of the system state, obtained from
the prediction step, is parameterized by a finite number of
parameters. While the posterior density can be evaluated
pointwise, an approximation of the posterior density within
the same parameterization class as the prior density is often
desirable, since it is used as an input to the next round of
prediction. Finding the best parameter values directly is a
problem of global optimization, which is very demanding.

Hanebeck et al. [5] introduced a general framework for per-
forming the measurement update. In this method, a homotopy
is formed, which gradually deforms an initial density into the
posterior density as a scaling parameter \ increases from 0
to 1. A parameterized density is chosen, and A-dependent pa-
rameter values are sought that minimize the deviation between
this density and the homotopy, according to a given measure
of deviation. The approximation of the posterior density is
then retrieved as the parameterized density at A = 1. In [5],
the framework was used for examples of Gaussian mixtures.
A serious limitation of the framework is that it assumes that
integrals of functions of the homotopy and the parameterized
density can be computed over the entire domain. This method
shares some ideas with an approach that has been developed
in a series of papers by Daum and Huang (see e.g. [3]). Even
though Daum and Huang do not explicitly specify any density
parameterization, they use a homotopy to propagate particles
which characterize the posterior distribution.



In many ways, this paper blends the work by Hanebeck
et al. [S5] with the ideas of Daum and Huang [3]. The
similarities with Daum and Huang are the choice of homotopy,
and that we initialize the homotopy with the prior density.
Like Hanebeck et al. we use a cost based approach with a
general but explicit density parameterization. The framework
of Hanebeck et al. is extended by formalizing the minimization
criterion for arbitrary measures of deviation and deriving the
resulting system of ordinary differential equations (ODEs) to
be solved for obtaining the parameter values as a function of A.
We further discuss how approximations can be introduced to
facilitate the computations for non-Gaussian, non-linear and/or
high-dimensional problems. In addition, we demonstrate how
the method can be used with several different, commonly
used, measures of deviation, density parameterizations, and
measurement models. In these examples, we use the approxi-
mations that we have developed in order to make the computa-
tions tractable when the posterior density cannot be computed
analytically. The method makes no assumption about the type
of parameterization, other than appropriate smoothness of the
measure of deviation with respect to the parameters and .
We hope that the flexibility of the method will allow the use
of new prediction algorithms, making it possible to address
the large class of problems that are inaccessible with today’s
methods.

II. BACKGROUND

In this section, we will present the theoretical background
needed for the presentation of our method for computing
the optimal parameterization of the posterior density. This
includes presentations of the framework that we elaborate on
and the specific choices of density parameterizations, measures
of deviation, and measurement models used in our simulations.

A. The Filtering Problem and its Solution in the General Case

Given a time-dependent stochastic vector x¢, representing
the system state, and noisy measurements ¥i,ys, ..., of the
system, taken at corresponding time points t; < t3 < ..., the
filtering problem can be stated as finding the best estimate of
x¢ given the set of measurements Y; = {y; : t; < t}.

Assuming that the system state evolves according to a
Markov process, the solution to the filtering problem consists
of repeated cycles of two distinct phases. The first of these
is the prediction phase, operating between measurements, in
which the predictive density p(x:|Y:, ), tie1 < t < t,
k=1,2,...,1is computed from p(x:, ,|Y:, ,) and the system
equations. We will denote p(xy,|Y:, ,) the prior probability
density.

The purpose of the second phase, called the measure-
ment update, is to compute the posterior probability density
p(x¢,|Y:, ). The prior and posterior probability densities are
related through Bayes’ theorem, i.e.,

pyklzr)p(@rlYe,_,)
P(Z/k|Ytk71)

pzr|Ys,) = : (1)

where p(yr|xy) is called the likelihood of the measurement.
As the denominator of the right hand side of (1) acts as a
normalization factor, the posterior probability density can be
computed without explicit knowledge of p(yx|Ys,_,), through
normalization of the numerator.

B. Assumptions and Notation

For ease of notation, we consider the kth measurement
update, and denote the prior density by p(x) and the likelihood
by I(z). Since the filtering problem can be solved exactly
only for a very limited class of systems, solutions to the
problem have to be approximated in the vast majority of
cases. We will by p(x) mean the prior probability density
obtained from the chosen solution method, whether it be exact
or approximate. When necessary, we will assume that Leibniz
rule for differentiation under the integral sign is applicable.

C. Progressive Bayes

The method used in this paper builds on the work of
Hanebeck et al. [5], who establish the following framework
for computing the optimal parameters for representing the
posterior density within a given parameterization class:

1) Introduce a homotopy, f(x;\), where f(x;0) is some

density that is simple to approximate. As A increases,
f(z; \) continuously approaches f(x; 1), that equals the
posterior density.
2) Define an approximation density, f,(z;6), where 0 is a
parameter vector of dimension 7.

3) Define a measure of deviation, G(6, \), between f(z; \)
and f,(z;0).

4) Derive a system of ODEs of the form

b(0,A) = A(6)0'(N), ()

where 6(0) is given. The optimal parameter values are
then 6(1).

In the paper by Hanebeck et al., it is not specified more
explicitly how to derive the system of ODEs for a general
measure of deviation, but instead the authors show how the
framework is implemented for a specific choice of the involved
components.

D. Probability Density Parameterizations

A common family of parameterizations of probability den-
sities follows from assuming that the probability density of x;
is a mixture of Gaussians, i.e.,

n

falw;0) = wiN(w; i, ), 3)

i=1
where N (x; 1, %) denotes the probability density function of
a multivariate normal distribution with mean p and covariance
matrix 3, 0 < w; < 1 are the weights, summing to 1, u; are
the means, and ¥;, 7 = 1, ..., n, are the covariance matrices of
the Gaussians forming the sum. The corresponding parameter
vector is

0 = [wi,..., Wny 1y, fin,vec(Xy),. .. ,Vec(En)]T. @)



A very flexible density parameterization consists of values
of the density at specific points, and a method to interpolate
between these points. In other words, we have the parameters

7Un]T7 Q)

where v; is the value of the probability density at the point
zi, © = 1,...,n, where n is the number of points. The
interpolation method determines the structure of f,(x;0).

0=[x1,...,Tn,01,...

E. Measures of Deviation

For our examples, we use two well-known measures of
statistical distance. The first is the Kullback-Leibler divergence

(9]

q(x)

Di(QIR) = [ ala)log 47 da. ©
where () and R are continuous random variables with prob-
ability densities g(x) and r(z), respectively. Although the
Kullback-Leibler divergence is not a true distance metric, since
it is not symmetric, it will prove useful for our examples. The
second choice of G(f, \) is the squared Hellinger distance [8],

Q1) = [ (Valw) - Vi) do @

with @, R, q(z), and r(x) defined similarly as in the
Kullback-Leibler case. With slight abuse of notation, we will
use Dy, (¢(a)[r(2)) = Dxe(QIR) and H(q(x), r(x)) =
H?(Q, R). We will see that these measures of deviation yield
satisfactory results for our method, although the functions
corresponding to ¢(x) and r(x) are not necessarily probability
densities. In the example given by Hanebeck et al. [5], the
measure of deviation is

Daal0.) = 5 [ (Fwi) = fulasb) — 670 - ) d,

Ofal(z;0)
00

which is a linearization of the squared integral deviation

Dat(0,3) = 5 [ (7w ) = fulws6)) d,

®)
Pa

)

=0
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around the nominal parameter 6.

F. Measurement Models

For a measurement model

(10)

where vy, is normally distributed with mean 0 and covariance
matrix R}, the likelihood is

I(z) = N(yx; h(x), Ry).

Y = h(xe,) + vk,

(an

The measurement models considered in our simulations below
are of two different types. The first type is the linear model
h(x) = Mjx, since this gives a Gaussian likelihood, which is a
common assumption. The second type of measurement model
we consider is typical of radar systems, where measurements

are taken in polar coordinates, while the system state is
represented in Cartesian coordinates. This corresponds to

h(z) = [\/2? + 23, arg(x + izo)]7,

where 2 = [z1, )7

(12)

III. OPTIMAL POSTERIOR DENSITY REPRESENTATION
USING HoMOTOPY

Given the definitions in Section II, several methods for
finding the optimal parameter values to represent the pos-
terior density within a given parameterization are possible.
A naive approach is to minimize G(6,1) w.rt. 6 directly.
Performing optimization in this case is computationally a
costly approach and/or does not guarantee that the global
minimum is found. Another possible method is to iteratively
compute the optimal parameters 6(A) for small increments
of A\ by successive minimizations of G(6, ). This would
hopefully make the optimizations involved simpler to perform,
since only small adjustments of 6 are necessary for every
increment. The problems of choosing a suitable optimization
method remains, however. The presented method circumvents
this problem, by tracking the minimum of the measure of
deviation for increasing values of A. The necessary condition
for optimality of the parameters is used to derive a system
of ODEs governing 6(\). We thus transform the optimization
problem into solving a system of ODEs, for which efficient
numerical methods exist.

We assume the conditions outlined above, i.e., a prior
probability density p(x) that belongs to a class of param-
eterized functions f,(z;6), where 0 is a parameter vector.
The parameter values 6y are such that p(x) = fo(z;6p).
The likelihood of the measurement is [(z). We seek the
parameter values 0,, giving the optimal approximation of the
unnormalized posterior probability density, within the class
of functions defined by f,(x;6). To this end, we build on
the general framework in Section II-C. The general idea is
to calculate the optimal parameter values 6(\) that minimize
a measure of deviation, G(6,)), between f,(z;0) and a
homotopy f(x;\), that continuously deforms p(z) into the
unnormalized posterior p(x)i(xz) as A increases from 0 to
1. While different homotopies that fulfill these criteria are
possible, we have chosen to use

f(@i ) = ()M (),

when a specification of f(x;\) is needed.

A modification of the method presented in [5] is that we
choose f(x;0) equal to the prior density. As discussed above,
in a typical filtering framework, we obtain an approximation
of the prior within a given parameterization class from the
preceding prediction step. Using the same parameterization for
fa(z;0), we obtain a suitable representation of the posterior
for the next round of prediction. These choices of f(x;0),
fa(z;0) and 0y also minimize G(6,0), which is essential.

We extend the work in [5] by deriving the differential
equation governing the evolution of #(\) for arbitrary mea-
sures of deviation G(6, \). This differential equation does not,

(13)



strictly speaking, fall within the class of ODEs (2), considered
by Hanebeck et al. We also develop approximate solution
methods, that prove useful when analytic solutions of the right
hand side of the ODE are not available.

More formally, we seek

0(N\) = argmin G(6, A). (14)
0
Using the notation
P AIG(0,N)
Gy j 6‘,)\ = 7’ s 15
oixi (0,A) 960N |oi (15)
A=A

a necessary condition for optimality is

Go(O(N),\) =0. (16)

Since this condition is true for all A € [0, 1], we obtain, by
taking the total derivative w.r.t. A of the preceding equation,

Goo(0(), N0 (A) + Goa(B(N), A) =0, (17)

by applying the chain rule. Solving for ¢'()\), we arrive at,
what we denote, the homotopy differential equation (HDE)

(18)

where we, for the reasons mentioned above, have the initial
condition 0(0) = 6, and solve it for A € [0,1].

0'(A) = —Gig (0(N), N)Gor(6(N), V),

A. Approximation of the HDE Using Restart

The solution of the HDE can be approximated by lin-
earization on A-intervals corresponding to a partition of [0, 1],
yielding an equation that we denote the Homotopy Difference
Equation (HAE). 1t is possible to simplify the HDE at A = 0,
by observing that f(x;0) = fo(x;0(0)) = p(z). If the HAE is
restarted at A-points corresponding to the left points of the A-
intervals of the partition, taking f,(z;60()\)) at each A-point
as the prior probability density for the restarted HAE, we
obtain what we denote the Approximate Homotopy Difference
Equation (AHAE), where the simplifications possible for the
HDE at A = 0 can be applied on each A-interval. Using
the same approximations in the continuous case, we obtain
what we call the Approximate Homotopy Differential Equation
(AHDE). It is worth noting that when f(x; \) can be perfectly
represented by f,(x;6), the AHDE is equivalent to the HDE,
i.e., it does not introduce any additional approximations.

To be more explicit, we have, by Taylor’s formula, for a
partition 0 = Ao < Ay < ... < A\, =1,

1 =0,...,n — 1, where A\; = X\; 11 — \;. Truncating the
Taylor expansion after the linear term, we obtain the HAE as
O(Nis1) = 0(N:) + 0" (X)) AN, (20)

0(0) = 6(0) (21)

where O(\; 1) is the approximation of 6(\; 1) obtained from
the HAE, and 0’ (\) = —Gy, (0(\), \)Gox(0(N), ).

For the computation of the AHAE, the HAE is restarted
at every )\;, in the sense that f,(z;0()\;)) is used as the
prior. This is reasonable, since f,(x;0())) is the best possible
approximation of f(x;\), by design. As mentioned above, it
is then possible to make simplifications to the AHAE

(22)

‘9:()\i+1) = 5()\1) + 9:’()\)A)\1;,
A(0) = 6(0 (23)

6(0) = 6(0),

where 6(\;41) is the AHAE approximation of #(\;11), and
0'(\) = =G (0(N), \)Gor(0(N\), \), with the substitutions
A=0and f(z;\) = p(x) := fo(z;0).

To derive the AHDE, we let A)\; — 0, and obtain, in the
limit,

0'(\) = =Gl (B(N), N)Gar(B(N), \),
6(0) = 6(0),

(24)
(25)

where 6()) is the AHDE approximation of (), and the right
hand side of the differential equation is computed using the
substitutions A = 0 and f(x;\) := p(z) := fu(x;0).

1) AHDE for Specific Measures of Deviation: We will
study how the AHDE can be simplified for specific choices
of the measure of deviation, namely the Kullback-Leibler
divergence and the squared Hellinger distance. We will use
f = f(z;A) and f, = fu(x;0) for ease of notation. Using
the Kullback-Leibler divergence as our choice of measure of
deviation, we have

O*Dxr(fIfa) = 9% fq
. . =7(9)— 502 dx (26)
9Dk (fall f) 5 > fa
— . =7(0) + 502 dz, 27
62DKL(f||fa) — 82DKL(fa||f) (28)
oRNoL) A=0 Yol A=0
f=fa a =Ja
= —/log(l) a‘l;a dz, 29)
where
T
f(G) _ dlog f, 0log f, £, dz (30)

a0 00

is the Fisher information matrix, Z(6), if f,(z;6) is a proba-
bility density. If this holds, the second terms of the right hand
sides of (26) and (27) disappear, making them equal to the
Fisher information matrix.

If the measure of deviation is instead taken to be the squared
Hellinger distance, we obtain the corresponding expressions

O’ H?(f, fa) 1

T |, 120, 31
OPH(f f)| 1 o,

T 900N a0 —Z/log(l) g v 32



We see that for both the Kullback-Leibler divergence and
the squared Hellinger distance, the AHDE is

% =77(0) / log(l>af - (33)
0(0) = 6(0), (34)

when f,(x;0) is a probability density.

2) Connection Between Linearized Squared Integral Devia-
tion HDE and AHDE: Hanebeck et al. use (8) as the measure
of deviation, and derive the ODE

0f0fa , Ofa 0fa” /
ax o0 T < 20 00 |0, G
corresponding to the HDE.
For the squared integral deviation, (9), we have
aQDSI afa 8faT aZfa
= | ( o0 op U I gge | dn G0
82DSI af 8fa
oo~ ) ax oo 37
By noting that
9 Dsr 0fa 0fa”
o6 |,_, ~J) a6 90 (35)

we see that the ODE derived in the example in [5] is in fact
the AHDE with Dg; as the choice of measure of deviation.

B. Approximation of the HDE Using Numerical Integration

The integrals of the HDE can be approximated by numerical
methods. Write the chosen measure of deviation as
G(O,)) = / o(x:0, ) dr, (39)

Q
where g(z;0,\) is an expression formed by f(z;\) and
fa(z;0), and € is the union of the supports of f(z;\) and
fa(z;0). This is applicable for both the Kullback-Leibler di-

vergence and the squared Hellinger distance, used as measures
of deviation in the examples below. We then have

D*°G(0,N) [ 0g(x;0,))
90,00, _/Q 0,00, (“40)
?g(&k; 0,0
NZ 26,06, A:Uk, (41)

where we have divided ) into disjoint elements wy, k =
1,...,n, with respective volumes Az, & € wg, and 4,5 =
1,...,7 . Even for f(x;\) or f,(x;6) with infinite support, it
is often possible to introduce such a division of € with finite
n, by neglecting any element w, with volume AZ, such that

?g(€;0,)) 0%9(&,; 6, \)
Al <<<Z 96,00,

A
00,00, 2 T

(42)

=A4,,;(0,))

where 56 . If Ax = Axy, we thus have

% ~ AzA(0, ). (43)
By a similar argument,
2 2
o A TGN
bi(0,))
Using this approximation with the HDE, we obtain
0'(\) = —A(0,\)"'b(6, \) |9 K (45)

This gives some justification to computing the measure of
deviation over a grid of discrete points instead of over €.
In the examples below, we will see that this method gives
satisfactory results, even for grids that only partly cover 2.

IV. EXAMPLES

In this section, we demonstrate how the posterior probability
density can be computed using our framework, for the exam-
ples mentioned in Section II, beginning with an example for
which the integrals of the HDE can be solved exactly. In the
later examples, we show how even coarse approximations of
the HDE yield satisfactory results. Throughout the examples,
we use the homotopy (13).

A. Univariate Gaussian Prior and Likelihood

As a first example, we assume a prior given by a uni-
variate normal density, with mean o and variance US, ie.,
p(z) = N(x;p0,08). The likelihood is given by I(z) =
N(m;x,02) = N(z;m,0?). We use the Kullback-Leibler
divergence, Dk, (f(z;A)| fa(x;0)), as the measure of de-
viation between f(x;\) and f,(x;0). Furthermore, we let
fa(z;0) = N(x;p1,02), and thus 6 = [u,02]T. We obtain

the HDE
do(\) _ ., [ 0f dlog fa
N =1 Y] dx, (46)
_ dlog fo Dlog fu' 1 9°fa
I_/f< 90 o9 7. a02 | 4 @D
0(0) = [mo, o5]" (48)

For numerical values of the parameters of the prior probability
density and the likelihood, the integrals of this HDE can
be solved analytically. In this example, we arbitrarily choose
po = —5, 02 = 2, iy = 3 and o7 = 6. The true posterior
probability density is normal with mean —3 and variance
3/2. The HDE can now be solved numerically, yielding
(1) = [-3.0,1.5]7, which is the expected result, since no
approximations are introduced, other than those resulting from
the error tolerances used by the numerical ODE solver. The
solution of the HDE is visualized in Figure 1. The homotopy
f(z; \) coincides with f(x;0()\)) for 0 < A < 1 (not shown).



) A=1

Figure 1. The prior (dashed) and posterior (dash-dotted) probability densities,
likelihood (dotted), and fq (z;60(\)) (solid) for A = 0 (a), A = 0.5 (b)
and A = 1 (c), for the example in Section IV-A. For A = 0 and A\ =
1, fa(z;0(X)) coincides with the prior and posterior probability densities,
respectively.

B. Gaussian Mixture Prior

As discussed in Section II, a sum of Gaussian kernels is
a possible choice of prior. In this example, using bivariate
densities, we assume

2
fal@:0) =D wil (w; s, ), (49)
i=1
9 - [wh M1,z Nl,zga 01,21,01,255 P1, W2, ..., pZ]Tv (50)
Y, = [ 0,-2@1 Pi0ix10ias 51)
Pi0i,x1 04,25 i,To

3 I I I I I
-3 -2 -1 0 1 2 3

(b) fa(x;60(1))

Figure 2. Contour plots of fo(z;0()\)), A = 0 (a) and A = 1 (b), for the
example in Section IV-B

The prior probability density is given by p(x) = f,(x;60(0)),
where 0(0) is chosen arbitrarily to
[3,—-1.,—1.,.75,.5,—.5,.7,1.,1.,1.5,.75, 5]T.  (52)

Furthermore, we assume the likelihood I(z) = N(z; pu, X))

with arbitrarily chosen values y; = [0,0]7 and %; defined
similarly as ¥; above, with 0;,, = 1., 075, = 1.25 and
pi = —0.25. To approximate the integrals of the resulting

HDE, where the measure of deviation is given by the squared
Hellinger distance, the integrals are replaced by sums of
the integrands at the points of a uniform 7 by 7 grid over
[—3, 3] x [—3, 3] (cf. Section III-B). In Figure 2, f,(x;0()\)),
with #(\) obtained from the numerical solution of the HDE,
is plotted for A = 0 and A = 1. In similar contour plots of
f(z; \) superimposed on f,(x;0())), the contours coincide
for A € [0, 1] (not shown). The solution of the AHDE yields
equally similar f(z; ) and f,(x;60()\)) (not shown). The
Hellinger distance between f(x;1) and f,(z;60(1)) computed
numerically over [—3,3] x [—3,3] is very close to zero, the
difference most probably due to limited machine precision.



C. Non-linear Measurement Model

The next example is inspired by the filtering problem arising
in radar observations. We assume a two-dimensional Gaussian
prior, with iy, = g, = 0y, = 04, = 1 and p = 0, using
notation similar to the that of the example in Section IV-B.
The measurement model is given by (11) and (12), with the
measurement y = [y, ya]”, where y; = 1 and y» = 75/18 are
the measured distance and angle, respectively. The covariance
matrix of the measurement noise is

022 0
R= [ 0 0.6° ]

The measure of deviation is given by the squared Hellinger
distance. In this example, the integrals of the HDE and the
AHDE are replaced by sums of the integrands at the points
of a uniform 9 by 9 grid over the region [—0.01,1.99] x
[—0.01,1.99] (cf. Section II-B). The resulting fq(z;0(1))
from the numerical solution of the HDE is compared to the
true posterior density f(x; 1) in Figure 3. The posterior density
inherits its non-elliptical shape, when visualized in a contour
plot, from the likelihood function. This shape is typical of
a radar measurement, where the uncertainty of the distance
measurement is less than the uncertainty of the measurement
of the angle. Since we have limited the approximation of
the homotopy to a Gaussian, it is clear that f,(z;6(1))
cannot fully capture the shape of the unnormalized posterior
probability density. However, as seen in the figure, the two
functions overlap to a great extent in the areas of high density.

(53)

To compare the accuracy of the proposed method to the
Extended Kalman Filter (EKF), Unscented Kalman Filter
(UKF) [7], the Cubature Kalman Filter (CKF) [1], and global
optimization of the parameters, we compute the Hellinger
distance between the posterior and the approximations of the
posterior obtained from the different methods. The UKF is
implemented from [11], with parameters o = 1073, 3 = 2 and
x = 0, and resulting sigma point weights, as suggested in [12].
The Hellinger distance is approximated by taking the square
root of (7), evaluated numerically over [—1, 2] x [—1, 2], which
is a reasonable approximation, since the probability densities
are close to zero outside this region. The global optimization is
performed with the built-in function NMinimize (using the
Nelder-Mead method) in MATHEMATICA, using the Hellinger
distance as the objective function, and serves as a benchmark.
The results are compared in Table I, where the abbreviations
introduced in the text are used to denote the respective meth-
ods, and “Global” denotes global optimization. The distances
corresponding to our method, using the HDE and AHDE, are
close to the distance of the benchmark, with the AHDE being
less accurate than the HDE, as expected. The EKF, UKF and
CKF all give greater values for the Hellinger distance than our
method, for this example. We note the surprising result that in
this simulation, the UKF and CKF perform less well than the
EKF. The computational complexities of the HDE and AHDE,
requiring the solution of a system of ODEs, are significantly
greater than those of the EKF, UKF and CKF. The HDE and

I I I
-1 0 1 2 3

(@) f(z;1)

T S S S S
-1 0 1 2 3

(b) fa(x;60(1))

Figure 3. Contour plots of the true posterior density f(z;1) (a) and
fa(z;0(1)) (b) for the example in Section IV-C.

Table 1
APPROXIMATE HELLINGER DISTANCE BETWEEN THE TRUE POSTERIOR
AND ITS APPROXIMATION COMPUTED USING DIFFERENT METHODS, FOR
THE EXAMPLE IN SECTION IV-C.

Method | Hellinger distance
HDE 0.172
AHDE 0.199
EKF 0.300
UKF 0.415
CKF 0.703
Global 0.167

AHDE were solved in 1.078 s and 0.890 s on a regular desktop
computer, respectively. This should be compared to the 174 s
spent by the global optimization algorithm, with only a modest
improvement in the Hellinger distance between the resulting
approximation and the true posterior.

D. Point-Value Parameterization

This last example demonstrates how a very flexible param-
eterization, approximating the densities through interpolation
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Figure 4. The prior density, obtained from interpolation between point-value
pairs, for the example in section IV-D.
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Figure 5. The unnormalized posterior (dashed) and its approximation (solid),
obtained from the HDE as fq(z;6(1)), for the example in section IV-D.

between point-value pairs, as outlined in Section II, can be
used with the proposed framework. We use the parameterized
density function

fa(;0) = exp(g(x:0)),
where 6 is given by (5), and g(x;0) gives the linear interpo-

(54

lation of the point-value pairs {z;,v;}, i = 1,...,n, with the
boundary conditions
dg(z;0) 1, r < ming<;<g, &,

dr -1, = >maxi<i<p T, (55)
which were chosen arbitrarily for the sake of our example.
We let n = 3, 6(0) = [~1,0,1,0.5,0.7,0.3]T, giving a prior
density as shown in Figure 4. While this is not a probability
density, the given parameter values are used for ease of
presentation. The parameter values could be scaled to yield
a prior density that integrates to 1, to make the example more
true to the intended application. The likelihood is taken to
be I(z) = N(x;2,9). Using the method described in Section
III-B to approximate the integrals of the HDE, in which
the measure of deviation is given by the squared Hellinger
distance, a solution of the HDE at A = 1 is obtained that is
close to the posterior computed from pointwise multiplication
of the prior density and the likelihood, as shown in Figure 5.

V. CONCLUSION

We have elaborated on a method for computing the optimal
parameter values to represent the posterior probability density
of a Bayesian measurement updated. The method is based on
tracking the minimum of a measure of deviation between a

parametrized density function and a homotopy, that deforms
the prior density into the posterior density. Our contributions
are a formalization of the minimization criterion and the
resulting system of ODEs for both arbitrary and specific
measures of deviation, and methods for approximate solutions
of the problem. We have shown that the method and the
approximations can be used successfully with common pa-
rameterizations of density functions, including cases where no
analytical solution is available, where the method yielded more
accurate results than the Extended, Unscented and Cubature
Kalman Filters. We hope that the framework will aid the
development of filtering algorithms for non-linear and non-
Gaussian problems, where flexible parameterizations of the
probability densities are needed.
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