
A Look At Gaussian Mixture Reduction Algorithms
David F. Crouse, Peter Willett, and Krishna Pattipati

Department of Electrical and Computer Engineering
University of Connecticut
371 Fairfield Way, U-2157

Storrs, CT 06269, USA
Email: {crouse, willett, krishna}@engr.uconn.edu

Lennart Svensson
Department of Signals and Systems
Chalmers University of Technology

SE-412 96 Göteborg, Sweden
Email: lennart.svensson@chalmers.se

Abstract—We review the literature and look at two of the

best algorithms for Gaussian mixture reduction, the GMRC

(Gaussian Mixture Reduction via Clustering) and the COWA

(Constraint Optimized Weight Adaptation) which has never been

compared to the GMRC. We note situations that could yield

invalid results (i.e., reduced mixtures having negative weight

components) and offer corrections to this problem. We also

generalize the GMRC to work with vector distributions. We then

derive a brute-force approach to mixture reduction that can be

used as a basis for comparison against other algorithms on small

problems. The algorithms described in this paper can be used in

a number of different domains. We compare the performance of

the aforementioned algorithms along with a simpler algorithm by

Runnalls’ for reducing random mixtures, as well as when used

in a Gaussian mixture reduction-based tracking algorithm.

Keywords: Gaussian mixture reduction, nonlinear optimization,

clustering, ISE, tracking

I. INTRODUCTION

Gaussian mixture reduction algorithms are useful in many
areas, including in error correction codes [1], supervised
learning of multimedia data [2], distributed data fusion [3], and
pattern recognition [4]. In many target tracking problems, data
association uncertainty manifests itself as multiple hypotheses,
each corresponding to a component in a multivariate Gaussian
mixture posterior distribution. It is naturally of interest to
reduce their number with minimal loss of fidelity. The simplest
method of managing the complexity is to eliminate Gaussian
components having low probabilities, as used, for example,
in the track or hypothesis-oriented Multi-Hypothesis Tracker
(MHT) [5]. Alternatively, instead of pruning components of
the Gaussian mixture, one could merge components according
to a similarity measure. Hypothesis merging can be considered
more attractive than (MHT-style) pruning, since the informa-
tion lost in removing mixture elements is, in some sense,
preserved in the uncertainty (covariances) of those retained.
Salmond is among the first to consider a tracker based on
merging hypotheses according to an ad hoc similarity measure
[6].1 Pao considered the generalization of Salmond’s tracker
to the multisensor-multitarget case [8]. Such trackers, which
are based upon hypothesis merging, may be considered to be
variants of the hypothesis-oriented MHT or as multimodal

This work was partially supported by the Office of Naval Research under
contracts N00014-09-10613 and N00014-10-10412.

1This journal article was preceded by a conference paper in 1990. [7]

generalizations of the Joint Probabilistic Data Association
Filter (JPDAF), as described, for example, in [9].

More advanced techniques for Gaussian mixture reduc-
tion optimize the parameters of the reduced mixture ac-
cording to a global optimality criterion.2 One of the first
uses of optimization-based mixture reduction was by Scott
and Szewczyk [11], [12], who introduced the so-called L2E

measure of similarity as well as a correlation measure of
similarity. The L2E measure is more commonly known as the
Integral Squared Error (ISE).3 The correlation measure was
also derived by Petrucci in the context of target tracking [10],
highlighting its relationship to the L2E and has more recently
been considered by Harmse [13], who considered accelerating
clustering with scalar states. The ISE measure was presented
in the context of tracking by Williams and Maybeck [14], [15].
The ISE has been around since at least the 1950’s [16], but not
in the context of Gaussian mixture reduction for tracking. A
Gaussian mixture reduction algorithm utilizing the ISE, similar
to that of Williams and Maybeck, was derived by Kurkoski and
Dauwels [1] in the context of error correcting codes.

Many mixture reduction algorithms, such as by Williams
and Maybeck [14], Petrucci [10] and Scott and Szewczyk
[12], are either greedy in nature, or are initialized by using
a greedy algorithm that often bears similarities to West’s
algorithm for mixture reduction [17]. The greedy initialization
algorithm is important, because the criteria of optimality are
all multimodal. As an alternative to Williams and Maybeck’s
greedy method, sequentially optimizing over the ISE, Huber
and Hanebeck [18] introduced an optimization utilizing a
homotopy in order to reduce the chances of converging to
a local minimum [18]. Rather than starting with the full
mixture and removing or merging components, this method
creates a mixture from one component and then sequentially
adds new components. The reasoning behind the method is
similar to that used in algorithms utilizing simulated annealing
and can be thought of as an extension of the work by
Schrempf, Feiermann and Hanebeck using progressive Bayes
estimation [19]. Schieferdecker and Huber later demonstrated
[20] that the method could be beaten in terms of the ISE by

2A detailed comparison of the optimality criteria is given in [10].
3The ISE, as named in [11], among other papers, is sometimes called the

Integral Squared Difference or the Integral Squared Distance [10].

978-0-9824438-2-8/11/$26.00 ©2011 IEEE

the GMRC algorithm. The GMRC algorithm uses a greedy
approach developed by Runnalls [21], which minimizes an
upper bound on the Kullback-Leiber (KL) divergence between
the full mixture and the reduced mixture, followed by a k-
means clustering using the KL divergence between the cluster
centers and the merged states as a distance measure and
finally followed by an iterative optimization. The use of the
k-means algorithm for Gaussian mixture reduction using the
KL-divergence as the distance measure had previously been
considered by Nikseresht and Gelgon [2] in the context of
pattern recognition. Chen, Chang and Smith [3] presented an
algorithm, the COWA, utilizing a modified form of Williams
algorithm, followed by a refinement step on the mixture
weights, different from that used in the GMRC by Schiefer-
decker and Huber. The COWA was later refined by Chang and
Sun [22] to improve the performance and to better estimate
the best number of components to use in the reduced mixture.

Algorithms based upon the expectation maximization algo-
rithm and variational Bayes estimation have been considered,
respectively by Petrucci [10], and by Bruneau, Gelgon and Pi-
carougne [4]. However, Petrucci showed that the EM solution
is slow and unreliable. On the other hand, the variational Bayes
method can not be used “out-of-the-box” for general problems,
since a number of prior PDFs must have their parameters tuned
(in a trial-and-error manner) for each new situation. Gaussian
mixture reduction could also be performed by sampling the full
mixture and fitting the parameters of the reduced mixture to
the samples using one of many pattern recognition algorithms
[23].

In Section II, we define the mixture reduction problem
as well as optimality criteria, including the ISE measure. In
Section III, we present the GMRC and the COWA algorithms,
generalizing the GMRC to handle multidimensional mixtures
and correcting a problem in both algorithms where the mixture
weights could be invalid (negative). In Section IV, we derive
a better performing, but also computationally more expensive,
brute-force algorithm that can be used as a basis for compari-
son with more practical mixture reduction algorithms. Section
V compares the performance of the modified GMRC, COWA
and the brute force method both on randomly generated
mixtures, as well as in a practical tracking scenario. We
conclude in Section VI.

II. OPTIMIZATION CRITERIA FOR THE GAUSSIAN
MIXTURE REDUCTION PROBLEM

Let our initial mixture PDF consist of N D-dimensional
multivariate Gaussian components, the i

th one having weight
wi, such that all wi > 0 and

�N
i=0 wi = 1, and means and

covariance µi and Pi, which we shall denote as ΩN . The
reduced mixture shall consist of L components, the i

th one
having weight, mean, and covariance w̃i, µ̃i, and P̃i, which
shall be denoted as ΩL. The PDFs are thus:

f(x|ΩN) =wTN(x) f(x|ΩL) =w̃T Ñ(x) (1)

where

w = [w1, w2, . . . , wN]T w̃ = [w̃1, w̃2, . . . , w̃L]
T (2)

N(x) = [N {x;µ1, P1} , . . . ,N {x;µN , PN}]T (3)

Ñ(x) =
�
N

�
x; µ̃1, P̃1

�
, . . . ,N

�
x; µ̃L, P̃L

��T
(4)

N {x;µi, Pi} � |2πPi|−
1
2 e

− 1
2 (x−µi)

TP−1
i (x−µi) (5)

We would like to determine the parameters of the reduced
mixture, f(x|ΩL), such that the “similarity” between the
original and the reduced mixture is maximized. The Integral
Squared Error (ISE) cost function, initially presented in the
context of tracking in [15], is the most widely used metric for
Gaussian mixture reduction, since (unlike some that might be
more attractive in terms of their statistical implications) it can
be expressed in a simple and closed-form. The ISE is given
by

JS(ΩL) �
�

x
(f(x|ΩN)− f(x|ΩL))

2
dx (6)

= w̃T
H1w̃ − 2wT

H2w̃ +wT
H3w (7)

= JLL − 2JNL + JNN (8)

where

H1 =

�

x
Ñ(x)Ñ(x)T dx (9)

H2 =

�

x
N(x)Ñ(x)T dx (10)

H3 =

�

x
N(x)N(x)T dx (11)

The elements of H1, H2 and H3 may be evaluated directly by
noting that integral of the product of two Gaussian PDFs is a
constant times a Gaussian PDF, given as:
�

x
N {x;µi, Pi}N {x;µj , Pj} dx = N {µi;µj , Pi + Pj}

(12)
A more detailed derivation of the integral of the product
of two Gaussian PDFs is given in [15]. The entries in the
i
th row and j

th column of H1 and H2 are respectively
N

�
µ̃i; µ̃j , P̃i + P̃j

�
and N

�
µi; µ̃j , Pi + P̃j

�
. The value

JNN does not depend upon the parameters over which the
optimization is being performed. The terms of (8) may thus
be expressed compactly as

JLL =
L�

l1=1

L�

l2=1

w̃l1w̃l2N
�
µ̃l1 ; µ̃l2 , P̃l1 + P̃l2

�
(13)

JNL =
N�

n=1

L�

l=1

wnw̃lN
�
µn; µ̃l, Pn + P̃l

�
(14)

JNN =
N�

n1=1

N�

n2=1

wn1wn2N {µn1 ;µn2 , Pn1 + Pn2} (15)

Other measures of similarity for Gaussian mixture reduction
have been extensively studied by Petrucci [10]. For example,
the Normalized ISE (NISE) can only vary between zero and
one,

JSN (ΩL) =

�
x (f(x|ΩN)− f(x|ΩL))

2
dx�

x f(x|ΩN)2 dx+
�
x f(x|ΩL)2 dx

(16)

=
JNN − 2JNL + JLL

JNN + JLL
(17)

whereas Petrucci [10] and Scott used a related correlation
measure [11], which should be maximized.4

Since no closed-form solution for the optimal parameters of
the reduced mixture has been found, the GMRC and COWA
algorithms utilize a number of methods to approximate the
optimally reduced mixture before iteratively minimizing ISE
as a function of the reduced mixture parameters. Since the
ISE cost function can have many local minima, having a good
initial estimate is key. We shall discuss the GMRC and COWA
in the following section.

III. THE GMRC, THE COWA, AND IMPROVEMENTS

The GMRC [20] algorithm was conceived with scalar vari-
ables in mind (D = 1). However, we shall consider everything
in a vector context. The GMRC works as follows:
Algorithm 1: The GMRC

1) (Greedy Initialization) Run Runnalls’ algorithm (Algo-
rithm 3 in Subsection III-A) to get an initial estimate of
f(x|ΩL).

2) (Clustering) Run the k-means algorithm with k = L us-
ing the Kullback-Leiber divergence between Gaussians
in the mixture as the distance measure to refine the
estimates.

3) (Refinement) Perform iterative optimization over the ISE
measure to refine the estimates.

The refined COWA [22] algorithm is intended to be used
both for mixture reduction as well as order determination. The
algorithm is normally run with an error bound �, a minimum
number of components L, and a distance threshold γ. The
algorithm works as follows:

Algorithm 2: The COWA

1) (Greedy Reduction) Run the enhanced West algorithm
(Algorithm 4 in Subsection III-A) to reduce the mixture
by one component. If γ is such that the mixture can not
be reduced, then the algorithm is finished.

2) (Refinement) Given the estimates of the means and co-
variances of the reduced mixture, calculate the globally
optimal mixture weights as described in Section III-C.

3) (Further Reduction) If the reduced mixture has L com-
ponents, or if the ISE of the reduced mixture is below
�, then stop; otherwise, go back to 1.

The original version of the COWA from [3] implicitly used
γ = ∞ in the enhanced West algorithm.

Both algorithms use various techniques to generate an
approximation to the optimal reduced mixture prior, which
is then used as an initial estimate in a refinement step that
optimizes over the ISE. In Subsection III-A, we discuss greedy
algorithms for mixture reduction, specifically describing Run-
nalls’ algorithm, used in the GMRC; and the enhanced West

4Petrucci [10] observed an (almost negligible) advantage for optimization
over the correlation measure when used in a tracking scenario. In this paper,
as in the GMRC, we will only consider optimization over the ISE.

algorithm, used in the COWA. In Subsection III-B, we then
explain how the k-means algorithm is used in the GMRC.
Finally, in Subsection III-C, we discuss the optimization
performed in the final steps of both algorithms, and how it
can be improved. Namely, we note that we do not have to
perform optimization over all D2 elements of each covariance
matrix, and we add constraints to the weight optimization
to assure that all weights (i.e., w̃) are positive and sum
to one. These improvements have not been considered in
past work. Additionally, we will note that unlike in previous
work, our presentation of the GMRC is generalized for vector
distributions.

A. Greedy Initialization Algorithms

Runnalls’ algorithm is one of a number of greedy initial-
ization algorithms for mixture reduction. Most greedy algo-
rithms for Gaussian mixture reduction try to decide which
components of a Gaussian mixture should be merged or pruned
in order to reduce the mixture to the desired number of
components. The exception to this is the algorithm by Huber
and Hanebeck [18], which continually adds new components
to a mixture beginning with a single component. However,
simpler approaches have proven to have better performance
[20].

Pruning is the simplest approach to mixture reduction.
Given a Gaussian mixture consisting of N Gaussians, one
can discard the N − L components having the lowest cost
(according to some measure), and then renormalize the weights
of the remaining components (i.e., the w̃’s must sum to
one). However, this pruning has proven inferior to more
sophisticated greedy methods [14].

Instead of pruning, one can perform mixture reduction
utilizing merging, whereby the merging of the components
comes from taking an expected value across the set of com-
ponents that are to be merged, similar to how the JPDAF
functions. This preserves the moments of the overall mixture.
For example, if one wished to merge components 1 to C, then
the equations for the merged result are

wmerged =
C�

i=1

wi (18)

µmerged =
1

wmerged

C�

i=1

wiµi (19)

Pmerged =
C�

i=1

wi

wmerged

�
Pi + (µi − µmerged)(µi − µmerged)

T
�

(20)

Greedy optimization methods differ in how they choose
which components are to be merged. Williams and Maybeck’s
algorithm [14] is one of the best, but also has been observed to
be more computationally complex than other approaches [20].
Runnalls’ greedy algorithm [21] minimizes an upper bound
on the increase in the Kullback Leibler divergence between
the original and the reduced mixtures. It is used in the GMRC
algorithm and is given below:

Algorithm 3: Runnalls’ Algorithm

1) Set the current mixture to the full mixture.
2) The cost of merging components i and j in the current

mixture is the upper bound on the increase in the KL
divergence [21],

ci,j =
1

2
((wi + wj) log [|Pi,j |]− wi log [|Pi|])

− 1

2
wj log [|Pj |] (21)

where Pi,j corresponds to (20) for merging only com-
ponents i and j. Merge the components of the current
mixture having the lowest ci,j using (18)–(20) and set
the current mixture to the result.

3) If the current mixture has the desired number of com-
ponents, quit. Otherwise, go back to 2.

The algorithms by Salmond [6] and Pao [8] are the same as
Runnalls’, but they use a different cost measure and have been
shown to perform worse than Runnalls’ method [21]. West’s
algorithm [17] is similar, except rather than considering all
possible mergers at each step, it only considers mergers involv-
ing the component with the smallest weight. The “enhanced”
West algorithm, used in the COWA [3], is a variant on that. The
version presented in [22] is the same if the distance threshold
γ = ∞. The algorithm is used in the COWA to reduce the
mixture by one component; it is given as follows:

Algorithm 4: The Enhanced West Algorithm

1) Calculate a set of modified weights for the components
of the current mixture:

w̃
mod
i =

w̃i

trace [Pi]
(22)

2) Let i denote the component with the smallest modified
weight. The cost of merging component j with compo-
nent i is given by the ISE distance between them:

ci,j = −2N {µj ;µi, Pj + Pi}+
�

k∈{i,j}

N {µk;µk, 2Pk}

(23)
Choose i and j such that i corresponds to the com-
ponent having the smallest modified weight such that
ci,j < γ ∀j �= i

5 and j is chosen such that ci,j is
minimized for this i. If no such pair can be found,
then the reduction is complete. Otherwise, merge the
components corresponding to the smallest ci,j using
(18)–(20), and set the current mixture to the result.

B. The k-Means Algorithm for Mixture Reduction

The k-means algorithm, used in the GMRC to refine an
initial estimate, was considered both by Schieferdecker and
Huber [20] in the GMRC, as well as separately by Nikseresht
and Gelgon [2]. The algorithm is as follows:

5The threshold γ is meant to prevent components that are too “distinct”
from being merged. If γ = ∞, then the algorithm merges the component
having the smallest weight with whichever component is the closest.

Algorithm 5: The k-Means Algorithm

1) Calculate an initial estimate of the reduced mixture,
f(x|ΩL), using, for example, Algorithm 3 or 4.

2) For each of the N components of the original mixture,
determine which component of the reduced mixture is
closest, whereby the distance between the i

th component
of the original mixture and the j

th component of the
reduced mixture is

dKL(i, j)=

�

x
N
�
x; µ̃j , P̃j

�
log

N
�
x; µ̃j , P̃j

�

N{x;µi, Pi}

dx

(24)

= trace
�
P̃

−1
j

�
Pi − P̃j + (µi − µ̃j)(µi − µ̃j)

T
��

+ log

�
det P̃j

detPi

�
(25)

3) The components in the original mixture closest to the
same component in the reduced mixture form a cluster.
Using (18)–(20), merge all of the components in each
cluster to form a new reduced mixture.

4) If the new reduced mixture is the same as the old re-
duced mixture or the maximum number of iterations has
elapsed, terminate. Otherwise, set the reduced mixture
to the new reduced mixture and go to 2.

It should be noted that methods exist for accelerating
the k-means algorithm using kd-trees [24].6 However, the
optimization over the ISE measure, described in the following
subsection, is generally the slowest step in the GMRC algo-
rithm.

C. Optimizing over the ISE Measure

We would like to maximize the similarity of the reduced
PDF to the original PDF, meaning that we would like to
minimize the ISE. Given an initial estimate of the weights,
means and covariances of the reduced mixture (the w̃, µ̃ and
P̃ terms), past work has then performed explicit optimization
over the ISE. Williams and Maybeck [14] performed this
optimization via a Quasi-Newton method [25], whereby the
gradients of the terms being optimized are needed, but second
order information (the Hessian) is not needed. We shall use
this method for the implementation of the third step (in a
generalized vector context) in the GMRC. The gradient of the
cost function in (8) is

∇JS(ΩL) = −2∇JNL +∇JLL (26)

During the optimization, the covariance matrices must be
symmetric and positive definite to remain valid. To enforce

6Often, the cost of setting up the data structure will exceed the performance
gain elsewhere if care is not taken when allocating and deallocating the
structure. In other words, one should call a memory allocation routine, such
as malloc if programming in C, once to allocate the whole structure and not
repeatedly for every node. This can be problematic when using an interpreted
language, such as MATLAB, that lacks precise control over data allocation.

this constraint, Williams and Maybeck [14] performed opti-
mization over the square root of the covariances rather than the
covariances themselves. That is, optimization was performed
over the set of Li such that

P̃i = LiL
T
i (27)

where the initial Li may be obtained by taking the lower
triangular matrix from the Cholesky decomposition (see [26])
of the initial estimate of P̃i. The necessary gradients for
performing optimization over the µ̃ and L terms are [15]

∇µ̃jJLL = −2w̃j

L�

i=1

w̃i

�
P̃i + P̃j

�−1

· (µ̃j − µ̃i)N
�
µ̃i; µ̃j , P̃i + P̃j

�
(28)

∇µ̃jJNL = −w̃j

N�

i=1

wi

�
Pi + P̃j

�−1

· (µ̃j − µi)N
�
µi; µ̃j , Pi + P̃j

�
(29)

∇LjJLL = 2
L�

i=1

w̃iw̃jN
�
µ̃i; µ̃j , P̃i + P̃j

��
P̃i + P̃j

�−1

·
�
(µ̃i − µ̃j)(µ̃i − µ̃j)

T −
�
P̃i + P̃j

���
P̃i + P̃j

�−1
Lj (30)

∇LjJNL =
N�

i=1

wiw̃jN
�
µi; µ̃j , Pi + P̃j

��
Pi + P̃j

�−1

·
�
(µi − µ̃j)(µi − µ̃j)

T −
�
Pi + P̃j

���
Pi + P̃j

�−1
Lj (31)

The optimization does not need to be performed over every
element of the Li matrices, rather, only the lower triangular
elements of each Li need be optimized, with the upper
triangular ones being fixed at zero.

Thus far, we have not discussed the optimization over the
w̃ terms (the weights). The weights must all be positive and
sum to one. Williams and Maybeck [14] considered including
them in the iterative optimization over all of the parameters.
Schieferdecker and Huber [20] used an explicit unconstrained
solution and Chen, Chang and Smith [3] used an explicit
solution that had been constrained such that the weights must
sum to unity, but which did not rule out negative weights. This
is not merely a theoretical problem, since we have observed,
through simulation, that negative weights can occur in practice
when using an unconstrained approach. Note that the COWA
optimizes only over the weights and nothing else in the second
step of the algorithm. The full optimization over the weights
given the means and covariances of the Gaussian components
of the mixture is a convex quadratic programming problem,
and (omitting the constant term from (7) and multiplying
everything by 1/2), may be formulated as

min
w̃

1

2
w̃T

H1w̃ −wT
H2w̃ (32)

subject to 1T w̃ = 1 (33)
− w̃ ≤ 0 (34)

where

1 � [1, 1, . . . , 1]T 0 � [0, 0, . . . , 0]T (35)

Because H1 is a positive definite matrix7, this is a convex
quadratic programming problem and can thus be reduced to a
linear programming problem and solved exactly in polynomial
time [25], [27]. The inequality constraint prevents the problem
from having an explicit solution.

All together, given the estimate of the parameters from the
second step of the GMRC, one can perform Quasi-Newton
optimization over the means and the nonzero parameters of the
Cholesky decomposition of the covariance matrices, whereby
for each hypothesis the globally optimal mixture weights can
be found via quadratic programming.8 In the COWA, the
optimization is performed only over the weights.

IV. A BRUTE FORCE ALGORITHM

The first two steps of the GMRC, discussed in Section
III, address the fact that an iterative optimization over the
ISE is highly dependent upon the initial estimate used. Often
the choice of which components of the original mixture to
merge, as determined by Algorithms 2 or 3, is suboptimal
and can be improved by k-means refinement, which still does
not guarantee global optimality. In this section, we consider
the implementation of a brute-force initialization algorithm
that yields the globally optimal clustering for initialization.9
The optimal algorithm provides a basis for comparison against
other algorithms when run on problems where the brute force
solution is feasible.

A large number of globally optimal algorithms for clustering
exist, for example [28], but none currently use the ISE as the
cost function.10 Thus, though the algorithm presented here is
slow, it is nonetheless optimal with respect to the ISE.

First, let us consider the complexity of implementing a
brute-force clustering and reduction algorithm. The total num-
ber of possible ways of grouping components of an N -
component mixture to reduce it to an L component mixture
is given by S(N,L)11, a Stirling number of the second kind
[30] having equation

S(N,L) =
1

L!

L�

i=0

(−1)i
�
L

i

�
(L− i)N (36)

7Proof: By definition [25], a real matrix, Q is positive definite if aT
Qa >

0∀a �= 0. For an arbitrary L× 1 real vector a we can write:

aT
H1a =aT

��

x
Ñ(x)Ñ(x)T dx

�
a =

�

x
aT Ñ(x)Ñ(x)T a dx

=

�

x

�
aT Ñ(x)

�2
dx ≥ 0

We know that all of the elements of Ñ(x) must be nonzero for finite x.
Consequently, H1 is a positive definite matrix.

8In MATLAB, one can use fminunc with the gradient option turned on
for the overall optimization and quadprog for the weight optimization.

9In other words, we look at all possible ways of merging the data (using
(18)–(20)) and choose the optimal solution.

10An extended version of this paper is in preparation that will discuss a
dynamic programming solution, similar to that in [29], with branch-and-bound
on a slightly modified cost function, which is significantly faster.

11�n
L

�
is also used to represent a Stirling number of the second kind.

S(N,L) =

�N
L ��

i1=1

�N−i1
L−1 ��

i2=i1

�N−i1−i2
k−2 ��

i3=i2

. . .

�
N−

�L−2
j=1 ij
2

�

�

iL−1=iL−2

�k−1
j=1

�N−
�j−1

n=1 in
ij

�

cR

�
i1, i2, . . . , iL−1, N −

�L−1
j=1 ij

� (39)

While the evaluation of the ISE for a given reduced mixture
is straightforward, to “wrap” that within an exhaustive routine
is, perhaps surprisingly, not. The concern is to structure an
automated procedure (presumably a set of nested loops) to visit
each feasible reduced mixture exactly once, and that structure
is a key contribution of this paper.

To develop this structure, we offer an alternative derivation
of (39), which counts all possible ways of putting N items into
L unordered bins, such that no bin is ever empty. Since the
order of the bins does not matter, we will define an arbitrary
(ranked) ordering so as to avoid double counting. For example,
if we had three bins and five items, assignments of items
into bins having ordered sizes (1, 1, 3) would be identical to
assignments in bins having ordered sizes (1, 3, 1) or (3, 1, 1).
Thus, we shall only count assignments such that bin i contains
no more than the number of items in bin j if i ≥ j. In
other words, the number of items in the bins always increases
or stays the same. Note that this does not eliminate double-
counting if multiple bins have the same size, which we shall
address later.

The first bin can contain anywhere from i
MIN
1 = 1 to

i
MAX
1 = �N/(L − 1 + 1)� items, since all subsequent bins

must be at least the same size or larger. Similarly, the second
bin may contain any number of items ranging from what is in
the first bin, iMIN

2 = i1 to i
MAX
2 = �(N − i1)/(L− 2 + 1)�.

The L
th bin must contain the proper number of items such that

the sum of the number of items in each bin is equal to N . In
general, we find that the N

th bin can contain:

i
MIN
n =

1 if n = 1

in−1 if 1 < n < L

N −
n−1�

j=1

ij if n = L.
(37)

i
MAX
n =

�
N −

�n−1
j=1 ij

L− n+ 1

�
(38)

Note that if n = L, iMIN = iMAX .
The total number of possible clusterings using this counting

method is given in Equation (39) at the top of the page. The
numerator in the equation multiplies out the possible ways of
putting the N items into L bins having sizes determined by
a particular set of i

s representing the sizes of the bins, with
the final bin holding

�
N −

�L−1
j=1 ij

�
items. The denominator

divides out repeats in the counting.
Suppose that we have r bins of size b. When we go through

all possible ways of putting things into those bins we will
repeat each pattern b! times. For example, suppose that b = 2
and r = 2. In one combination, we might assign items 1 and
2 to the first bin and 3 and 4 to the second bin. In another

combination, we might assign 3 and 4 to the first bin and 1
and 2 to the second bin. However, since we want to count the
bins in an unordered manner, both of those possibilities are
identical. Thus, the total number of unique assignments must
be divided by 2! = 2.

The function cR determines the number of repeated partition
sizes among the i terms. It then takes the product of the
factorials of the number of repeats. For example, some of the
values for ten elements being broken into five groups would
be

cR(1, 1, 1, 1, 6) =4!1! (40)
cR(1, 1, 2, 3, 3) =2!1!2! (41)
cR(2, 2, 2, 2, 2) =5! (42)

From (39), we can get an insight into how a brute force
clustering algorithm may be implemented. First, we can gen-
erate instances of how many observations are in each cluster
by using loops analogously to the sums in (39). Generating
all possible combinations of what goes into the bins may be
done sequentially using loops bin by bin. That is, if the first bin
contains l1 items, we will enumerate all possible combinations
of l2 items. For each combination, we will remove those items
from the set of N things that we can choose from, and do the
same thing for the second bin and so on. For bin i, we will go
through all possible combinations of li of the remaining items,
remove those items from the set and continue to the next bin.
However, things become more difficult when we have multiple
bins containing the same number of items.

When we come to a stretch of B > 1 bins containing
the same number of elements, we can no longer use the
same recursion as above lest we waste effort evaluating these
B! identical clusterings. Thus, suppose that S is the set of
elements remaining from which we can draw. We have a
sequence of B > 1 bins that each containing lb items. We
shall go through the combinations of what goes into the b

bins, plus the subsequent bins via the following recursion:

The Recursion for Repeated Bins

1) S is the set of items that have not been assigned
to bins before the current bin. Generate all possible
combinations, CS , of lb items from the set S.

2) Sequentially go through which combination goes into
the first bin of the repeats.

3) To go to the next bin, remove the current combination
and all combinations previously visited by this bin from
CS and remove all combinations containing elements in
the current combination from CS and remove the chosen
elements from S and pass the modified CS and S to the
next level, which will repeat from step 2 on the reduced
set.

x

f(x)

1 2 3
0

0.25

0.5

0.75

1

Brute Force
COWA
GMRC
Full Mixture

Figure 1. A comparison of the methods using the three primary techniques
discussed for reducing a 10 component Gaussian mixture to 5 components.
Note that the line for the brute force approach overlaps that of the optimal
solution most of the time.

4) Once the final bin containing lb items has been filled and
S updated, if the current bin is not the final bin, continue
assigning things to the subsequent bins (which will each
hold fewer than Ib items) either using the method for
when there are no repeats or the method for repeats, as
appropriate.

In order to ensure that we get the best possible estimate for
comparison, we will use the iterative optimization of Section
III-C to refine this brute-force estimate when simulating.

V. SIMULATIONS

ISE NISE Execution
Time (sec)

COWA 0.1165 0.1080 0.0390
Runnalls 0.0834 0.0814 0.0048
GMRC 0.0482 0.0432 53.4499

Brute Force 0.0359 0.0309 622.0235

Table I
THE PERFORMANCE AND EXECUTION TIMES OF THE FOUR METHODS IN
THE 4-DIMENSIONAL RANDOMIZED REDUCTION SCENARIO REDUCING A

10 COMPONENT MIXTURE TO 5 COMPONENTS. THE RESULTS ARE
AVERAGED OVER 500 MONTE CARLO RUNS.

We compared the performance of the modified GMRC
and COWA algorithms described in Section III against the
brute force approach of Section IV and against simply us-
ing Runnalls’ algorithm (the first step of the GMRC). The
simulation was run reducing randomly generated D = 4
dimensional N = 10 component Gaussian mixtures to L = 5
component mixtures, meaning that the brute-force approach
had to calculate the cost of 42, 525 possible reductions each
time. The COWA algorithm was run with γ = ∞ and
� = 0, forcing the algorithm to reduce the mixture to the
minimum number of components each time. The components
of the means were chosen uniformly between 0 and 3. The
covariances of the mixture components were chosen from a
Wishart distribution [31] with scale matrix 1

50I and 5 degrees
of freedom. The mean covariance for each component was

thus 1
10I. The weights for the components were chosen from

a symmetric Dirichlet distribution [32] with parameter α = 1.
The execution times of the algorithms and their performance in
terms of the normalized integral squared difference, as defined
in Equation (17), which ranges from zero to one (smaller
numbers are better) is given in Table I. The simulation was
run on a 2.4GHz computer running the Mac OS X version of
MATLAB. From Table I, we can see that the COWA lags
behind the faster, lower-complexity algorithm by Runnalls.
The improvement over Runnalls’ algorithm by the GMRC
comes at a steep computational cost. All algorithms have room
for improvement in terms of ISE and ISE compared to the
slow, brute-force algorithm.

To better visualize the performance of the reduction algo-
rithms, we considered a scalar scenario using the following
parameters:

w ={0.03, 0.18, 0.12, 0.19, 0.02, 0.16, 0.06, 0.1, 0.08, 0.06}
µ ={1.45, 2.20, 0.67, 0.48, 1.49, 0.91, 1.01, 1.42, 2.77, 0.89}
P ={0.0487, 0.0305, 0.1171, 0.0174, 0.0295,

0.0102, 0.0323, 0.0380, 0.0115, 0.0679}

The 10-component mixture was reduced to five components
using the COWA, the GMRC and the brute-force algorithm.
The result is shown in Figure 1. We can see that the reduced
mixture using the brute-force reduction approach is the only
method that avoids large deviations from the original mixture.

However, to what extent does this matter in a practical algo-
rithm? To address this question, we implemented Salmond’s
[6] Gaussian mixture reduction-based tracking algorithm using
the COWA and the GMRC. We considered tracking a single
target in 2D using the standard motion model used with the
Kalman filter, namely

xt(k + 1) =F (k)xt(k) + vt(k) (43)
zt(k) =Ht(k)xt(k) + wt(k) (44)

where x is the state, z is a Cartesian position measurement and
vt and wt are independent Gaussian white noise. We used a
sampling interval of τ = 1s. We maintained L = 3 hypotheses
across time-steps. We used the discretized continuous time
white noise acceleration model from [9] with process noise
parameter q = 2. The target started at the origin having an
initial velocity of 10m/s in both Cartesian components. The
measurement covariance was a diagonal matrix with 60 on
both of the diagonal elements. The probability of detecting
the target was 70%. Rectangular gates enclosing the 99.9%
confidence region (which is elliptical) were used about each
hypothesized target state. Clutter was generated in the gate
according to a Poisson distribution having density λ = 5.6×
10−5. The number of clutter points in each gate varied, but
were often around 1−5. The initial state was determined using
two measurements from the true target. The trackers were run
for 1000 Monte Carlo runs for a maximum of 50-time steps.

Table II shows the percentage of lost tracks as a function of
the tracker used as well as the RMSE of the tracks that were
not lost. Tracks were declared lost if the true target location

RMSE % Lost
Tracks

COWA 9.11 25.35
Runnalls 7.98 3.15
GMRC 8.26 3.25

Table II
THE PERCENTAGE OF LOST TRACKS OVER A 50-STEP PERIOD, AS WELL AS
THE RMSE OF THE TRACKS THAT WEREN’T LOST, AS A FUNCTION OF THE

MIXTURE REDUCTION ALGORITHM USED IN IMPLEMENTATIONS OF
SALMOND’S TRACKER WITH L = 3 HYPOTHESES KEPT.

was not in any of the gates at a particular time-step or if
no hypotheses were left. Hypotheses were declared lost and
were subsequently pruned if the gate for any of them exceeded
500 meters in either dimension. We can see that the quality of
the reduction algorithm is important, with Runnalls’ algorithm
and the GMRC having significantly fewer lost tracks than the
COWA. However, there is no noticeable improvement between
the Runnalls’ algorithm and the GMRC.

VI. CONCLUSIONS

In Section III-C, it was noted that the accepted optimization
of the weight terms in the GMRC and COWA algorithms could
result in the reduced Gaussian mixture being invalid. We have
made an appropriate modification to address this. We also
combined concepts from other papers, generalizing the GMRC
to vector distributions. To form a basis for comparison with
other algorithms, we derived a brute-force approach. From
the simulations using random Gaussian mixtures, we can see
that the GMRC is the best algorithm (in terms of ISE) in
comparison to the brute force algorithm. Indeed, the COWA
was inferior to Runnalls algorithm both in performance as well
as execution time. However, the improvement in running the
full GMRC versus simply running the first step (Runnalls’
algorithm) is nonexistent when looking at a tracking scenario,
suggesting that a naked Runnalls’ algorithm would be the most
practical Gaussian mixture reduction algorithm to use in a
tracker thus far.

REFERENCES

[1] B. Krukowski and J. Dauwels, “Message passing decoding of lattices
using Gaussian mixtures,” in Proceedings of the IEEE International

Symposium on Information Theory, Toronto, ON, Canada, Jul. 2008,
pp. 2489–2493.

[2] A. Nikseresht and M. Gelgon, “Gossip-based computation of a Gaus-
sian mixture model for distributed multimedia indexing,” IEEE Trans.

Multimedia, vol. 10, no. 3, pp. 385–392, Apr. 2008.
[3] H. Chen, K. C. Chang, and C. Smith, “Constraint optimized weight

adaptation for Gaussian mixture reduction,” in Proceedings of SPIE:

Signal Processing, Sensor Fusion, and Target Recognition XIX, vol.
7697, Orlando, FL, Apr. 2010, pp. 76 970N–1–76 970N–10.

[4] P. Bruneau, M. Gelgon, and F. Picarougne, “Parsimonious reduction of
Gaussian mixture models with a variational-Bayes approach,” Pattern

Recognition, vol. 43, no. 3, pp. 850–858, Mar. 2010.
[5] S. S. Blackman, “Multiple hypothesis tracking for multiple target

tracking,” IEEE Aerosp. Electron. Syst. Mag., vol. 19, no. 1, pp. 5–18,
Jan. 2004.

[6] D. J. Salmond, “Mixture reduction algorithms for point and extended
object tracking in clutter,” IEEE Trans. Aerosp. Electron. Syst., vol. 45,
no. 2, pp. 667–686, Apr. 2009.

[7] ——, “Mixture reduction algorithms for target tracking in clutter,” in
Proceedings of SPIE: Signal and Data Processing of Small Targets

Conference, vol. 1305, Oct. 1990, pp. 434–445.

[8] L. Y. Pao, “Multisensor mixture reduction algorithms for tracking,”
Journal of Guidance, Control and Dynamics, vol. 17, no. 6, pp. 1205–
1211, Nov.–Dec. 1994.

[9] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and Data Fusion.
YBS Publishing, 2011.

[10] D. J. Petrucci, “Gaussian mixture reduction for Bayesian target
tracking in clutter,” Master’s thesis, Air Force Institute of Technology,
Dec. 2005. [Online]. Available: http://www.dtic.mil/srch/doc?collection=
t3&id=ADA443588

[11] D. W. Scott, “Parameter modeling by minimum L2 error,” Department
of Statistics, Rice University, Tech. Rep. 98-3, Feb. 1999. [Online].
Available: http://www.stat.rice.edu/∼scottdw/ftp/l2e.r1.ps

[12] D. W. Scott and W. F. Szewczyk, “From kernels to mixtures,” Techno-

metrics, vol. 43, no. 3, pp. 323–335, Aug. 2001.
[13] J. E. Harmse, “Reduction of Gaussian mixture models by maximum

similarity,” Journal of Nonparametric Statistics, vol. 22, no. 6, pp. 703–
709, Dec. 2009.

[14] J. L. Williams and P. S. Maybeck, “Cost-function-based hypothesis
control techniques for multiple hypothesis tracking,” Mathematical and

Computer Modelling, vol. 43, no. 9–10, pp. 976–989, May 2006.
[15] J. L. Williams, “Gaussian mixture reduction for tracking multiple

maneuvering targets in clutter,” Master’s thesis, Air Force Institute of
Technology, Mar. 2003. [Online]. Available: http://www.dtic.mil/srch/
doc?collection=t3&id=ADA415317

[16] M. Rosenblatt, “Remarks on some nonparametric estimates of a density
function,” The Annals of Mathematical Statistics, vol. 27, no. 3, pp.
832–837, Sep. 1956.

[17] M. West, “Approximate posterior distributions by mixture,” Journal of

the Royal Statistical Society. Series B (Methodological), vol. 55, no. 2,
pp. 409–422, 1993.

[18] M. F. Huber and U. D. Hanebeck, “Progressive Gaussian mixture
reduction,” in Proceedings of the 11th International Conference on

information Fusion, Cologne, Germany, Jan. 2008, pp. 1–8.
[19] O. C. Schrempf, O. Feiermann, and U. D. Hanebeck, “Optimal mixture

approximation of the product of mixtures,” in Proceedings of the Eighth

International Conference on information Fusion, Philadelphia, PA, Jul.
2005, pp. 85–92.

[20] D. Schieferdecker and M. F. Huber, “Gaussian mixture reduction via
clustering,” in Proceedings of the 11th International Conference on

information Fusion, Seattle, WA, Jul. 2009, pp. 1536–1543.
[21] A. R. Runnalls, “Kullback-Leibler approach to Gaussian mixture reduc-

tion,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 3, pp. 989–999,
Jul. 2007.

[22] K. C. Chang and W. Sun, “Scalable fusion with mixture distributions in
sensor networks,” in Proceedings of the 11th International Conference

on Control, Automation, Robotics, and Vision, Singapore, Dec. 2010,
pp. 1251–1256.

[23] C. Bishop, Pattern Recognition and Machine Learning. Cambridge,
U.K.: Springer, 2006.

[24] T. Kanungo, D. M. Mount, D. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 881–892, Jul. 2002.

[25] D. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, Mas-
sachusetts: Athena Science, 2003.

[26] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
Baltimore: Johns Hopkins University Press, Oct. 1996.

[27] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization,
1st ed. Belmont, Massachusetts: Athena Science, Feb. 1997.

[28] D. Aloise, “Exact algorithms for minimum sum-of-squares clustering,”
Ph.D. dissertation, École Polytechnique de Montréal, Jun. 2009.
[Online]. Available: http://www.gerad.ca/∼aloise/These.pdf

[29] R. E. Jensen, “A dynamic programming algorithm for cluster analysis,”
Operations Research, vol. 17, no. 6, pp. 1034–1057, Nov.–Dec. 1969.

[30] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics. Boca
Raton: CRC Press, 1999, p. 1741.

[31] M. L. Eaton, Multivariate Statistics: A Vector Space Approach, ser.
Institute of Mathematical Statistics Lecture Notes-Monograph Series.
Beachwood, Ohio: Institute of Mathematical Statistics, 2007, vol. 53,
ch. 5 & 8.

[32] B. A. Frigyik, A. Kapila, and M. R. Gupta, “Introduction to the Dirichlet
distribution and related processes,” University of Washington, Tech. Rep.
UWEETR-2010-0006, Dec. 2010. [Online]. Available: https://www.ee.
washington.edu/techsite/papers/refer/UWEETR-2010-0006.html

