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Abstract. The imaging problem of elastography is an inverse problem. The nature of an
inverse problem is that it is ill-conditioned. We consider properties of the mathematical map which
describes how the elastic properties of the tissue being reconstructed vary with the field measured by
magnetic resonance imaging (MRI). This map is a nonlinear mapping, and our interest is in proving
certain conditioning and regularity results for this operator which occurs implicitly in this problem of
imaging in elastography. In this treatment we consider the tissue to be linearly elastic, isotropic, and
spatially heterogeneous. We determine the conditioning of this problem of function reconstruction,
in particular for the stiffness function. We further examine the conditioning when determining
both stiffness and density. We examine the Fréchet derivative of the nonlinear mapping, which
enables us to describe the properties of how the field affects the individual maps to the stiffness and
density functions. We illustrate how use of the implicit function theorem can considerably simplify
the analysis of Fréchet differentiability and regularity properties of this underlying operator. We
present new results which show that the stiffness map is mildly ill-posed, whereas the density map
suffers from medium ill-conditioning. Computational work has been done previously to study the
sensitivity of these maps, but our work here is analytical. The validity of the Newton–Kantorovich
and optimization methods for the computational solution of this inverse problem is directly linked
to the Fréchet differentiability of the appropriate nonlinear operator, which we justify.
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1. Introduction. This paper is concerned with developing the mathematical
theory specifying the inverse problem from magnetic resonance elastography (MRE).
A unique feature of this medical imaging technique is that it measures the field inter-
nally.

Palpation has been used by medical practitioners over the centuries to detect
regions in soft tissue of varying stiffness. Palpation is used as a diagnostic method
because the mechanical properties of tissues are often dramatically affected by the
presence of disease processes, such as cancer, inflammation, and fibrosis. Magnetic
resonance (MR) elastography uses mechanical shear waves to assess the stiffness of soft
tissue. MRE is currently in use for the detection of liver disease through measurement
of liver stiffness [15, 4] and is under evaluation for early detection of breast tumors
[22, 45, 40] and for multiple uses in the brain [14, 13, 18], including injury and brain
disease [20, 51, 50].

MRE is a relatively new technique in medicine first considered in [29], and it
combines magnetic resonance imaging (MRI) with shear wave elastography so as to
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measure the elastic field displacement within the soft tissue. A recent review of this
emerging modality is [24]. MRE enables higher resolution imaging of soft tissue areas,
when compared with MRI, for tissues that have low hydrogen atom count, and this
typically occurs in the stiff tissues referred to above. The MRE technique can provide
imaging of possible early cancer tissue, as the elastic moduli of tumors changes during
their pathological evolution. The importance of early detection of cancer tumors is
well known, and it is for this reason that much research is currently being performed
on the MRE modality. Furthermore, MRE is being investigated for measurement of
brain tissue stiffness information as it may be related to diseases such as Alzheimer’s,
hydrocephalus, brain cancer, and multiple sclerosis.

This paper addresses the issue of how much stiffness information can be recon-
structed or, in other words, how ill-conditioned is the inverse problem of MRE stiffness
reconstruction. So our primary concern is with the conditioning of the inverse prob-
lem. To determine this it is necessary to look at the mathematical mapping properties
prescribed by the physical phenomenon, namely elastodynamics. The explicit repre-
sentation of this nonlinear map for the problem considered here is not possible; rather
the map is described implicitly by the equations of elastodynamics. To generate a
representation of the linearization of this map we use the implicit function theorem,
a technique we have used in the past [10].

The first problem to ask might be: How can we solve the inverse problem com-
putationally? This is not addressed here, although some of our formulations could
be utilized computationally. The standard techniques currently used for this inverse
problem range from finite element–based optimization methods to direct operations
made on filtered data [39, 23, 33, 46, 47]. Various further mathematical treatments
of this inverse problem have also been made [25, 26, 30, 3, 5, 44, 2].

In this paper we address the mathematical formulation of the inverse problem with
the aim of producing theoretical results on the conditioning of the inverse problem to
aid the understanding of the results obtained from the aforementioned computational
techniques. Associated with this is the central question underlying our ability to
compare different techniques for solving the imaging problem: How ill-conditioned
is the inverse problem? All properties of the inverse problem are determined by
the mathematical properties of the map from the measured displacement field to the
material functions which are to be determined. This map is intrinsically tied to the
associated map from material functions to the true displacement field. Mathematically
the inverse map can be stated as T−1 : u → ν. Here u is the true vector displacement
field, and ν is the set of functions that are to be reconstructed. It is important to
realize that this map is in general nonlinear, and this is true for all the inverse problems
considered here. Associated with the inverse map is the nonlinear map for the direct
problem T : ν → u, which maps the material functions to the displacement field. This
map cannot be written explicitly but is determined implicitly from the mathematical
equations describing the elastodynamic problem. It should be observed that the
associated problem of determination of u given ν is linear in the case considered here.

In many inverse problems the operator T is a smoothing operator, and by that
we mean that ν can have have rapid variation or abrupt jumps, but the effect on
the displacement field is minimal. Perhaps this can be stated more clearly using
linearization and spatial frequency ideas by saying that the high frequency components
of ν have minimal effect on u, when compared to low frequency components. In the
forward map this does not cause a problem in the calculation of u, but when the
map is inverted, as in the inverse problem, it is not so straightforward. Another way
of putting this in function space terminology is that the operator T is a compact
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(a) T2 weighted MR image of the brain, showing
the location of the fluid-filled ventricles.

(b) y-component of the real part of the displace-
ment, u.

(c) Stiffness μ (real part) reconstruction, where
the color bar shows units kPa for the shear mod-
ulus.

(d) Density (imaginary part), where the color
bar shows units 103 kg/m2.

Fig. 1. Pictorial view of the mathematical map T
−1 : u → ν, displayed from (b) to (c) for

stiffness, and (b) to (d) for density. An MR image of the brain is shown in (a). Shown in (b) is the
measured displacement field for a slice of the human brain, in (c) the reconstructed shear stiffness μ,
and in (d) the reconstructed density ρ. The reason why the density is imaginary is because the brain
soft tissue is almost incompressible; hence the Lamé parameter λ is held constant at a real value
108 while the reconstructed phase has an arbitrary baseline; so the loss component in λ is shifted to
the density. The reconstruction was made via finite element solution of the weak formulation of the
equations of motion, and a regularized solution of a resulting optimization problem.

operator, and therefore for the inverse problem T
−1 is unbounded. For the inverse

problem of MRE this has big implications. We determine the conditioning of this
problem of function reconstruction, particularly for the stiffness function. However,
we also examine the conditioning when determining both stiffness and density. It
should be pointed out that using the elastography technique for detection of cancer
tumors in human tissue, stiffness relative contrast can be up to the order of 2000%,
whereas the density only varies on the order of 8% [36, 37, 42]. It is for this reason
that stiffness is diagnostically more useful, and density is often not considered. In
Figure 1 we illustrate this map. Figure 1(a) shows a T2 weighted MR image of the
brain, showing the location of the fluid-filled ventricles, which are very low stiffness
and have high damping. The reconstruction of the stiffness component μ is shown
in Figure 1(c). The fluid-filled ventricles can be seen in the density reconstruction of
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Figure 1(d).
For solution of the inverse problem it is important to first appreciate that the

map T should be at least continuous, and a further requirement which is necessary in
order to utilize iterative computational techniques for this nonlinear problem is that
the nonlinear map be differentiable. This paper addresses these properties of the map
T
−1.

In section 2 we derive the integral equation representation needed in the rest of
the paper. The problem that we analyze here is effectively converted to a scattering
problem so that we do not have to worry about body surface boundary effects. We
claim that this makes no essential difference to the nature of our results, and it adds
transparency in that it reduces the complexity of the calculations. The boundary
effects are analyzed in another publication.

In section 3 analysis of the direct problem map is performed, and this enables
us to derive the Fréchet derivatives of the nonlinear operator in section 4; these are
given in (4.5b) and (4.14b), are central to our analysis, and also provide an explicit
analytic expression for the partial Fréchet derivatives of the map T. These are the
underlying partial derivatives utilized in any Newton–Kantorovich method for solving
the inverse problem. The full Fréchet differential is given in (4.19). Furthermore in
section 4 the analysis of the conditioning of the inverse problem is found from these
partial derivatives.

We shall define many integral operators in this paper, and the notation scheme
we chose is to use the variations on the symbols K and S for weakly singular and
singular integral operators, respectively.

2. Fundamental equations. Our concern here is with the problem when the
media is isotropic, compressible, and linear. However, our interest is in applying this
technique to more general media, so we keep the formulation as general as possible.

The mechanical state in the medium in R
3, which has a spatially varying density

ρ(x) and elastic properties described by a spatially varying stiffness tensor C(x), is
defined by the elastic state {τ ,u}, where u(x) denotes the elastic displacement of the
media and τ (x) denotes its resulting Cauchy stress tensor. The dynamic situation
for time harmonic behavior, exp(iωt), with angular frequency ω in the medium is
described by Navier’s equation as

τij,i + ω2ρ(x)uj = −ρ(x)fj ,(2.1)

where f is the body force producing the motion. Here we have used the comma nota-
tion to denote derivatives with respect to a Cartesian coordinate system; all subscripts
in what follows are to take on values from {1, 2, 3} as is appropriate for Cartesian coor-
dinates in R

3. We distinguish tensors and vectors from their components by utilizing
the same symbol in a bold font. As the medium is elastic, the stress tensor is related
to the displacement u by the stiffness tensor, C, through Hooke’s law as

τij = Cijk�(x)uk,�(x).(2.2)

Here we initially will assume that the medium is nothing more than a nonhomoge-
neous linearly elastic solid, thus ensuring that only the basic symmetry properties are
satisfied by C.

In order to write an integral representation for the displacement field in the
medium we first introduce the Green state {Σ,G}, appropriate to a medium where
the material parameters are homogeneous and where the Green displacement tensor
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Gij and its corresponding Green stress tensor Σijk satisfy

Σijk,i + ω2ρ0Gjk = −δjkδ(x− x′).(2.3)

Once again the Green stress tensor is related to the Green displacement by the stiffness
tensor through Hooke’s law as

ΣC0

ijk(x,x
′) = C0

ij�mG�k,m(x,x′).(2.4)

We emphasize here that the background material defining the state of the Green
tensors, the mass density ρ0, and stiffness tensor C0 is homogeneous with appropriate
material constants. This Green stress tensor with a constant background material
will be used extensively in this paper. It will be necessary to calculate the stress
with a Green tensor through the formula (2.4) but with different stiffness tensors, and
so, where it is necessary to assure the reader as to the dependence on a particular
stiffness, we append a superscript on the stress symbol to denote the stiffness under
discussion as in (2.4).

We should note that when taking derivatives of the Green functions, which are of
two arguments, the derivative notation is as follows: if the derivative is with respect
to a primed coordinate, then we denote it by an appropriate primed index.

In order to analyze various integral operators that appear in our analysis, knowl-
edge of the properties of the kernels of the integral operators is essential. It turns out
that these can be determined from knowledge of the Green function for an isotropic
homogeneous medium, so for explicit representation we discuss here the Green state
for an isotropic medium. Furthermore, as is made apparent in Appendix A.2, the
dominant singularity of the kernels is determined by the static or time independent
Green state. For completeness, the nature of this singularity is discussed further in
Appendix A. The homogeneous isotropic medium can be described by the Lamé
parameters λ and μ so that the stiffness tensor becomes

Cijkl = λδijδk� + μ
(
δikδj� + δi�δjk

)
.(2.5)

Then by Fourier transformation of (2.3) and (2.4) a concrete representation for the
Green tensors can be found as

Gij =
1

4πρ0ω2

[
δikk

2
Sg

kS (x;x′)− ∂i∂j [g
kP (x,x′)− gkS (x,x′)]

]
,(2.6)

where gk(x,x′) = eik|x−x′|/|x− x′|. The pressure and shear wave numbers are given,
respectively, by k2P = ρ0ω2/(λ+ 2μ) and k2S = ρ0ω2/μ.

We make the assumption that the heterogeneous region is a bounded simply
connected open region Ω ⊂ R

3 such that the surface S = Ω\Ω = ∂Ω in R
3. Then we

will form our integral representation for the displacement field by the Betti–Rayleigh
reciprocity principle which is derived via standard means by using the divergence
theorem. Consider the tensor state formed from {τ ,u} and {Σ,G} as

pik = Σijkuj − τijGjk,(2.7)

with the divergence of this quantity given by

pik,i = Σijk,iuj +Σijkuj,i − τij,iGjk − τijGjk,i.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVERSE MAGNETIC RESONANCE IMAGING ELASTOGRAPHY 1583

Now using the symmetry properties satisfied by the stiffness tensor, it is seen that

(2.8) τijGjk,i = Cij�m(x)G�k,muj,i.

With use of the Navier equations (2.1) and (2.3), with (2.4) plus (2.8) in (2.7), together
with the divergence theorem applied over a region bounded by a sphere with surface
S∞ of very large radius, and a sphere with surface Sε of radius ε, both centred about
x′, we find that∫
Sε∪S∞

tk(x,x
′) dS =

∫
Ω

ρ(x)fj(x)Gjk(x,x
′) dV + ω2

∫
Ω

(
ρ(x)− ρ0

)
Gjk(x,x

′)uj(x) dV

+

∫
Ω

(
C0

ij�m − Cij�m(x)
)
G�k,m(x,x′)uj,i(x) dV,(2.9)

where the traction in the surface integral is tk(x,x
′) =

[
niΣijk(x,x

′)uj(x) −
niτij(x)Gjk(x,x

′)
]
with the appropriate orientation of the normal vector ni on the

surfaces. The first term on the right-hand side of this equation generates the incident
displacement field in the medium Ω, generated by the body sources f , and we denote
this field by uinc. It is assumed here that this field is known; however, this may not
be the case without use of a dummy replacement. If this incident field is not known,
it is possible to use the fact that on the boundary of Ω the surface tractions are zero.
However, this further complicates the problem in that the fundamental Green state
cannot be used, but not much of the analysis shown here is changed as the Green
state is modified by only a nonsingular part. We further make the assumption that
the field scattered by the enclosing surface S is negligible; this assumption can be
removed straightforwardly if Ω is enlarged to R

3 and the fields are made to satisfy
radiation conditions. With these observations we are enabled to write the integral
representation (2.9) as

uk(x) = uinc
k (x) + ω2

∫
Ω

ρ(x′)(x′)Gjk(x
′,x)uj(x

′) dV ′

−
∫
Ω

Cij�m(x′)G�k,m′(x′,x)uj,i(x
′) dV ′,(2.10)

where ρ = ρ− ρ0 is the difference density function and

(2.11) Cijk�(x) = Cijk�(x) − C0
ijk�

is the difference stiffness tensor. The surface integral over Sε about the point x′ = x
on the left-hand side of (2.9) provides the term on the left-hand side of (2.10); see
Appendix A.4.

We observe that the kernels in the integrals in (2.10) have weak singularities, of
order 1 and 2, as x → x′ in the first and second integrals, respectively, and so are
integrable (see Appendix A.2). Equation (2.10) can be converted into an integro-
differential equation for u by restriction of x ∈ Ω. It then provides a means of solving
the direct problem of calculation of the displacement field within Ω, given the material
parameters and the incident field; this is considered extensively in section 3. When
the problem is two-dimensional and the stiffness tensor is isotropic, the equation can
be solved as two uncoupled equations depending upon the nature of the incident field;
for an isotropic two-dimensional Lamé material these equations have been solved
numerically by [21] for spatially varying material functions.
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Later we will need to use the Green state {Σ̃, G̃}, appropriate to a medium where
the material has the same heterogeneous properties as in (2.1) and (2.2) and where

the Green displacement tensor G̃ij and its corresponding Green stress tensor Σ̃ijn

satisfy

Σ̃ijn,i + ω2ρ(x)G̃jn = −δjnδ(x− x′′).(2.12)

Once again the Green stress tensor is related to the Green displacement by the stiffness
tensor through Hooke’s law as

Σ̃C
ijn(x,x

′′) = Cijrs(x)G̃rn,s(x,x
′′).(2.13)

We observe here that the differentiation operator is with respect to the first argument
of Σ̃, which is similar to (2.4). Then, by techniques similar to those used earlier, we
can write the integral representation for the heterogeneous Green function in terms
of the homogeneous Green function as

G̃kn(x,x
′) = Gnk(x

′,x) + ω2

∫
Ω

ρ(x′′)Gjk(x
′′,x)G̃jn(x

′′,x′) dV ′′

−
∫
Ω

Cijrs(x
′′)Grk,s′′ (x

′′,x)G̃jn,i′′ (x
′′,x′) dV ′′, x �= x′,(2.14)

where the indicated partial derivatives are with respect to the first argument. Through-
out the following we use the notation that primes on partial derivatives indicate dif-
ferentiation with respect to the corresponding x′-variable. We observe that the two
Green tensors in the first integral in this equation have weak singularities of order
1, and so when x = x′ this integral is integrable. The second integral is not defined
when x = x′; however, its integral with respect to either x or x′ over Ω is, and that
is the context in which we use it in section 4 to obtain simple representations for the
Fréchet derivative of the inverse problem maps.

We now briefly examine the symmetry properties satisfied by the Green tensors
that will be useful in the rest of the paper. First we note that all the displacement
and stress Green tensors previously defined are symmetric in both their indices and
arguments; i.e., they satisfy equations of the form G̃(x,x′) = G̃(x′,x), G̃ij = G̃ji.
Moreover, as the homogeneous Green tensor’s defining equation satisfies the transla-
tional invariance property plus the symmetry condition on their argument, it follows
that the argument of these tensors is |x − x′|, and this will mean that they are not
differentiable when x = x′.

When using symmetry properties to examine (2.14), we observe that the k and
n indices can be interchanged on the Green tensors in (2.14). Also, due to sym-
metry properties satisfied by the stiffness tensor, the index pairs rs and ji can be
interchanged on the Green tensors in the second integral on the right-hand side of
(2.14).

It is observed that, although we have not used any symmetry properties satisfied
by the Green tensors in (2.10) and (2.14), they will be used extensively in the rest of
the paper.

We next introduce various integral operators that are necessary in discussing the
inverse problem and provide existence and uniqueness results for the various direct
problems needed in section 4.

3. Mathematical details of the direct problem. Prior to examination of
the inverse problem it is necessary to set up appropriate notation and to assemble



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVERSE MAGNETIC RESONANCE IMAGING ELASTOGRAPHY 1585

results concerning the various direct problems that are essential in our subsequent
development.

The analysis in this paper is simplified by working in Sobolev spaces. Although
many of our results could be extended to classical spaces, we do not attempt that here.
Here our discussions are to present the difficulties and nature of MRE as a tool for
probing structures in biological tissues. Much of this information is readily available
through utilizing Sobolev space theory and pseudodifferential operator theory.

Prior to providing existence theory for the direct problem we must ensure that
the direct problem as stated has a unique solution.

Lemma 3.1. The direct problem as stated in (2.1) and (2.2), for an isotropic
stiffness tensor, has a unique solution with C ∈ C2(Ω).

Proof. This has been provided by [16] for the scattering problem as considered
here; see also [48].

3.1. Difference stiffness tensor. We first consider the case when the difference
stiffness is nonzero but the difference density is zero. Then from (2.10) an integro-
differential equation for the determination of u is

uk(x) = uinc
k (x) −

∫
Ω

Cij�m(x′)G�k,m′(x′,x)uj,i(x
′) dV ′(3.1a)

= uinc
k (x) −KC u

∣∣
k
, x ∈ Ω.(3.1b)

Notice that the weakly singular integral operatorK defined in (3.1a) can be considered
to map either C or u, and we separate the two maps by appending the material
property as a subscript to the integral operator; this will be important in later sections.
The integral operator is therefore defined by

KC u
∣∣
k
=

∫
Ω

ΣC
ijk(x

′,x)uj,i(x
′) dV ′,(3.2)

where we have used the difference stress tensor ΣC , the stress tensor as defined in
(2.4) but with the difference stiffness as defined in (2.11).

Notice that the kernel in (3.2) is weakly singular; in fact the singularity is of order
2 (see Appendix A). However, existence theory for the solution of (3.2) is not easily
handled, so we shall look at properties of a regularized equation. We shall utilize this
equation later in section 4 to analyze the derivative of the map T.

Equation (3.1a) can be converted into an integral equation for the Jacobian wkr =
uk,r by differentiation of both sides of the equation; this is a left regularizer. Rather
than work with the resulting 32 equations, we choose to work with a right regularizer
for (3.1a), and this corresponds to integration of the integral term by parts, so we
arrive at

uk(x) +

∫
Sε∪S∞

niΣ
C
ijk(x,x

′)uj dS
′

= uinc
k (x) +

∫
Ω

∂i′ [Cij�m(x′)G�k,m′(x′,x)]uj(x
′) dV ′

= uinc
k (x) +

∫
Ω

ΣC
ijk,i′ (x

′,x)uj(x
′) dV ′, x ∈ Ω.(3.3)

Here the kernel of the volume integral has a singularity of order 3 (see Appendix A),
and so the integral on the right-hand side must be treated as a singular operator.
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Now, on performing the surface integrations in (3.3) (see Appendix A.4), we find

αuk(x)−
∫
Ω

ΣC
ijk,i′ (x

′,x)uj(x
′) dV ′ = uinc

k (x), x ∈ Ω,(3.4)

where α(C(x)) > 0 is a function of the difference stiffness tensor C(x) and it is
evaluated in the next section for an isotropic medium. The integral in (3.4) defines
the integral operator

(3.5) SC(·)
∣∣
k
=

∫
Ω

ΣC
ijk,i′ (x

′,x)(·)j dV ′,

which we will examine in detail in the next section.
We have presented in this section three different formulations for solution of the

direct problem. We choose to develop existence theory for the direct problem specified
from the singular integral representation given by (3.4). Then the solution u to the
direct problem of determination of the scattered displacement field from knowledge
of the incident field and the difference stiffness can be found from the solution of the
second kind singular integral

(3.6) (αI − SC)u = uinc, x ∈ Ω.

It is important to observe at this stage that it is not the direct problem with
which we are mainly concerned here but rather the inverse problem, but we need
appropriate equations on which to be able to apply the implicit function theorem,
thus yielding results for the inverse problem.

3.1.1. Isotropic stiffness tensor and integral equation solution. We re-
strict the formulation in this section to the case when the stiffness tensor is of the
form

(3.7) Cij�m = λ(x)δijδ�m + μ(x)
(
δi�δjm + δimδj�

)
,

which shows explicitly that there are two spatially varying functions describing the
stiffness in the medium, which we denote generically by the set σ = {λ, μ}. In
what follows we need the differences of the Lamé functions λ(x) = λ(x) − λ0 and
μ(x) = μ(x) − μ0, but throughout this section σ takes on only one of its possible
values; the other one is assumed to be zero. The case for both differing from zero is
treated in section 3.3.

Now we define, from the vector-valued integral operator appearing in (3.6), the
operators

Sσu
∣∣
k
=

∫
Ω

Σσ
ijk,i′ (x

′,x)uj(x
′) dV ′, σ = {λ, μ}.(3.8)

We have appended the subscript σ to the integral operator Sσ because this integral
operator can be considered to have two operands, first the material function σ and
second the displacement field. Observe that we have in effect defined two integral
operators here through σ. The specific form of the divergence of the difference stress
tensor, defined through (2.4) but with stiffness (2.11) and appearing in (3.8), is

Σσ
ijk,i′ = Sλ

kj(λ) + Sμ
kj(μ),(3.9)
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where the S, the kernels of the integral operators Sσ, are also considered as linear
operators on σ and are given by

Sλ
kj(·) = (G�k,�′∂j +G�k,�′j′ )(·)(x′,x),(3.10a)

Sμ
kj(·) =

(
(Gik,j′ +Gjk,i′ )∂i′ + (Gik,j′i′ +Gjk,i′i′)

)
(·)(x′,x).(3.10b)

Observe that in these kernels a partial derivative operator operates on σ because we
took the derivative of u in (3.1a), and so for the case considered here (3.4) can be
rewritten by utilizing the definition of (3.8) as

(3.11) (αI − Sσ)u = uinc, σ = {λ, μ}, x ∈ Ω.

The function α is given in (A.9) in Appendix A.4, and from this we see that with
positive difference material functions α > 1. Furthermore, examination of (A.9) shows
that the requirement that α > 0 amounts to the requirement that the wave equation
for inhomogeneous material be elliptic, an obvious requirement. We observe that
when both of these difference functions become zero, (3.11) becomes trivial.

We require that σ ∈ Xσ, with Xσ = {σ : σ ∈ H1(Ω), 0 ≤ σ < M}. We now quote
the existence and mapping properties for the right regularized problem (3.11).

Theorem 3.2. For the direct problem with the only nonzero material difference
function the isotropic stiffness tensor, with σ = {λ, μ}, and if σ ∈ Xσ, uinc ∈ H0(Ω)3,
then there exists a unique solution u ∈ H0(Ω)3 of (3.11). Moreover,

(3.12) ‖u‖H0(Ω)3 ≤ C‖uinc‖H0(Ω)3

for some constant C.
See Appendix B.1 for the proof. We observe that the stiffness functions in this

theorem are in the weak derivative space Xσ, and this will imply weak continuity of
displacement and traction throughout Ω. If the stiffness properties of the tissue being
modeled do not allow for this, then surface integrals accounting for this will appear
in our equations, such as (2.9), and the integral equation (3.11) will be modified.

The weakly singular formulation given by (3.1a) is important in section 4. So
equivalently, for this isotropic medium, we can define from (3.1a) the vector-valued
operator

Kσu
∣∣
k
=

∫
Ω

Σσ
ijk(x

′,x)uj,i(x
′) dV ′, σ = {λ, μ},(3.13)

from (3.2). It should be observed that Kσ is a linear integral operator on σ and a
integro-differential operator on u. The specific form of the stress tensor defined in
(2.4), but with isotropic stiffness given by (3.7), is

Σσ
ijk = λkλijk + μkμijk,

where the kernels k of the operator Kσ are now

(3.14) kλijk = G�k,�′δij , kμijk = (Gik,j′ +Gjk,i′ ).

We note for future use that when the above sets of kernels are slightly modified
by replacement of G by G̃ in their representation, and the order of the argument of

G̃ is interchanged, we surmount the symbol with a tilde, such as k̃.
We observe that, similarly to our previous notation, the subscript σ is attached

to the integral operator Kσ as an operand because this integral operator can be
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considered to have two operands. So for the case considered here, (3.1a) can be
written (

I+Kσ

)
u = uinc, σ = {λ, μ}, x ∈ Ω.(3.15)

We make the comment that although we derived the integral equation (3.11) after
(3.1b), it makes more sense to think of (3.11) as the fundamental equation and (3.15)
as the right regularized equation.

To study the inverse problem we first need existence and regularity results for the
direct problem when one of the stiffness differences differs from zero in turn, and this
is provided in the next result. First we can reduce the requirements on σ, as in this
formulation there is no differential operator on σ, and now require Xσ = {σ : σ ∈
H0(Ω), 0 ≤ σ < M}.

Corollary 3.3. For the direct problem with the nonzero material difference
function being the isotropic stiffness tensor, and with σ ∈ Xσ and uinc ∈ H0(Ω)3,
there exists a unique solution u ∈ H1(Ω)3 of (3.15). Moreover,

(3.16) ‖u‖H1(Ω)3 ≤ C‖uinc‖H0(Ω)3

for some constant C.
Proof. We observe for the right regularization of (3.1a), as given by (3.11), that

every solution of (3.11) is a solution of (3.1a), but to avoid missing some solutions of
(3.1a) we require the right regularizer to have an image which is dense in the domain of
the original operator in (3.15); that this is so follows directly as the simplest function
space that a solution of (3.1a) can be is H1(Ω)3. The bound on the inverse operator
then follows directly from Theorem 3.2.

For use later in section 4.1.1 we notice that the operator defined in Kσu for fixed
u can be considered as a mapping of σ. This follows by an argument similar to
that in the proof of Theorem 3.4; it can be shown that it is a compact map of σ as
Ku : Xσ → H0(Ω)3.

3.2. Difference density. Often the reconstruction of the density is not done in
MRE, but for completeness we consider it in this paper. When the difference density
ρ differs from zero but the stiffness tensor is as the background stiffness C0, then from
(2.10) an integral equation for the determination of u is

uk(x) = uinc
k (x) + ω2

∫
Ω

ρ(x′)Gjk(x
′,x)uj(x

′) dV ′, x ∈ Ω.(3.17)

We define, from the previous equation, the vector-valued linear integral operators

(3.18) R(·)∣∣
k
= ω2

∫
Ω

Gjk(x,x
′)(·)j dV ′, Rρ(·) = R

(
ρ(x) ·),

where we have used a restriction bar to denote the Cartesian component of the vector-
valued operator and also the symmetry property satisfied by G. Observe that the
integral operator defined in (3.17) can be considered to have two operands, and in
order to distinguish between these two, which we will need to in what follows, we
append the material function as a subscript to the operator symbol in (3.18). Then
the solution to the direct problem of determination of the scattered displacement
field from knowledge of the incident field and the density difference is found from the
solution of the linear Fredholm integral equation of the second kind,

(3.19) (I− Rρ)u = uinc, x ∈ Ω.
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3.2.1. Difference density and the integral equation solution. To study
the inverse problem we first need existence and regularity results for the direct prob-
lem. These are provided by the results in this section.

Theorem 3.4. For the direct problem with the only nonzero material difference
function the density function and if ρ ∈ Xρ, Xρ = {ρ : ρ ∈ H0(Ω), 0 < ρ < M},
uinc ∈ H0(Ω)3, then there exists a unique solution u ∈ H0(Ω)3 of (3.19). Moreover,

(3.20) ‖u‖H0(Ω)3 ≤ C‖uinc‖H0(Ω)3

for some constant C.
See Appendix B.2 for the proof.
We consider the operator R for fixed u as a mapping of ρ, and furthermore define

the operator Bu = ρu for fixed u with Bu : Xρ → H0(Ω)3 and note that u is
bounded from the last theorem; it then follows that Ru is a compact map of ρ as
Ru : Xρ → H0(Ω)3. This fact will also be of use in section 4.2.1.

3.3. Nonzero difference stiffness and density for an isotropic medium.
We now consider the combined direct problem of determination of u when the density
and all stiffness functions, namely ρ(x) and σ(x), are known and differ from the Green
state parameters. The integral equation for the determination of the displacement field
in this case can be written from the formulations presented in the last two sections as

(3.21)
(
αI− Rρ − Sλ̄ − Sμ̄

)
u = uinc, x ∈ Ω.

Note that we have used the singular integral formulation for the stiffness functions.
The analysis of this equation is similar to the case proven in Theorem 3.2. The
existence and uniqueness of this problem is central to the elastography direct problem.

Theorem 3.5. For the direct problem with nonzero material difference functions
in density and isotropic stiffness, if ρ ∈ Xρ, σ ∈ Xσ in Theorem 3.2, and uinc ∈
H0(Ω)3, then there exists a unique solution u ∈ H0(Ω)3 of (3.21). Moreover,

(3.22) ‖u‖H0(Ω)3 ≤ C‖uinc‖H0(Ω)3

for some constant C.
See Appendix B.3 for the proof.
We will need the result that the weakly singular version of (3.21), as formulated

in (2.10) and which we write as

(3.23) [I− Rρ +Kλ +Kμ]u(x) = uinc(x), x ∈ Ω,

has a unique bounded solution and this is provided by the following claim.
Corollary 3.6. For the direct problem with nonzero material difference func-

tions in density and isotropic stiffness, if ρ ∈ Xρ, σ ∈ Xσ in Corollary 3.3, and
uinc ∈ H0(Ω)3, then there exists a unique solution u ∈ H1(Ω)3 of (3.23). Moreover,

(3.24) ‖u‖H1(Ω)3 ≤ C‖uinc‖H0(Ω)3

for some constant C.
Proof. This follows from reasoning similar to that used for Corollary 3.3.

4. Inverse problems. The inverse problem of elastic constitutive function re-
construction is considered here. We will show that linearization of the various inverse
operators is equivalent to an appropriate order of differentiation. Furthermore, it
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is shown that these inverse problems are always ill-posed for realistic measurement
data. This is because the inverse maps are not onto, and the data that is measured
can generally be placed only in the function space L2, or at most C, and in these
function spaces various differentiation operators are unbounded.

It is important to know whether the inverse problem is uniquely determined, and
the answer to this is not straightforward because of the nonlinearity of the map T.
There have been a number of relevant results which show uniqueness for the inverse
problem of determination of the elastic tensor, under certain conditions which we
now discuss. The uniqueness of a 2-D inverse problem associated with elastic modu-
lus imaging, given linearly independent displacement fields in an incompressible elastic
material to determine the shear modulus, is discussed in [7]. Of more relevance here is
the proof of uniqueness for the boundary measurement inverse problem to determine
the isotropic shear modulus for three dimensions as given in [32]. In that paper it
is required that one have boundary knowledge of both the displacement and traction
fields on ∂Ω. This is a more general inverse problem than we consider here, so it
provides uniqueness for our case. This is because here we know the displacement ev-
erywhere; hence knowledge of the stiffness tensor locally on a boundary outside of the
inhomogeneity enables the traction vector to be calculated there. Furthermore in [31]
this proof of uniqueness of the boundary inverse problem is extended for transversely
isotropic elastic materials in three-dimensional space, provided that the normal vec-
tor of the boundary does not coincide with the principal direction of the transverse
anisotropy. This coincides with the results of [35], who show for transversely isotropic
elastic materials in three-dimensional space that when the normal vector of the bound-
ary coincides with the principal direction of the transverse anisotropy the object can
be illusionarily cloaked. Such a result implies that, if this is the case, the inverse
problem can be made nonunique.

The nonlinear inverse problem can be stated mathematically as finding ν ∈ P ,
where P is the material parameter function space such that the difference equation

F (ν) = u(x; ν) − umeas(x) = 0, x ∈ Ω,(4.1)

is satisfied. Here u is the solution of (2.1), umeas is the measured displacement field,
and ν are the material functions to be determined. In practice, umeas is subject to
experimental errors and can be measured only on a finite set, say M ∈ Ω. Hence
(4.1) is replaced by

min
ν

‖F (ν)‖, x ∈ M,(4.2)

in a suitable norm. The Newton–Kantorovich method for (4.1) amounts to iteratively
solving the following operator equation, for the update function s:

F ′(ν)s = u′(ν)s = −F (ν),(4.3)

where u′(ν)s is the Fréchet derivative of u with respect to ν. That is, the next update
is ν+s. It can be seen that this equation directly utilizes the Fréchet derivative of the
map T : ν → u, which is fundamental to the inverse problem and is analyzed here.
We observe that this map T is defined implicitly by (2.1) or, equivalently, (3.21).
If optimization techniques are used for computationally solving the inverse problem,
they too need use of the Fréchet derivative of the the map T.

There are many implicit forms for the operator T, and the mapping properties
are unique once the function spaces have been fixed. We use integral operators here
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to derive properties of the map through its linearization. It appears that these may
give preferable mapping properties to other formulations such as finite element ones
as they use stronger function spaces.

In what follows we drop the bar on the material difference functions for simplicity
of notation with no misunderstanding.

4.1. Inverse problem for difference stiffness. We are considering here the
isotropic case when there are two functions describing the stiffness of the media. For
simplicity we consider in this section the case when only one of the Lamé parameters
differs, in turn, from the Green state case; we consider the case of both differing in
section 4.3. The implicit functional

(4.4) ξ(σ,u) = u(σ,x) +Kσu(σ,x) − uinc(x) = 0, σ = {λ, μ},

which is obtained from the integral representation for the direct problem equation
(3.15), can be utilized with the implicit function theorem to obtain the Fréchet deriva-
tive of the mapping T : σ → u. Here in the inverse problem u is to be measured
throughout Ω. First appropriate function spaces for the mapping ξ must be defined,
so note ξ : Xσ ×H1(Ω)3 → H0(Ω)3 with Xσ = {σ = {λ, μ} : σ ∈ H0(Ω), 0 < σ < M}
for some positive real constant M .

Lemma 4.1. The map T : σ → u from Xσ to H0(Ω)3 with σ chosen from {λ, μ}
is Fréchet differentiable with respect to σ, with Fréchet differential(

T
′(σ)

)
s = u′(σ)s = −[I+Kσ]

−1
Ksu(σ),(4.5a)

T
′(σ)s

∣∣
k
= −K̃su = −

∫
Ω

uj,i(σ,x
′)k̃sijk(x,x

′)s(x′)dV ′,(4.5b)

where the kernels k̃sijk involve G̃, which is the Green function pertinent for the stiffness

difference σ (see (2.14)), and are given by (3.14) with G̃ replacing G.
Proof. Observe that the differential u′(σ)s defines a linear operator, the Fréchet

derivative, with s ∈ X . To prove differentiability of T we check the conditions of the
implicit function theorem (our form is quoted in Appendix C) on the functional ξ.
Theorem 3.2 assures us that there is only one solution u in H0(Ω)3; then we proceed
as follows.

It is straightforward to show that ξ, ξσ, and ξu are continuous in σ and u, where
the partial Fréchet derivative of (4.4) with respect to σ is given through

(4.6) ξσ(σ,u)s = Ksu,

because (3.13) is linear in σ; also note s ∈ Xσ. Further, the partial Fréchet derivative
of ξ with respect to u is

(4.7) ξu(σ,u)s = (I+Kσ)s,

as (4.4) is linear in u, with again s ∈ H1(Ω)3.
The only further condition necessary for the application of the implicit function

theorem is that [ξu(σ,u)]
−1 is bounded, and this has been proven in Theorem 3.2.

The explicit expression for the Fréchet derivative is given by the implicit function
theorem (4.5a). Equation (4.5b) can be obtained by use of the integral equation

satisfied by the Green function G̃, namely (2.14). This derivation is quite technical,
and we shall just sketch the derivation here.
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First we find it convenient to introduce a further modification of the operator
defined in (3.2) by appending a tilde to the operator when the Green displacement

tensor in its definition, G, is changed to G̃; cf. (2.12) and (2.13). Thus the extended
operator described is

K̃C u
∣∣
k
=

∫
Ω

Σ̃′C
ijk(x,x

′)uj,i(x
′) dV ′,(4.8)

with Σ̃′C
ijk defined through (2.13) as

Σ̃′C
ijk(x,x

′) = Cij�m(x′)G̃�k,m′(x,x′).(4.9)

We observe that a prime has been used as a superscript on the stress tensor symbol
to denote the fact that the derivative is on the second argument of G̃ when compared
to (2.13). We shall carry out the calculation for the more general case of the stiffness
tensor C rather than just the isotropic case, and in the differential we use the roman
symbol s for the increment δC of the stiffness tensor. We observe that the fundamental
solution of (2.1) with stiffness tensorC(x) and with the difference density zero satisfies

G = (I+KC)G̃,(4.10)

from (2.14). Then on substitution of the first term on the right-hand side of this
equation for G into the representation of Ksu, we obtain∫

Ω

sij�m(x′)G̃�k,m′(x,x′)uj,i(x
′) dV ′ =

∫
Ω

Σ̃′s
ijk(x,x

′)uj,i(x
′) dV ′ = K̃su

∣∣
k
,

and furthermore substitution of the second term on the right-hand side of (4.10) for
G shows ∫

Ω

dV ′sij�m(x′)uj,i(x
′)∂m′

∫
Ω

ΣC
nrk(x

′′,x)G̃r�,n′′(x′′,x′) dV ′′.

To first proceed formally we take the differentiation inside the integral∫
Ω

dV ′sij�m(x′)uj,i(x
′)
∫
Ω

ΣC
nrk(x

′′,x)G̃r�,n′′m′(x′′,x′) dV ′′

and interchange of order of integration, plus take the n′′-derivative out of the integral,
to find ∫

Ω

ΣC
nrk(x

′′,x)∂n′′

(∫
Ω

sij�m(x′)uj,i(x
′)G̃r�,m′(x′′,x′) dV ′

)
dV ′′

=

∫
Ω

ΣC
nrk(x

′′,x)∂′′
nK̃su(x

′′)
∣∣
r
dV ′′

= KCK̃su(x).

In obtaining this result we have used once the interchange of indices symmetry on the
two types of Green tensor. It now follows that

[I+Kσ]u
′(σ)s = [I+Kσ]K̃su(x),
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and we formally have the result. To provide the rigor we observe it is necessary
to subtract and add a correction term when moving the derivatives into and out
of the above integrals. In particular a correction term over a surface of a sphere
surrounding the singularity must be subtracted from the volume integral when we
move the derivative ∂m′ into the weakly singular integral; e.g., see [27, p. 242]. Equally,
when we move the derivative ∂s′′ out of the integral, a correction term over a surface
of a sphere surrounding the singularity must be added to the volume integral; these
two terms can be shown to cancel. The order of integration can be interchanged
on the iterated integrals when the correction terms are present because the integrals
interpreted as singular integrals are absolutely convergent [27, Chap. IX].

To complete the derivation of (4.5b) we first make the observation that (4.8) and
(3.13) differ in which type of displacement Green tensor is used in their definitions, so

that the kernels are as (3.14) with G replaced by G̃. Then to return to the isotropic
case considered here, we note that sij�m has the same form as the right-hand side of
(3.7) (when C is replaced by s), so that insertion of this form into the right-hand side
of (4.8) yields the representation

(4.11) K̃su =

∫
Ω

s(x′)uj,i(σ,x
′)k̃ijk(x,x′)dV ′.

We repeat that here the weakly singular kernels k̃ijk are given by (3.14) but using G̃
instead of G, and s is the update in either λ or μ.

We observe from this differential that the update equation for the increment
function s in any Newton–Kantorovich scheme requires inversion of the operator in
this equation. This means that the update is found through inversion of a first kind
integral operator, which are well known to be ill-posed in most cases. The mapping
properties of this operator will be discussed further in the next section.

The evaluation of G̃ in a computation algorithm is computationally expensive.
However, in an electromagnetic version of this inverse problem the equivalent Green
function has been used as the basis of an algorithm [41].

4.1.1. Mapping properties of the inverse stiffness map T
−1. The Fréchet

derivative at a difference stiffness of zero is more simply evaluated than (4.5b). When
both terms of σ are zero the Fréchet differential is given by

u′(σ)s = −K̃su
inc = −

∫
Ω

Σs
ijk(x

′,x)uinc
j,i (x

′) dV ′.(4.12)

This linearization (also the Born approximation) provides a straightforward method,
but is of limited use in attempting solution of the inverse problem by a modified
Newton method.

The linearization of the operator T about σ equal to zero can now be used to
examine the conditioning of the nonlinear operator T

−1 near this value of σ. For
simplification of exposition we define the new integral operators K

B(·) = K(·)uinc

and K
NK(·) = K̃(·)u. It is easily seen that as σ → 0, then u → uinc, Σ̃ → Σ, and

K
NK → K

B. The linearization of the operator T about a difference stiffness of zero
can then be used to examine the conditioning of the nonlinear operator T−1 near this
value of σ.

Equation (4.12) provides a definition of the Born operator KB : Hp → Hq, and
we wish to determine the values of p and q that determine the regularity of this
operator in the scale of Sobolev spaces. The mapping properties of the operator are



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1594 D. J. N. WALL, P. OLSSON, AND E. E. W. VAN HOUTEN

determined by the principal symbol of its kernel, and this is purely a property of
the Green tensor ∇G near x = x′, which has been calculated in Appendix A. The
principal symbol then is the Fourier transform of the appropriate part of ∇G, which
has been shown to be |ξ|−1 in (A.11). The kernel given by equation is a smoothing
operator, and it follows straightforwardly that K

B : H0(Ω)3 → H1(Ω) and that the
inverse operator to the Born map is equivalent to first order differentiation. This
will mean that the operator (KB)−1 is unbounded and not continuous on function
spaces H0(Ω) because H1(Ω) is compactly embedded in H0(Ω). Regularization of this
operator, and hence T

−1, is necessary to restore continuity for this problem that is
of mild ill-posedness. Mollification is one of the several techniques available and has
been used for differentiation-type operators in various inverse problems [28, 49, 38].

When we examine the mapping properties of the operator KNK only the singu-
larities of the kernel need to be taken into consideration. This is seen by forming
Σ̃ −Σ, and it follows because of the linearity of (2.1) that this difference satisfies a
homogeneous partial differential equation and, moreover, is in C1(Ω). This implies

that the singular properties of Σ̃ are the same as those of Σ, and therefore it follows
that the function space mapping property of KNK is identical to K

B. We therefore
have the following result.

Theorem 4.2. The linearization of the map T
−1 : u → σ, given by (4.5b), is a

continuous map from H1(Ω)3 into H0(Ω); furthermore it is equivalent to a first order
differential operator and therefore is an unbounded map from H0(Ω)3 to H0(Ω).

Proof. This follows heuristically from above, and rigorously from the results stated
below Corollary 3.3, where it was shown that Ku mapping σ is a compact operator
into H0(Ω) and this is also true for K̃u.

4.2. Inverse problem for difference density. The implicit functional

(4.13) ξ(ρ,u) = u(ρ;x)− Rρu(ρ;x)− uinc(x) = 0,

which is obtained from the integral representation for the direct problem (3.19), can
be utilized with the implicit function theorem to obtain the Fréchet derivative of the
mapping T : ρ → u. Here in the inverse problem u is to be measured throughout
Ω. First appropriate function spaces for the mapping ξ must be defined, so note
ξ : Xρ × H0(Ω)3 → H0(Ω)3 with Xρ = {ρ : ρ ∈ H0(Ω), 0 < ρ < M} for some positive
real constant M . We can then prove the following result for the partial Fréchet
derivative with respect to ρ.

Lemma 4.3. The map T : ρ → u from Xρ to H0(Ω)3 is Fréchet differentiable
with respect to ρ, with Fréchet differential(

T
′(ρ)

)
s = u′(ρ)s = [I− Rρ]

−1
Rsu(ρ)(4.14a)

= ω2

∫
Ω

u(ρ;x′) · G̃(x,x′)s(x′)dV ′,(4.14b)

where G̃ is the Green function pertinent for the density difference ρ; see (2.12).
Proof. Observe that u′(ρ) is a linear operator, the Fréchet derivative with respect

to s ∈ Xρ. To prove differentiability of T we check the conditions of the implicit
function theorem on the functional ξ. Theorem 3.4 assures us that there is only one
solution u in H0(Ω)3; then we proceed as follows.

It is straightforward to show that ξ, ξρ, and ξu are continuous in ρ and u, where
the partial Fréchet derivative of (4.13) with respect to ρ is given through

(4.15) ξρ(ρ,u)s = −Rsu,
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because (3.18) is linear in ρ; also note s ∈ Xρ. Further, the partial Fréchet derivative
of ξ with respect to u is

(4.16) ξu(ρ,u)s = (I− Rρ)s

as (4.4) is linear in u, with again s ∈ H0(Ω)3. The only further condition necessary
for the application of the implicit function theorem is that [ξu(ρ,u)]

−1 be bounded,
and this has been proven in Theorem 3.4. The explicit expression for the Fréchet
derivative is given by the implicit function theorem as (4.14a).

The more usable form of (4.14b) can be obtained from (4.14a) by use of the

integral equation satisfied by the Green function G̃, namely (2.14) when C = C0, so
that

G = (I− Rρ)G̃.

Substitution of the above expression for G in the kernel of Rs into (4.14a) and inter-
change of the order of integration between Rs and Rρ, together with the symmetry
properties of the Green tensors, yields the alternative form of the differential

u′
�(ρ)s = ω2

∫
Ω

uj(ρ,x
′)G̃j�(x,x

′)s(x′)dV ′ = R̃su
∣∣
�
,

where we have for future use defined a new integral operator that has been slightly
modified from (3.18) by the replacement of G by G̃.

Observe from the differential in (4.14b) that the update equation for the increment
function s in any Newton–Kantorovich scheme requires inversion of the operator in
this equation. The properties of this Fréchet differential operator will be discussed
further in the next section.

4.2.1. Mapping properties of the inverse density map T
−1. First note

that the Fréchet derivative at a difference density of zero is more simply evaluated
than (4.14b). Then the Fréchet differential is given by

(4.17) u′
k(ρ)s = ω2

∫
Ω

Gjk(x,x
′)uinc

j (x′)s(x′) dV ′ = Rsu
inc

∣∣
k
.

This linearization is in fact what is known as the Born approximation, and it provides
a straightforward method, but of limited use, for solving the inverse problem by a
modified Newton method.

Similar to our discussion in section 4.1.1, (4.17) provides a definition of the Born
operator mapping s into u, and we wish to determine the regularity of this operator in
the scale of Sobolev spaces. The mapping properties of the operator are determined
by the principal symbol of its kernel, and this is purely a property of the Green tensor
G near x = x′, which has been calculated in Appendix A. The principal symbol then
is the Fourier transform of the appropriate part of G, which has been shown to be
|ξ|−2 in (A.10). The kernel given by equation is a smoothing operator, and it follows
straightforwardly that R

B : H0(Ω)3 → H2(Ω) and that the inverse operator to the
Born map is equivalent to second order differentiation.

When we examine the mapping properties of the operator Rsu, which is the
Newton–Kantorovich map for the derivative of T linearized about an arbitrary dif-
ference density, we see by an argument similar to that used in section 4.1.1 that the
mapping properties are the same as those of the Born map. We therefore have the
next result.
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Theorem 4.4. The linearization of the map T
−1 : u → ρ is a continuous map

from H2(Ω)3 into H0(Ω) and is therefore equivalent to a second order differential
operator. Furthermore it is an unbounded map from H0(Ω)3 to H0(Ω).

Proof. This follows heuristically from the above, and rigorously from the results
stated below Theorem 3.4, where it was shown that Ru mapping ρ is a compact
operator into H0(Ω) and this is also true for R̃u.

4.3. Inverse problem for multiple differences. We consider here the inverse
problem of determination of difference stiffness tensor and density. The map is T :
ν → u from X = {Xρ ×Xλ ×Xμ} into H0(Ω)3, where ν ∈ (λ, μ, ρ). We now denote
each of the linearizations with respect to ρ, λ, and μ as Tρ, Tλ, and Tμ, respectively;
we see that the gradient of the map T : ν → u from X into H0(Ω)3 is given by(

T
′(ρ)

)
s = u′(ρ)s =

[
Tρ Tλ Tμ

]
s,(4.18)

where s = [sρ sλ sμ]T is a three-vector in X . The appropriate expressions for
the partial Fréchet derivatives in the three-vector gradient operator are given by the
results in Lemmata 4.1 and 4.3.

Prior to discussing the mapping properties of the full Fréchet differential of T, we
provide the proof that (4.18) provides the linearization of the map T.

Theorem 4.5. The map T : ν → u from X into H0(Ω)3, for an isotropic
stiffness, is Fréchet differentiable with respect to ν, with a Fréchet differential given
by (

T
′(ρ)

)
s = −[I− Rρ +Kλ +Kμ]

−1(−Rsρ +Ksλ +Ksμ),(4.19)

and has gradient representation (4.18).
Proof. The implicit functional

(4.20) ξ(ν,u) = u(ν;x) − Rρu(ν;x) +Kλu(ν,x) +Kμu(ν,x)− uinc(x) = 0

is used with the implicit function theorem in proving this theorem. Standard analysis
similar to that provided earlier for the partial Fréchet derivatives shows this result.
The only major difference in the condition necessary for the application of the implicit
function theorem is to show that [ξu(ν,u)]

−1 is bounded, and this was proven in
Corollary 3.6.

The explicit expression for the Fréchet derivative is given by the implicit function
theorem as (4.19). However, the more useful form is provided by the gradient of T in
(4.18).

We have now completed examination of the operator T which maps the material
functions into the displacement field. We have shown that this nonlinear mapping is
bounded by Corollary 3.6 and that it is differentiable in appropriate function spaces
in Theorem 4.5. Furthermore, we have shown that its linearization T

′ is a compact
operator, which implies that T′−1 is unbounded.1

4.3.1. Mapping properties of the inverse map T
−1. The ill-posed part of

the map T−1 associated with Rρ makes this full linearization ill-posed and equivalent
to second order differentiation for density reconstruction and first order differentiation
for imaging of both the shear modulus and the λ functions.

1We observe that this does not imply that T is necessarily compact in those spaces.
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5. Discussion. In the last section we derived rigorous expressions for the partial
Fréchet derivatives of the nonlinear operator T with respect to ν.

We have examined the mapping properties of T with respect to σ as discussed in
section 4.1.1 and given by (4.5b). The kernel in K̃su, namely uj,ik̃ijk , determines how
a variation s in σ propagates its effect by changing the displacement field throughout
Ω. This has been shown to be equivalent to an integration which means that the
inverse problem is mildly ill-conditioned. This means the reconstruction of σ from
measurement of the displacement field is not so ill-posed as the density inverse problem
which is equivalent to second order differentiation. There are many approaches to the
determination of the Lamé parameters in isotropic elasticity, although few of them use
the integral approach discussed here; we list a few [9, 12]. The mapping properties of
the linearization in the standard techniques currently used to solve the elastography
problem, namely finite elements, are unknown. It appears that linearization based
on the singular map (3.8) could lead to better conditioning than the map considered
here, but this is as yet undetermined.

For linear integral operator equations that are equivalent to first and second
order differentiation, singular function decomposition shows that the inverses of such
operators have condition numbers that increase as n and n2, respectively, where n
is the number of singular functions [17, Chap. 15]. We can use this to make the
following observations about discrete versions of the our inverse problems. For the
density reconstruction only problem, if we attempt to reconstruct 102 pixels along
one dimension, i.e., 106 in the cube, this will mean that the matrix to be inverted will
have a condition number on the order of 1012, quite ill-conditioned. For the similar
problem of just stiffness reconstruction, of either λ or μ, the condition number will
be 106, not well-conditioned but considerably better than for the density case. This
simple argument has implications on the image resolution possible in MRE.

When the full problem of elastic imaging is considered as in section 4.3 it is seen
that the inverse problem is ill-posed and dominated by the density reconstruction.
However, the analysis here has shown that a mechanism of alleviating this is to at-
tempt a coarser reconstruction for the density than the stiffness parameters. Hence
an appropriate regularization would restore continuity of the solution to the mea-
sured data but still achieve relevantly high resolution of the stiffness functions. It
is important to appreciate that the degree of ill-conditioning determines the possible
resolution of the reconstructed image.

In conclusion we have developed a rigorous theory of MRE. The simplistic ap-
proach is to just differentiate the displacement field and assume that the resultant
strain field is explicitly related to the stiffness of the material, thus yielding a strain
image [11], but this is not always a realizable stiffness [6]. Our theory illustrates
for just the stiffness case that this is justified in a crude manner, but methods such
as those developed here offer better reconstruction. In a sense this is similar to the
difference in x-ray imaging between the full theory of CAT and shadow-grams.

The choice of elastic properties for imaging in elastography research remains an
open question at this point; the use of the analytical methods described here will help
to predict and understand the value and reliability of different parameterizations of
elasticity imaging. Furthermore, our results indicate that significant work needs to
be done to achieve effective multiparameter reconstructive imaging. We are currently
extending this work to include the full elastic imaging problem, incorporating bound-
ary conditions and incompressible elasticity. By also incorporating nonisotropy and
viscoelasticity, the analysis will get closer to the real problem as studied by practi-
tioners.
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Appendix A. Singularity of Green tensors. Here we consider the nature of
the singularity at the pole of the various Green functions and their derivatives. This
is central to our work in discussing the nature of the various integral operators. The
solution of (2.3) is important for analysis of the singular behavior of the kernels in
various integrals.

A.1. Static Green tensor. The solution of (2.3) when ω = 0 is the most
important part of this singularity, and for convenience of notation and without loss
of generality, we move the origin of coordinates to x′, then R = r, and we find that
the solution of this equation is the symmetric Somiglian’s tensor,

(A.1) Γ0
ij =

1

8πμ(λ+ 2μ)

(
(λ+ 3μ)

δij
r

+ (λ+ μ)
xixj

r3

)
.

The gradient of this function then follows as

Γ0
ij,k =

1

8πμ(λ+ 2μ)

(
−(λ+ 3μ)

δijxk

r3
+

(λ+ μ)

r3

[
δikxj + δjkxi − 3xixjxk

r2

])
,

so that the divergence is

Γ0
ij,i =

−2μ

8πμ(λ+ 2μ)

xj

r3
.(A.2)

This means that the singular symmetric tensor kernels appearing in (3.10), namely in
Sλ
kj from the last formula, become

Γ0
ij,ik =

2μ

8πμ(λ+ 2μ)

{
3xjxk

r5
− δjk

r3

}
,(A.3)

and in Sμ
kj it is Γ0

ij,ki = Γ0
ij,ik, and so

Γ0
ij,kk =

2(λ+ μ)

8πμ(λ+ 2μ)

{
δij
r3

− 3xjxi

r5

}
= − (λ+ μ)

μ
Γ0
kj,ki.(A.4)

A.2. Harmonic Green tensor. First observe that the fundamental Green
function we have to work with is gk = eikR/4πR, where R = |x − x′|. For con-
venience of notation and without loss of generality, we move the origin of coordinates
to x′, then R = r. The singularity of G as r → 0 is delicate because of the cancellation
in the second term in (2.6), and it can be shown that

lim
r→0

Gij =
1

8πμ(λ+ 2μ)

[
(λ+ 3μ)

δij
r

+ (λ + μ)
xixj

r3

]
+ c(ω, λ, μ)O(

1
)

= Γ0
ij + c(ω, λ, μ)O(

1
)
.(A.5)

The gradient and second derivative of this tensor function then yield

lim
r→0

Gij,k = Γ0
ij,k +O(

1
)
, lim

r→0
Gij,k� = Γ0

ij,k� +O(
1
)
,

so that the divergence is

Gij,i = Γ0
ij,i +O(

1
)

or Gij,i = − 1

ρ0ω24π

xjk
2
P

r3
+O(

1
)
.
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These calculations imply that G is O(r−1); i.e., the singularity is of order 1, ∇G is
O(r−2), and ∇∇G → O(r−3). Now if we define G = G − Γ0, then it is seen from
the above calculations that this function G is more regular than G. We now need to
calculate stress tensor ΣC

ijk as r → 0, which is defined in (2.4) but has the stiffness as
(2.11). This tensor can be shown to be

lim
r→0

ΣC
ijk = λδijΓ

0
�k,� + μ(Γ0

ik,j + Γ0
jk,i) +O(

1
)

=
1

8π(λ+ 2μ)

2

r3

(
δijxk[−λ+ μ̃(λ+ μ)]− μ̃

[
μ(δjkxi + δikxj)

+
3xixjxk

r2
(λ+ μ)

])
+O(

1
)
.(A.6)

In a similar manner we have

lim
r→0

ΣC
ijk =

1

8π(λ+ 2μ)

2

r3

[
μδijxk − μ(δjkxi + δikxj)− 3xixjxk

r2
(λ+ μ)

]
+O(

1
)
,

(A.7)

and so we finally see that ΣΣΣ → O(r−2) and ∇ΣΣΣ → O(r−3).

A.3. Time dependent heterogeneous Green tensor. This tensor is defined
through (2.12) and (2.13). The behavior as x → x′ for these tensors is more compli-
cated than for those discussed in the last section. However, provided the ν(x) are all
continuous functions, then by subtraction of (2.3) from (2.12) it can be shown that
the singularities are of the same order as the homogeneous time dependent ones.

A.4. Stress tensor surface integrals. We first consider here the integral
formed by subtraction of the sphere of radius ε about the point x′ in (2.9) in or-
der to provide evaluation of the singular integrals, namely

lim
ε→0

∫
Sε

[
niΣijk(x,x

′)uj(x)− niτij(x)Gjk(x,x
′)
]
dS = lim

ε→0

∫
Sε

[
niΣijk(x,x

′)uj(x)
]
dS,

as G = O(1/r) and τττ is bounded. So we examine the integral on the right-hand side,

but for generality we replace the ΣC0

ijk by ΣC
ijk and then, using (A.6), show that this

integral becomes

−2

8π(λ+ 2μ)

{∫
Sε

dΩ
xjxk

ε2
uj

[(
−λ+

μ

μ
(λ + μ)

)
− μ

μ
[μ+ 3(λ+ μ)]

]
−
∫
Sε

dΩuk

}

=
uk(x

′)
3(λ+ 2μ)

[
λ+ 2

μ

μ
(λ+ 3μ)

]
,(A.8)

where λ, μ correspond to the difference stiffness parameters. Observe that when μ = μ
and λ = λ the integral in (A.8) becomes uk(x

′), as used in (2.10). When μ = λ = 0
the integral is zero.

When we use the above equations for an isotropic medium in the expression for
α in (3.3) it can be seen that

α = 1 +
1

uj(x)

∫
Sε′x

niΣ
C
ijk(x,x

′)uj(x
′) dS′

=
2(μ+ μ)

3μ
+

(λ+ λ) + 2(μ+ μ)

3(λ+ 2μ)
,(A.9)
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where Sε′x is a sphere of radius ε centered at x′ and ni is the ith component of the
unit normal to Sε.

A.5. Symbols of Green tensors. The existence theory for the singular integral
operators uses the symbol of the integral operator, which is given by the Fourier
transform of the kernel, and we list the dominant part of the Green tensors here. We
need the symbol of the integral operators defined in section 3.1.1, and we evaluate
them here. We should first note that the integral operators are defined over Ω not
R

3, but this can be easily achieved by the standard trick of extending the domain
of definition of the operand of the integral operator by zero on R

3\Ω, and then the
symbol of the operator is formed by the Fourier transform of the principal singular
part of the kernel. It is the principal singular part of the kernel that determines the
symbol because it is that bit that determines the mapping properties of the integral
operator, with the lower order terms constituting a compact mapping in the Sobolev
space in which the symbol acts. Fundamental to the calculation of the symbols is
the knowledge of the Fourier transform of Γ0, and by elementary means this can be
shown to be

(A.10) Γ̂0
ij =

1

μ(λ+ 2μ)

(
(λ+ 2μ)δij |ξ|2 − (λ+ μ)ξiξj

|ξ|4
)
,

where the Fourier transform is denoted by a hat. It is then easily found that Γ̂0
ij,k =

iξkΓ̂0
ij and

(A.11) Γ̂0
ij,i =

1

(λ+ 2μ)

iξj
|ξ|2 .

The principal part is therefore

sym Sλ

∣∣
ij
= principal part of Ŝλ

kj = F(
Γ0
�j,�k

)
=

−1

(λ+ 2μ)

ξjξk
|ξ|2 ,(A.12a)

sym Sμ

∣∣
kj

= principal part of Ŝμ
kj = F(

Γ0
ik,ji + Γ0

jk,ii

)
=

−λ

μ(λ+ 2μ)

ξjξk
|ξ|2 .(A.12b)

Appendix B. Proof of existence theorems for the direct problems.

B.1. Proof of Theorem 3.2. To prove this result we will have to utilize sin-
gular integral equation theory [27], [19, Chap. IV], [52, Chap. IX] or more generally
pseudodifferential operator theory [43, 8]. This theory involves use of Fourier analysis,
and we shall sketch the proof.

The mapping properties of the integral operators that we are studying are deter-
mined by the principal singular part of the kernel [43]. Moreover, for such operators
the principal symbol is determined from the Fourier transform of the most singular
part of the kernel of the integral operator, and this ensures that the principal symbol
contains the least negative power (or most positive power) of |ξ|. This is because it
is this part of the the symbol that determines the mapping properties of the integral
operator in the scale of Sobolev spaces [43]. The lower order terms in the remaining
part of the symbol constitute a compact mapping in the Sobolev space in which the
symbol acts.
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We now consider the principal part of the integral operator Sσ, which we define
as A0 and write as

(B.1) A0u
∣∣
k
=

∫
Ω

Sσ
kj(x− x′)uj(x

′)σ(x′) dV ′, σ = {λ, μ},

where from Appendix A and (3.10) it follows that Sλ
kj → Γ0

�k,�j(x − x′) and Sμ
kj →

(Γ0
ik,ji + Γ0

jk,ii). Hence Sσ = A0 + T , where T is a compact operator in the space

H0(Ω)3. It is now convenient to remove the integrand term σ(x′) from the integral
(B.1), so we redefine u = uσ with σ > 0, and this modifies the first term in (3.11) to
γσ = α/σ. It now follows that the principal matrix-valued symbol of the vector-valued
operator defined in (3.11), with the modified (B.1), is

(B.2) Φσ
ij = γσ(x)δij − sym A0

∣∣
ij
(θ),

where θ = ξ/|ξ|. As A0 corresponds to a singular integral operator of form (B.1), its
symbol is of order 0, homogeneous in θ, and it is one of the Fourier transforms listed in
(A.12). Furthermore, what is important to the development is that the determinant
of ΦΦΦσ is positive, and it can be shown to be

(B.3) det ΦΦΦσ = γ2
σ(γσ + |ξξξ|2) > |ξξξ| > 0 ∀|ξξξ|,

where γσ > 0 as is seen from the definition of γ and (A.9). From this result it follows
that the integral equation (3.11) admits a two-sided regularizer (see [27, Chap. IX])
with symbol [ΦΦΦσ]−1. To see this consider the singular operator B0 formed with the
symbol [ΦΦΦσ]−1; then by the multiplication rule for symbols [27, Chap. IX, sect. 7], the
symbols of A0B0 and B0A0 are 1, which implies A0B0 = I + T1 and B0A0 = I + T2,
where I is the unit operator and T1 and T2 are compact operators. Furthermore, as
the symbol of A0 is real, its adjoint operator has the same symbol. These results are
true when the symbol of the full operator of Sσ is used.

The two-sided regularization property implies that the operator (3.11) is a Fred-
holm operator and is normally solvable by Noether and Atkinson theorems. As the
matrix-valued symbol Φ is symmetric the operator A0 has zero index [27, Chap. XIV,
sect. 3], [52, Chap. IX, sect. 6]. The regularizer [ΦΦΦσ]−1 and its adjoint are equiv-
alent regularizers, and therefore the index of the Fredholm operator is zero, as the
dimension of the deficit and the nullity are equal. We observe that the operator A0

which corresponds to the static problem has a six-dimensional kernel; it is formed
by the possible translations and rotations with basis {êi, êi × r̂}, i ∈ {1, 2, 3} [34].
But dynamic equilibrium of the measurement apparatus will require that any applied
forces ensure that these possible null space solutions are not present. It should be
remarked that the operator corresponding to the principal symbol used above differs
from the operator Sσ by a compact operator (on H0(Ω)3). This implies that standard
Riesz–Schauder theory can be applied to the regularized form found from Sσ by use
of B0. This means that if (3.11) has a unique solution, and therefore the kernel of
the operator is zero, the theorem is proved; Lemma 3.1 provides this fact.

As we have previously stated, the mapping properties of the integral operator
(B.1) are determined by its symbol. It is seen that the symbol is of order zero and is a
C∞-function; hence, by [27, Chap. IX], Sσ : Hp(Ω)3 → Hp(Ω)3 is a bounded operator
for some p; furthermore, from the above theory, the inverse operator (αI−Sσ)

−1 maps
as a bounded operator onto the same spaces.
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B.2. Proof of Theorem 3.4. The existence of the solution for (3.19) follows
from standard Riesz–Schauder theory. To apply this theory the compactness of Rρ :
H0(Ω)3 → H0(Ω)3 is required. First consider R, which is an integral operator with
a weak singularity, of order 1 (see (A.5)); it follows that R : (L6/5)3 → (L2)3 is
bounded [19, Chap. IV]. Then as the imbedding I : L2 → L6/5 for Ω is compact2

and the composition of a compact and a bounded operator is compact, namely R ◦ I,
we have the first compactness. Now consider the operator Bρ = ρu, ρ ∈ Xρ with
Bρ : H0(Ω)3 → H0(Ω)3; then it follows that Bρ is a bounded operator, and again as
the composition of a compact and a bounded operator is compact, it follows that Rρ

is a compact operator.
To complete the proof, the Fredholm alternative theorem shows that uniqueness

implies existence, and the required uniqueness is given by Lemma 3.1. Therefore we
have boundedness of (I − Rρ)

−1, which will be required when discussing the inverse
problem.

B.3. Proof of Theorem 3.5. The symbol of the singular integral operator
defined in (3.21) is

(B.4) Φij = (α(x)δij+sym (principal part Sλ̄
∣∣
ij
(θ))+sym (principal part Sμ̄

∣∣
ij
(θ)),

where θ = ξ/|ξ| and the symbol of the principal part of Sσ is one of the Fourier
transforms listed in (A.12). We see from (B.4) that the symbol is of order 0 and is
homogeneous in θ. Furthermore, what is important is the determinant of ΦΦΦσ, which
can be shown to be

(B.5) det ΦΦΦ = α2(α+ |ξξξ|2) > 0 ∀ |ξξξ|.
It follows immediately that the integral equation (3.21) admits a two-sided regularizer
(see [27, Chap. IX]) with symbol [ΦΦΦσ]−1. The regularization property with the symbol
given in (B.4) implies as previously that the operator (B.1) is a Fredholm operator;
it is normally solvable and has index zero.

This implies once again that standard Riesz–Schauder theory can be applied to
the regularized form of the operator equation. This means that, provided (3.21) has a
unique solution and therefore the kernel of the operator is zero, the theorem is proved;
Lemma 3.1 provides this fact.

Appendix C. Implicit function theorem.
Theorem C.1. Consider the functional ξ(v, y), v ∈ X, y ∈ Y , where ξ : X×Y �→

W with X,Y,W being Banach spaces. Then suppose that there exists an open subset
X0 ⊂ X such that for every v ∈ X0 the equation ξ(v, y) = 0 has a unique solution
y = y(v) in Y . We then have the following:

1. The map v → y(v), v ∈ X0, y ∈ Y , defined from X0 → Y , is continuous
upon satisfaction of the additional assumptions
(a) ξ(v, y) is continuous in v and y,
(b) ξy(v, y) is continuous in v and y,
(c) [ξy(v, y)]

−1 exists as a bounded mapping W → Y .
2. Moreover, the map is Fréchet differentiable if the conditions in 1 are satisfied

and also ξv(v, y) is continuous in v and y, with

y′(v) = −[ξy(v, y)]
−1ξv(v, y).

2By the Rellich–Kondrachov theorem with Ω bounded and satisfying the cone property (see [1,
Chap. VI]).
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Observe that this is the strong form of the implicit function theorem in that
the Fréchet derivative is given at all v ∈ X0; the basic form of the implicit function
theorem provides information only at a point v0 ∈ X0; however, uniqueness of the
solution then need not be known a priori.
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