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Abstract—In this paper, a new discrete-time model of phase
noise for digital communication systems, based on a comprehen-
sive continuous-time representation of time-varying phase noise
is derived and its statistical characteristics are presented. The
proposed phase noise model is shown to be more accurate than
the classical Wiener model. Next, using the proposed discrete-
time model, the non-data-aided (NDA) and decision-directed (DD)
maximum-likelihood (ML) estimators of time-varying phase noise are
derived. To evaluate the performance of the proposed estimators,
the Cramér-Rao lower bound (CRLB) for each estimation approach
is derived and by using Monte-Carlo simulations it is shown that
the mean-square error (MSE) of the proposed estimators converges
to the CRLB at moderate signal-to-noise ratios (SNR). Finally,
simulation results show that the proposed estimators outperform
existing estimation methods as the variance of the phase noise
process increases.

I. INTRODUCTION

Due to the requirements of high data-rate and spectrum effi-
cient communications, synchronization has gained more attention
in the communication community. Since phase noise adversely
affects the performance of communication systems, during the
last two decades, there have been numerous studies on the
estimation and compensation of phase noise in communication
systems, e.g., [1]–[8].
Oscillators are an essential part of wireless communication

systems and are used to perform frequency and timing synchro-
nization. However, the output of a non-ideal oscillator is not
perfectly periodic and suffers from many imperfections that in-
troduce phase noise to communication systems [9]–[13]. In order
to effectively estimate and compensate this phase noise, models
that accurately capture the characteristics of non-ideal oscillators
are required. The classical oscillator phase noise representation
is based on the Wiener-Lèvy or random-walk model [5]–[10].
This model is developed according to the Lorentzian portion of
the single-sideband (SSB) phase noise spectrum, L(f) 1, which
has a 1/f2 shape [11]. However, empirical measurements of
SSB phase noise spectrum of free-running oscillators show that
at smaller frequency offsets the phase noise spectrum deviates
from the classical model and has a 1/f 3 shape [13]–[15]. Recent
studies show that these two parts of SSB phase noise spectrum
are the results of two independent noise processes in the oscillator

1SSB phase noise spectrum, L(f), is defined as the power spectral density of
the total oscillatory signal around the central oscillation frequency, fc, expressed
as a function of the offset frequency f from fc, and normalized with the total
power of the oscillator’s signal [10].

circuitry, namely, white and flicker noise [15], [16]. Accordingly,
a new model of continuous-time phase noise is proposed in [16],
and [15] to explain the shape of SSB phase noise spectrum.
In contrast with the Wiener model which is widely used in

the literature, e.g., [5]–[10], the statistical characteristics of this
new model in discrete-time domain are not analyzed in detail.
Not that knowledge of the statistical characteristics of this new
more accurate model can be used to improve the phase noise
estimation accuracy in digital communication system which in
turn improves the overall system performance.
In [1]–[4], the estimation of constant phase offset using

decision-directed (DD)2 and non-data-aided (NDA) methods are
analyzed in detail. However, very little information on the esti-
mation of time-varying phase noise is presented, and as shown
in this paper the proposed estimators’ performance deteriorate as
the variance of the phase noise process increases. In addition,
the phase noise model applied in [4] for deriving the maximum-
likelihood estimator (MLE) is based on the assumption that the
phase fluctuations of each symbol consist of a constant phase
plus an independently and identically distributed (i.i.d) Gaussian
uncertainty. This model is different from the generally accepted
Wiener phase noise model, e.g., the model in [5]–[10]. Thus,
as shown in this paper the estimator proposed in [4] cannot be
used in the case of Wiener phase noise. In addition, the NDA
estimators proposed in [4] and [2] require the knowledge of
prior and future received signals to estimate the nth symbol’s
phase noise, which may introduce significant delays in the phase
noise estimation process. This estimators are known as offline
estimators. Another offline estimator, that can estimate the phase
noise of all observation symbols inside a given observation vector,
is proposed in [17]. On the other hand, the estimators proposed
in this paper are online estimators and only require the N past
received symbols while estimating the current symbol’s phase
noise.
In [6] the posterior Cramér-Rao bound (PCRB) [18] and a

particle filter based phase noise estimator for the estimation
of Wiener phase noise in communication systems are derived.
However, the PCRB and estimator in [6] are limited to the case
of Binary Phase Shift Keying (BPSK) modulation. Moreover, the
PCRB in [6] is derived for the case of Wiener phase noise
and hence is not valid for the new model proposed in this

2Information on prior data symbols are used to estimate the nth symbol’s phase
noise or phase fluctuation.



paper in which the phase variation during each time instant is
correlated with the phase variations during the past time instants
(see Sec. III). In this paper, the PCRB of [6] is compared with
the proposed Cramér-Rao lower bounds (CRLBs) for the case
of BPSK and it is shown that two bounds coincide under most
practical scenarios of interest. The Bayesian Cramér-Rao bound
(BCRB) [19] for evaluation of the estimation performance in the
case of Wiener phase noise is proposed in [8]. This study is also
limited to the case of BPSK modulation and is only focused on
the NDA scenario. No estimator is designed and extending the
result to more complex modulation schemes is very difficult.
In [7] the effect of imperfect phase noise estimation on the

bit error probability of quadratic phase-shift keying (QPSK)
modulated signals is investigated. However, the results are
limited and the performance of the proposed estimator is
not evaluated. Other phase noise estimation methods, such
as iterative methods are also presented in the literature, e.g.,
[20]–[22]. These iterative algorithms are usually complex to
implement.

The contributions of this paper can be summarized as follows:
• A new discrete-time model of the phase noise is proposed

which is a generalized version of the discrete-time Wiener model.
This model resembles the measured SSB phase noise spectrum of
a free-running oscillator more closely and takes into account the
effect of both 1/f 2 and 1/f 3-shaped portions of the SSB phase
noise spectrum. The statistical characteristics of the new model
are also derived.
• Based on the proposed model, new NDA and DD MLEs

and CRLBs for estimation of the phase noise in M-ary PSK
modulated signals are derived in closed form. It is also shown
that the derived bounds and estimators are applicable to the
Wiener phase noise.

In Sec. II, a system model for a point-to-point communication
system using M-ary PSK modulation is introduced. In Sec.III,
first, a continuous-time phase noise model in [15], [16] is briefly
studied. Then, the mentioned discrete-time model of the phase
noise is proposed based on this model. In Sec.IV, based on
the proposed model, new NDA and DD MLEs and CRLBs for
estimation of phase noise are derived. In Sec. V, the performance
of the derived estimators, for both the proposed phase noise
model and the Wiener model, are compared against the CRLB
and existing estimators and bounds in the literature.
Notations: italic letters (x) are scalar variables, bold letters

(x) are vectors, bold upper case letters (X) are matrices, (X a,b)
denotes the (a, b)th entry of matrix X, E[·] denotes the statistical
expectation, �(·), �(·), and arg(·) are real part, imaginary part,
and angle of complex values, and (·)∗, (·)T , and (·)H are
conjugate, transpose, and conjugate transpose, respectively.

II. SYSTEM MODEL
Fig. 1 depicts the block diagram corresponding to the com-

plex baseband representation of the considered communication
system. The received signal, rk, can be written as

rk = ejφk sk + wk, (1)

where sk is the M-ary PSK modulated symbol transmitted at time
instant k, ejφk represents the phasor of φk , which is the unwanted
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Fig. 1: System Model.

phase fluctuation of the kth received symbol, rk, and wk is
the zero-mean complex additive white Gaussian noise (AWGN)
with variance σ2

w. The source and statistical model of φk are
discussed in detail in Sec. III. Throughout this paper it is assumed
that the timing offset and channel gain have been estimated and
compensated which is in line with the assumptions in [1]–[8]. As
shown in Fig. 1, the received signal is passed through a phase
estimator and the estimated phase, φ̂k, is used to de-rotate the
received signal before demodulation.

III. PHASE NOISE MODEL

In this section the phase noise model in [15], [16], which
closely resembles measurement results for a free-running oscilla-
tor, is briefly introduced. Then we derive the statistical properties
of the discrete-time version of this model, given that it is of more
interest in digital communication systems.

A. Overview

As illustrated in Fig. 2 and shown in [15], [16], far from
the central carrier frequency, fc, the oscillator SSB phase noise
spectrum has a 1/f 2 shape. However, as we move closer to fc,
the oscillator SSB phase noise spectrum changes to a 1/f 3 shape,
and for further lower frequency offsets a Gaussian shape of SSB
phase noise spectrum can be observed. The classical Wiener
phase noise model is motivated by the 1/f 2 shape portion of
the oscillator’s spectrum, also known as Lorentzian spectrum [5].
However, the 1/f 3 and Gaussian portions of the oscillator’s SSB
phase noise spectrum need to be taken into consideration to find
a comprehensive phase noise model.
As shown in [15], [16], the output of a noisy oscillator is given

by ζ(t) = cos(2πfct+φ(t)), where φ(t) is the phase fluctuations
that is modeled as a real random process (RP). In the continuous-
time domain, the phase fluctuation can be expressed as

φ(t) =

∫ t

0

Ω(u) du, (2)

where Ω(t) is the frequency perturbation, which is a result of
different parameters such as thermal noise of circuit elements,
noise of transistors, fluctuations in the tuning voltage of voltage
controlled oscillators (VCO), etc. [23], [24]. In practice, Ω(t)
is assumed to be a stationary zero-mean Gaussian RP and can
be white or colored depending on the source of the noise [11],
[15], [24]. As shown in [11], [15], [16] the 1/f 2-shaped portion
is produced by white frequency noise, Ωwhite(t), while the 1/f 3-
shaped plus the Gaussian-shaped portions are due to flicker noise,
Ωflicker(t), with an approximate power spectral density (PSD)
equal to 1/f (1−ν). Note that, ν has a small value (0 < ν < 1) and
is used to ensure the stationarity of Ωflicker(t) [15], [16]. Finally,



the total phase fluctuation, φ(t), can be written as

φ(t) = φwhite(t) + φflicker(t), (3)

where φwhite(t) and φflicker(t) are two independent phase noise
processes, which are produced by Ωwhite(t) and Ωflicker(t), re-
spectively.
Using (2), the phase noise variation caused by the phase noise

process during the time interval τ is defined as

ξ(t, τ) = φ(t)− φ(t − τ) =

∫ t

t−τ

Ω(u) du, (4)

where ξ(t, τ) denotes the phase noise innovation and according
to the properties of Ω(t), it is a zero-mean Gaussian RP. Note that
the variance and correlation properties of ξ(t, τ) are dependent
on the properties of Ω(t).

B. A New Discrete-Time Phase Noise Model
In this section, a new discrete-time phase noise model, consist-

ing of both φwhite(t) and φflicker(t) is proposed, and its statistical
properties are derived.
According to (4) and considering a sampling time T s, the phase

innovation between two consecutive samples can be written as

Δn � ξ(nTs, Ts) = φ(nTs)− φ(nTs − Ts) =

∫ nTs

(n−1)Ts

Ω(u) du,

(5)
where Δn is the discrete version of ξ(t, τ). Using (5), the phase
fluctuation of the nth sample, φn � φ(nTs), can be expressed as

φn = φn−1 +Δn. (6)

According to (3), the total phase noise innovation can be written
as addition of two independent phase noise innovations

Δn = Δwhite,n +Δflicker,n, (7)

where Δwhite,n and Δflicker,n denote the phase noise innovation
corresponding to Ωwhite(t) and Ωflicker(t), respectively. Note that
for the Wiener model, only the white phase noise innovation,
Δwhite,n, is considered and Δflicker,n is usually neglected despite
its important effect on the final phase noise process.
Based on the above assumptions, the autocorrelation function

of Δn can be calculated as

RΔ(l) = E [ΔnΔn+l] (8)

= E

[∫ nTs

(n−1)Ts

∫ (n+l)Ts

(n+l−1)Ts

Ω(u)Ω(v)dudv

]

=

∫ nTs

(n−1)Ts

∫ (n+l)Ts

(n+l−1)Ts

RΩ(u− v)dudv,

where RΩ(u − v) denotes the autocorrelation function of Ω(t).
Using the Fourier transform of RΩ(u− v), RΔ(l) can be written
as

RΔ(l) =

∫ ∞

−∞

{
SΩ(f) (9)∫ nTs

(n−1)Ts

∫ (n+l)Ts

(n+l−1)Ts

ej2πf(u−v)dudv
}
df,
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where SΩ(f) denotes the PSD of Ω(t). By evaluating the two
internal integrals with respect to u and v and carrying out
straightforward algebraic manipulations RΔ(l) can be found as

RΔ(l) = 2

∫ ∞

0

SΩ(f)
cos(2πflTs)(1− cos(2πTs))

(2πf)2
df. (10)

The autocorrelation of Δwhite,n can be found by using (10) and
assuming a constant PSD, i.e., SΩwhite(f) = K1, such that

RΔwhite(l) =

{
σ2
Δwhite

= K1Ts

2 if l = 0

0 if l �= 0
, (11)

where σ2
Δwhite

is the variance of Δwhite,n, which is a linear function
of the sampling time Ts. For this case, the phase noise process
φwhite(t) is a special case of discrete fractional Brownian motion
(fBm) [25] with uncorrelated innovations also known as a Wiener
Process.
Using (10) and SΩflicker(f) =

K2

|f |1−ν , the autocorrelation func-
tion of Δflicker,n can be determined as

RΔflicker(l) =
σ2
Δflicker

2

(|l − 1|2−ν − 2|l|2−ν + |l + 1|2−ν
)
, (12)

where σ2
Δflicker

is the variance, which is given by

σ2
Δflicker

=
−K2π

(2π)νΓ(3− ν) cos( (3−ν)π
2 )

T 2−ν
s . (13)

Note that the phase noise process, φflicker(t), with the autocorre-
lation function defined by (12) for its innovations, is an fBm
[25], where the variance of the innovations is approximately
proportional to T 2

s .
Finally, according to (7), the autocorrelation function of the

total phase noise innovation, Δn, is determined as

RΔ(l) = RΔwhite(l) +RΔflicker(l), (14)

where RΔwhite(l), and RΔflicker(l) are defined in (11), and (12),
respectively.

IV. ESTIMATION OF TIME-VARYING PHASE NOISE
In the following subsections, four algorithms for estimation

of the kth received symbol’s phase noise, φk , are derived. In
addition, a CRLB is derived for each case to evaluate the per-
formance of each estimator. The proposed algorithms are based



on non-data-aided (NDA) and decision-directed (DD) methods.
In each method two different schemes, based on the high-SNR
and slow-varying phase noise assumptions are implemented.
According to the phase noise model in (6), (7) and Fig. 3, the

phase noise of the (k − i)th received symbol is determined as

φk−i = (φk −
i−1∑
m=0

Δm). (15)

Using (15) and the system model developed in Sec.II, the (k−i)th
received symbol, rk−i, can be written as

rk−i = sk−ie
j(φk−

∑i−1
m=0 Δm) + wk−i. (16)

Note that all statistical properties of the random phase noise, φk,
is translated to the model in (15) and (16). Thus, hereinafter,
φk is assumed as an unknown deterministic parameter over the
observation sequence.

A. Non-Data-Aided Estimator
In order to remove the data dependency, the received signal can

be passed through a nonlinear function [2]. Here, the approach
proposed in [4] is used, where the received M-ary PSK symbols
are raised to the power of M . Based on this approach, (16) can
be rewritten as

rMk−i = (sk−ie
j(φk−

∑i−1
m=0 Δm) + wk−i)

M . (17)

Using the binomial theorem, rMk−i can be rewritten as

rMk−i =

M∑
l=0

(
M

l

)
(sk−ie

j(φk−
∑i−1

m=0 Δm))M−lwl
k−i (18)

=

(
M

0

)
(sk−ie

j(φk−
∑i−1

m=0 Δm))Mw0
k−i

+

(
M

1

)
(sk−ie

j(φk−
∑i−1

m=0 Δm))M−1w1
k−i

+

(
M

2

)
(sk−ie

j(φk−
∑i−1

m=0 Δm))M−2w2
k−i + · · · .

Assuming that the signal power is much larger than the noise
wk−i, the remaining terms after the second term in (18) can
be neglected. By defining the M-ary PSK modulated symbol
sk =

√
Ese

j(
2πLk
M ), where Es denotes the signal energy and

Lk ∈ {1, . . . ,M} is the index of transmitted message, sMk , can
be determined as

sMk = E
M
2

s ej(
2πLk

M )M = E
M
2

s . (19)

Using (19) and by keeping only the first two terms of (18), ṙ k−i �
rMk−i can be rewritten as

ṙk−i =E
M
2

s ejM(φk−
∑i−1

m=0 Δm) (20)

+ME
M−1

2
s ej((M−1)(φk−

∑i−1
m=0 Δm)+arg(sM−1

k−i ))wk−i︸ ︷︷ ︸
�ẇk−i

,

where ẇk−i, a rotated and scaled version of wk−i, is still a zero-
mean complex Gaussian random variable (RV) with variance
σ2
ẇ = M2E

(M−1)
s σ2

w. This is based on the assumption of
circularity on the observation noise.

r :

φ :

rkrk−1rk−2rk−N+1

φkφk −Δ1φk −Δ1 −Δ2φk −∑N−2
m=0 Δm . . .

. . .

N symbols

Fig. 3: Vector of N received symbols and its corresponding phase fluctuation
vector.

1) High-SNR: By defining ẅk−i � ẇk−ie
−jM(φk−

∑i−1
m=0 Δm)

(20) is rewritten as

ṙk−i = (E
M
2

s + ẅk−i)e
jM(φk−

∑i−1
m=0 Δm) (21)

= |EM
2

s + ẅk−i|ej(arg(Es
M
2 +ẅk−i)+M(φk−

∑i−1
m=0 Δm)),

where ẅk−i is the rotated version of ẇk−i with variance σ2
ẅ =

σ2
ẇ . Next, note that

arg(Es
M
2 + ẅk−i) = tan−1

(
�(ẅk−i)

Es
M
2 + �(ẅk−i)

)
. (22)

At high SNR, since �(ẅk−i)

Es
M
2

is small and tan−1(x) ≈ x for small
x, (22) can be rewritten as

arg(Es
M
2 + ẅk−i) ≈ �(ẅk−i)

Es
M
2

� ...
wk−i. (23)

The accuracy of this approximation is evaluated in Sec. V by
means of numerical simulations. The SNR range in which High-
SNR assumption is valid is discussed in Remark 1. Using (21),
(22), and (23), arg(ṙk−i) can be written as

ak−i � arg(ṙk−i) = Mφk −M

i−1∑
m=0

Δm +
...
wk−i, (24)

where ...
wk−i, a zero-mean real Gaussian RV with variance σ2...

w =
σ2
ẅ

2EsM , is defined in (23). Since summation of zero-mean real
Gaussian RVs is a real Gaussian RV, ak−i is also a real Gaussian
RV. Therefore, the vector a � [ak−N+1, . . . , ak]

T has an
N−variate Gaussian distribution given by

fa|φk
(a|φk) =

1√
((2π)N det(Ca))

e[−
1
2 (a−ma)

TC−1
a (a−ma)],

(25)

where ma = Mφk1
N×1 and CN×N

a denote the mean and
covariance of a, respectively and 1 � [1, 1, . . . , 1]T . The elements
of the covariance matrix CN×N

a can be determined as

Cx+1,y+1
a = E[(ak−x − E[ak−x])(ak−y − E[ak−y ])] (26)

= E[(ak−x −Mφk)(ak−y −Mφk)]

= E[(−M
x−1∑
n=0

Δn +
...
wk−x)(−M

y−1∑
m=0

Δm +
...
wk−)]

= M2
x−1∑
m=0

y−1∑
n=0

E[ΔmΔn] + E[
...
wk−x

...
wk−y ]

= M2
x−1∑
m=0

y−1∑
n=0

(RΔwhite(m− n) +RΔflicker(m− n))

+ δ(x− y)
M2σ2

w

2Es
,



where x, y ∈ {0, . . . , N − 1}. The log-likelihood function (LLF)
of φk , up to an additive constant is given by

L(φk) = ln(fa|φk
) = −1

2
(a−ma)

TC−1
a (a−ma). (27)

In order to find the MLE of φk , φ̂k , the LLF in (27) needs to be
maximized, where the derivative of L(φk) with respect to φk is
determined as
∂L(φk)

∂φk
=

1

2
[MaTC−1

a 1+M1TC−1
a a− 2M2φk1

TC−1
a 1].

(28)
By setting (28) equal to zero and by carrying out straightforward
algebraic manipulations, the MLE for φk can be derived as

φ̂k(NDAh) =
1TC−1

a a

M(1TC−1
a 1)

. (29)

Given that the Cramér-Rao lower bound (CRLB) is defined as
[26]

CRLB =

(
E

[
−∂2L(φk)

∂φ2
k

])−1

, (30)

the CRLB for the estimation of φk using the high-SNR assump-
tion, CRLB(NDAh), is calculated as

CRLB(NDAh) =
1

M2(1TC−1
a 1)

. (31)

2) Slow-Varying Phase Noise: The Taylor series expansion of
ex for small values of x can be approximated by ex ≈ 1 + x.
Based on the assumption of slow-varying phase noise, the sum
of the phase innovations M

∑i−1
m=0 Δm can be considered to be

small. Thus, e−jM
∑i−1

m=0 Δm can be approximated by

e−jM
∑i−1

m=0 Δm ≈ 1− jM

i−1∑
m=0

Δm. (32)

The slow-varying phase noise assumption and approximation in
(32) is used and verified in the literature, e.g., [5], [7], [27]–[29]
. The results in Sec. V, where the performance of the estimator
proposed in this subsection is compared against the CRLB, also
validate this assumption (see also Remark 2). Using (32), (20)
can be rewritten as

ṙMk−i = E
M
2

s ejMφk (1− jM

i−1∑
m=0

Δm) + ẇk−i (33)

= E
M
2

s ejMφk − jME
M
2
s ejMφk

i−1∑
m=0

Δm + ẇk−i.

Given that Δm and ẇk−i are Gaussian RVs and based on (33)
the vector ṙ � [ṙMk−N+1, . . . , ṙ

M
k ]T has an N−variate complex

Gaussian distribution given by

fṙ|φk
(ṙ|φk) =

1

(π)N det(Cṙ)
e[−(ṙ−mṙ)

HC−1
ṙ (ṙ−mṙ)], (34)

where mṙ = E
M
2

s ejMφk1N×1 is the mean vector. Taking the
same approach as (26), elements of the covariance matrix CN×N

ṙ

can be determined as

Cx+1,y+1
ṙ = M2EM

s

x−1∑
m=0

y−1∑
n=0

(RΔwhite(m− n) +RΔflicker(m− n))

+M2EM−1
s δ(x− y)σ2

w. (35)
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sumption vs. PCRB in [6] for different SNR values and different observation
block lengths in BPSK modulation case, (Wiener model σ2Δwhite

= 10−3 and
σ2
Δflicker

= 0).

In order to find the MLE for φk , first the LLF, up to an additive
constant, is determined as

L(φk) = ln(fṙ|φk
) = −(ṙ−mṙ)

HC−1
ṙ (ṙ−mṙ). (36)

The derivative of LLF with respect to φk can be calculated as

∂L(φk)

∂φk
= jMEs

M
2 [ejMφk ṙHC−1

ṙ 1− e−jMφk1TC−1
ṙ ṙ]. (37)

Finally, by setting ∂L(φk)
∂φk

in (37) equal to zero the MLE of φk

is given by

φ̂k(NDAs) =
1

M
tan−1 �(1TC−1

ṙ ṙ)

�(1TC−1
ṙ ṙ)

. (38)

Using (30), the CRLB for estimation of φk using the slow-varying
phase noise assumption, CRLB(NDAs), is given by

CRLB(NDAs) =
1

2M2EM
s (1TC−1

ṙ 1)
. (39)

The following remarks are in order:
Remark 1: In Fig. 4, the proposed CRLB of the NDA scheme,

using the High-SNR assumption, is compared with the PCRB in
[6] for the case of BPSK modulation. This figure shows that the
High-SNR assumption is valid for a large range of SNR values.
It can be seen that the proposed CRLB is close to the PCRB of
[6] even for the low SNR values, e.g., −5 dB, and 0 dB.
Remark 2: Fig. 5 compares the proposed CRLB of the NDA

method using the slow-varying phase noise assumption, and the
PCRB introduced in [6]. As illustrated in this figure, increasing
the observation block length results in a better estimation per-
formance. Moreover, it validates the slow-varying phase noise
assumption for the given phase noise innovation variances. Ac-
cording to the empirical measurements of the phase noise in
the literature, e.g., [12], 10−3 rad2 or 10−4 rad2 are reasonable
assumptions for the variance of the phase noise innovations for
typical free running oscillators. Fig. 5 shows that the proposed
CRLB bound is close to the PCRB of [6] and validates the slow-
varying phase noise assumption in this paper.



1 2 3 4 5 6 7 8 9 10
10

-3

10
-2

10
-1

Block Length

C
R

L
B

 v
s
. 

P
C

R
B

 [
ra

d2
]

PCRB σ
2

Δ(white)
=1e-3

CRLB (slow-varying phase noise) σ
2

Δ(white)
=1e-3

PCRB σ
2

Δ(white)
=1e-4

CRLB (slow-varying phase noise) σ
2

Δ(white)
=1e-4

CRLB and PCRB, σ
2

Δ(white)
=1e-3

CRLB and PCRB, σ
2

Δ(white)
=1e-4

Fig. 5: Comparing the proposed CRLB of NDA method using slow-varying phase
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= 0).

Remark 3: Although the above approach removes the data
dependency, it results in a phase ambiguity of 2π/M . In practice
training sequences and pilots or differential modulation can be
used to solve this problem [4].
Remark 4: Given that the process of removing data dependency

in (18) amplifies the AWGN by a factor of M , where M is the
constellation size, the proposed NDA estimators’ performance
degrades as M increases.

B. Decision-Directed Estimator

The DD scenario is of interest given that in most commu-
nication systems training sequences or pilot signals are used
to facilitate accurate and efficient estimation of synchronization
parameters. In this paper the DD scenario refers to the scenario
where the kth symbol’s phase noise is estimated while assuming
that the transmitted symbols prior to the kth symbol are known.
After multiplying rk−i by the conjugate of the known trans-

mitted symbol, s∗k−i, one obtains

r̃k−i � s∗k−irk−i = Ese
j(φk−

∑i−1
m=0 Δm) + ẇk−i, (40)

where ẇk−i is a zero-mean complex Gaussian RV with variance
σ2
ẇ = Esσ

2
w. Similar to the NDA method, two estimators based

on the high-SNR and slow-varying phase noise assumptions are
derived in the following subsections.
1) High-SNR: Using the same steps as the ones outlined in

Sec.IV-A, r̃k−i can be rewritten as

r̃k−i = |Es + ẅk−i|ej(φk−
∑i−1

m=0 Δm+
...
wk−i), (41)

where ẅk−i, is a rotated version of ẇk−i, and
...
wk−i is a real Gaus-

sian RV with variance σ2...
w =

σ2
w

2Es . From (41), it is clear that the
useful information for the estimation of φk is the angle of r̃k−i.
Let us define ãk−i � arg(r̃k−i) and ã � [ãk−N , . . . , ãk−1]

T ,
where ã has an N -variate Gaussian distribution similar to that of
(25). The mean vector and covariance matrix of ã are given by
mã = φk1

N×1 and CN×N
ã , respectively. Using similar steps as

(26), CN×N
ã can be calculated as

Cx,y
ã =

x−1∑
m=0

y−1∑
n=0

(RΔwhite(m− n) +RΔflicker(m− n)) (42)

+ δ(x− y)
σ2
w

2Es
,

where x, y ∈ {1, . . . , N}. Analogous to Sec. IV-A, the MLE and
CRLB can be determined as

φ̂k(DDh) =
1TC−1

ã ã

1TC−1
ã 1

, CRLB(DDh) =
1

1TC−1
ã 1

. (43)

2) Slow-Varying Phase Noise: Based on the assumption that∑i−1
m=0 Δm has a small value, (40) can be rewritten as

r̃k−i = Ese
jφk(1− j

i−1∑
m=0

Δm) + ẇk−i (44)

= Ese
jφk − jEse

jφk

i−1∑
m=0

Δm + ẇk−i.

According to (44), the observation vector
r̃ � [r̃k−N , . . . , r̃k−1]

T has an N -variate complex
Gaussian distribution in the form of (34) with mean vector
mr̃ = Ese

jφk1N×1. Similar to (26), the elements of the
covariance matrix CN×N

r̃ are determined as

Cx,y
r̃ = E2

s

x−1∑
m=0

y−1∑
n=0

(RΔwhite(m− n) +RΔflicker(m− n)) (45)

+ Esδ(x− y)σ2
w ,

where x, y ∈ {1, . . . , N}. The MLE and CRLB for this scenario
can be determined as

φ̂k(DDs) = tan−1 �(1TC−1
r̃ r̃)

�(1TC−1
r̃ r̃)

, CRLB(DDs) =
1

2E2
s1

TC−1
r̃ 1

.

(46)
V. SIMULATION AND RESULTS

In this section, the performance of the proposed MLEs is eval-
uated by Monte-Carlo simulations and the results are compared
to the derived CRLBs for both the Wiener and the proposed fBm
models. In addition, the phase noise estimator in [4] is simulated
and its performance is compared to the proposed MLEs.
The output range of the derived estimators are limited due to

the use of tan−1(·) operator. To improve the estimation range,
an unwrapping algorithm similar to that of [4] is applied. In [4],
phase noise estimates for prior symbols are used in combination
with the phase noise variance to unwrap the estimate for the
current symbol.
Fig. 6 compares the CRLBs of the NDA method using slow-

varying phase noise approach for different phase noise variances
and SNRs. As illustrated, at low-to-medium SNRs, the higher
the phase noise innovation variance the higher is the CRLB for
the estimation of the phase noise. However, at high SNRs, the
performance of the proposed NDA estimator for different phase
noise variances converges to the same value.
In Fig. 7 the performances of the NDA estimators based on

the high-SNR and slow-varying phase noise assumptions are com-
pared against one another. As illustrated, compared to the high-
SNR approach, the mean-square error (MSE) of the proposed
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estimator based on the slow-varying phase noise assumption
converges to CRLB at low SNR. This is anticipated from the
analytical results, since according to (22), for the NDA method,
the high-SNR assumption is only valid when M 2E

(M−1)
s σ2

w is
small. Even with M = 4, the results in Fig. 7 show that the
assumption in (22) only holds for very high SNR values. In
contrast, for the DD estimator, the high-SNR assumption is valid
when Esσ

2
w is small which is more feasible at moderate SNRs.

Thus, performance in this case is independent of the constellation
size and it can be seen in Fig. 8 that the DD estimator based on
the high-SNR approach outperforms the NDA method in Fig. 7.
In general, the DD method has an error floor compared with the
NDA scheme due to the fact that in the case of DD estimation,
only the observation sequence up to the (k−1)th symbol is used
while estimating the kth symbol’s phase noise.
Fig. 8 depicts the performance of the DD method using the

high-SNR assumption. As it can be seen, in each scenario, the
estimator’s MSE converges and follows the theoretical CRLB.
In this figure, the estimation bounds of phase noise with white
and colored innovations are also compared. These results show
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= 0).

that colored phase noise innovations can be more accurately
estimated in high SNR. This is anticipated as the correlation
between phase innovations can be exploited by the estimator to
improve estimation accuracy.
In Fig. 9, the performance of the proposed NDA method using

slow-varying phase noise approach is compared against the NDA
algorithm in [4]. As it can be seen in this figure, the proposed
method outperforms the method in [4] for different SNRs and
phase noise variances. For slow phase noise variances and high
SNRs, the performance of the algorithm in [4] is close to the
CRLB. However, unlike the NDA estimators proposed in this
paper, for high phase noise variances, the estimator in [4] suffers
from an error floor.

VI. CONCLUSIONS

In this paper a new discrete-time model of time-varying phase
noise that more closely resembles the measurement results for
a free-running oscillator is proposed. Four different NDA and
DD MLEs for estimation of the time-varying phase noise are



derived in closed form. The proposed estimators are not based
on an exhaustive search and are shown to converge to the CRLBs
over a large range of SNR values. In addition, the assumptions
that are used in derivation of the bounds and estimators are
validated by comparing the results with the available bounds
in the literature. It is also shown that the proposed algorithms
significantly outperform some of the available estimators.
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