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Uncertainty Relations and Sparse Signal Recovery
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Abstract—We present an uncertainty relation for the represen-

tation of signals in two different general (possibly redundant or

incomplete) signal sets. This uncertainty relation is relevant for the

analysis of signals containing two distinct features each of which

can be described sparsely in a suitable general signal set. Fur-

thermore, the new uncertainty relation is shown to lead to im-

proved sparsity thresholds for recovery of signals that are sparse in

general dictionaries. Specifically, our results improve on the well-

known (1+1/d)/2-threshold for dictionaries with coherence d by

up to a factor of two. Furthermore, we provide probabilistic re-

covery guarantees for pairs of general dictionaries that also allow

us to understand which parts of a general dictionary one needs to

randomize over to “weed out” the sparsity patterns that prohibit

breaking the square-root bottleneck.

I. INTRODUCTION AND OUTLINE

A milestone in the sparse signal recovery literature is the
uncertainty relation for the Fourier-identity pair found in [1].
This uncertainty relation was extended to pairs of arbitrary
orthonormal bases (ONBs) in [2]. Besides being interesting in
their own right, these uncertainty relations are fundamental in
the formulation of recovery guarantees for signals that contain
two distinct features, each of which can be described sparsely
using an ONB. If the individual features are, however, sparse
only in overcomplete signal sets (i.e., in frames [3]), the two-
ONB result [1], [2] cannot be applied. The goal of this paper is
to find uncertainty relations and corresponding signal recovery
guarantees for signals that are sparse in pairs of general (possi-
bly redundant) signal sets. Redundancy in the individual signal
sets allows us to succinctly describe a wider class of features.
Applications for which the study of pairs of overcomplete signal
sets has significant relevance are discussed in detail in [4] in the
context of recovery of sparse signals that are impaired by sparse
additive noise. The wide range of applications that are covered
by this general setup includes super-resolution, inpainting, sig-
nal separation, denoising, and recovery of signals that have been
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clipped, or distorted by impulse noise or narrowband interfer-
ence. Further concrete examples for interesting setups where
our results are relevant can be found in the feature extraction
or morphological component analysis literature (see, e.g., [5],
[6] and references therein).

In order to put our results into perspective and to detail our
contributions, we first briefly recapitulate the formal setup con-
sidered in the sparse signal recovery literature [7], [8], [2], [9]–
[12].

A. Sparse Signal Recovery Methods
Consider the problem of recovering an unknown vector from

a small number of linear non-adaptive measurements. More
formally, let x ∈ CN be an unknown vector that is observed
through a measurement matrix D with columns1 di ∈ CM , i =
1, 2, . . . , N , according to

y = Dx

where y ∈ CM and M � N . If we do not impose additional
conditions on x, the problem of recovering x from y is obvi-
ously ill-posed. The situation changes drastically if we assume
that x is sparse in the sense of having only a few nonzero entries.
More specifically, let �x�0 denote the number of nonzero entries
of x, then

(P0) minimize �x�0 subject to y = Dx

can recover x without prior knowledge of the positions of the
nonzero entries of x. Equivalently, we can interpret (P0) as the
problem of finding the sparsest representation of the vector y in
terms of the “dictionary elements” (columns) di. In this context,
the matrix D is often referred to as dictionary.

Since (P0) is an NP-hard problem [13] (it requires a combina-
torial search), it is computationally infeasible, even for moderate
problem sizes N , M . Two popular and computationally more
tractable alternatives to solving (P0) are basis pursuit (BP) [14],
[7]–[9], [2], [10] and orthogonal matching pursuit (OMP) [15],
[16], [10]. BP is a convex relaxation of the (P0) problem, namely

(BP) minimize �x�1 subject to y = Dx.

Here, �x�1 =
�

i
|xi| denotes the �1-norm of the vector x.

OMP is an iterative greedy algorithm that constructs a sparse
representation of y by selecting, in each iteration, the column
of D most “correlated” with the difference between y and its
current approximation.

1Throughout the paper, we shall assume that the columns of D span CM and
have unit �2-norm.
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Two questions that arise naturally are: 1) Under which con-
ditions is x the unique solution of (P0)? 2) Under which con-
ditions is this solution delivered by BP and/or OMP? Answers
to these questions are typically expressed in terms of sparsity
thresholds on the unknown vector x [7]–[9], [2], [10]. These
sparsity thresholds either hold for all possible sparsity patterns
and values of nonzero entries in x, in which case we speak
of deterministic sparsity thresholds. Alternatively, one may be
interested in so-called probabilistic or—following the termi-
nology used in [11]—robust sparsity thresholds, which hold
for most sparsity patterns and values of nonzero entries in x.
Intuitively, robust sparsity thresholds are larger than determin-
istic ones. More precisely, as the number of measurements M
grows large, deterministic sparsity thresholds generally scale at
best as

√
M . Robust sparsity thresholds, in contrast, break this

square-root bottleneck. In particular, they scale on the order of
M/(logN) [12]. However, this comes at a price: Uniqueness
of the solution of2 (P0) and recoverability of the (P0)-solution
through BP is guaranteed only with high probability with re-
spect to the choice of3 x.

Both deterministic and probabilistic sparsity thresholds are
typically expressed in terms of the dictionary coherence, defined
as the maximum absolute value over all inner products between
pairs of distinct columns of D.

An alternative approach is to assume that the dictionary D is
random (rather than the vector x) and to determine thresholds
that hold for all (sufficiently) sparsexwith high probability with
respect to the choice of D [17]–[19]. Throughout this paper, we
consider deterministic dictionaries exclusively.

Note that when considering signals that consist of two distinct
features, each of which can be described sparsely using an
ONB [2], [7], [20], [10], the corresponding dictionaryD is given
by the concatenation of these two ONBs. One obvious way of
obtaining recovery guarantees for signals that are sparse in pairs
of general signal sets is to concatenate these general signal
sets, view the concatenation as one (general) dictionary, and
apply the sparsity thresholds for general dictionaries reported in,
e.g., [8]–[10], [12]. However, these sparsity thresholds depend
only on the coherence of the resulting overall dictionary D and,
in particular, do not take into account the coherence parameters
of the two constituent signal sets.

In this paper, we show that the sparsity thresholds can be
improved significantly not only if D is the concatenation of
two ONBs—as was done in [2], [9], [20], [10]—but also if D
consists of the concatenation of two general signal sets (or sub-
dictionaries) with known coherence parameters.

B. Contributions

Our contributions can be detailed as follows. Based on a
novel uncertainty relation for pairs of general (redundant or
incomplete) signal sets, we obtain a novel deterministic spar-
sity threshold guaranteeing (P0)-uniqueness for dictionaries that
are given by the concatenation of two general sub-dictionaries

2Whenever we speak of uniqueness of the solution of (P0), we mean that the
unique solution of (P0) applied to y = Dx is given by x.

3Robust sparsity thresholds for OMP to deliver the unique (P0)-solution are
still unknown.

with known coherence parameters. Additionally, we derive a
novel threshold guaranteeing that BP and OMP recover this
unique (P0)-solution. Our thresholds improve significantly on
the known deterministic sparsity thresholds one would obtain if
the concatenation of the two sub-dictionaries were viewed as a
general dictionary, thereby ignoring the additional information
about the sub-dictionaries’ coherence parameters. More pre-
cisely, this improvement can be up to a factor of two. Moreover,
the known sparsity thresholds for general dictionaries and the
ones for the concatenation of two ONBs follow from our re-
sults for the concatenation of general sub-dictionaries as special
cases.

Concerning probabilistic sparsity thresholds for the concate-
nation of two general dictionaries, we address the following
question: Given a general dictionary, can we break the square-
root bottleneck while only randomizing the sparsity patterns
over a certain part of the overall dictionary? By extending the
results for the two-ONB setting [11], [12] to the concatenation
of two general dictionaries, we show that the answer is in the
affirmative. Our results allow us to identify the part of a general
dictionary the sparsity pattern needs to be randomized over so
as to break the square-root bottleneck.

C. Notation

We use lowercase boldface letters for column vectors, e.g.,
x, and uppercase boldface letters for matrices, e.g., D. For
a given matrix D, we denote its ith column by di, its con-
jugate transpose by DH , and its Moore-Penrose inverse by
D†. Slightly abusing notation, we say that d ∈ D if d is
a column of the matrix D. The spectral norm of a matrix D
is �D� =

�
λmax(DHD), where λmax(DHD) denotes the

maximum eigenvalue of DHD. The minimum and maximum
singular value of D are denoted by σmin(D) and σmax(D),
respectively; rank(D) stands for the rank of D, �D�1,2 =
maxi{�di�2}, and �D�1,1 = maxi{�di�1}. The smallest
eigenvalue of the positive-semidefinite matrix G is denoted by
λmin(G). We use In to refer to the n × n identity matrix;
0m,n and 1m,n stand for the all-zero and all-one matrix of
size m×n, respectively. We denote the n-dimensional all-ones
and all-zeros column vector by 1n and 0n, respectively. The
natural logarithm is referred to as log. The set of all positive
integers is N+. For two functions f(x) and g(x), the notation
f(x) = Ω(g(x)) means that there exists a real number x0

such that |f(x)| ≥ k1|g(x)| for all x > x0, where k1 is a
finite constant. The notation f(x) = O(g(x)) means that there
exists a real number x0 such that |f(x)| ≤ k2|g(x)| for all
x > x0, where k2 is a finite constant. Furthermore, we write
f(x) = Θ(g(x)) if there exists a real number x0 and finite
constants k1 and k2 such that k1|g(x)| ≤ |f(x)| ≤ k2|g(x)| for
all x > x0. For u ∈ R, we define [u]+= max{0, u}. Whenever
we say that a vector x ∈ CN has a randomly chosen sparsity
pattern of cardinality L, we mean that the support set of x (i.e.,
the set of nonzero entries of x) is chosen uniformly at random
among all

�
N

L

�
possible support sets of cardinality L.
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II. DETERMINISTIC SPARSITY THRESHOLDS

A. A Brief Review of Relevant Previous Work

A quantity that is intimately related to the uniqueness of
the solution of (P0) is the spark of a dictionary D, defined as
the smallest number of linearly dependent columns of D [8].
More specifically, the following result holds [8], [9]: For a given
dictionary D and measurement outcome y = Dx, the unique
solution of (P0) is given by x if

�x�0 <
spark(D)

2
. (1)

Unfortunately, determining the spark of a dictionary is an NP-
hard problem, i.e., a problem that is as hard as solving (P0)
directly. It is possible, though, to derive easy-to-compute lower
bounds on spark(D) that are explicit in the coherence of D
defined as

d = max
i �=j

��dH

i
dj

�� . (2)

We next briefly review these lower bounds. Let us first consider
the case where D is the concatenation of two ONBs. Denote the
set of all dictionaries that are the concatenation of two ONBs
and have coherence d by Donb(d). It was shown in [2] that for
D ∈ Donb(d), we have

spark(D) ≥ 2

d
. (3)

Substituting (3) into (1) yields the following sparsity threshold
guaranteeing that the unique solution of (P0) applied to y = Dx
is given by x:

�x�0 <
1

d
. (4)

Furthermore, it was shown in [2], [20], [10] that for this unique
solution to be recovered by BP and OMP it is sufficient to have

�x�0 <

√
2− 0.5

d
≈ 0.9

d
. (5)

A question that arises naturally is: What happens if the dic-
tionary D is not the concatenation of two ONBs? There exist
sparsity thresholds in terms of d for general dictionaries. Specif-
ically, let us denote the set of all dictionaries with coherence d
by Dgen(d). It was shown in [8]–[10] that for D ∈ Dgen(d) we
have

spark(D) ≥ 1 +
1

d
. (6)

Using (6) in (1) yields the following sparsity threshold guaran-
teeing that the unique solution of (P0) applied to y = Dx is
given by x:

�x�0 <
1

2

�
1 +

1

d

�
. (7)

Interestingly, one can show that (7) also guarantees that BP and
OMP recover the unique (P0)-solution [8]–[10].

The set Dgen(d) is large, in general, and contains a variety of
structurally very different dictionaries, ranging from equiangu-
lar tight frames (where the absolute values of the inner products
between any two distinct dictionary elements are equal) to dic-
tionaries where the maximum inner product is achieved by one
pair only. The sparsity threshold in (7) is therefore inevitably
rather crude. Better sparsity thresholds are possible if one con-

siders subsets of Dgen(d), such as, e.g., Donb(d) ⊂ Dgen(d). A
dictionary D ∈ Donb(d) also satisfies D ∈ Dgen(d), and, hence,
the sparsity threshold in (7) applies. However, the additional
structural information about D being the concatenation of two
ONBs, i.e., D ∈ Donb(d), allows us to obtain the improved
sparsity thresholds in (4) and (5), which are (for d � 1) almost
a factor of two higher (better) than the threshold in (7). As a
side remark, we note that the threshold for the two-ONB case
in (5) drops below that in (7), valid for general dictionaries,
if d > 2(

√
2 − 1). This is surprising as exploiting structural

information should lead to a higher sparsity threshold. We will
show, in Section II-B, that one can refine the threshold in (5) so
as to fix this problem.

B. Novel Deterministic Sparsity Thresholds for the Concatena-
tion of Two General Signal Sets

We consider dictionaries with coherence d that consist of two
sub-dictionaries with coherence a and b, respectively. The set of
all such dictionaries will be denoted as D(d, a, b). A dictionary
D ∈ D(d, a, b) of dimension M × N (with N ≥ M ) can be
written as D = [A B], where the sub-dictionary A ∈ CM×Na

has coherence a and the sub-dictionary B ∈ CM×Nb has co-
herence b. We remark that the two sub-dictionaries need not be
ONBs, need not have the same number of elements and need
not span CM , but their concatenation is assumed to span CM .
Without loss of generality, we assume, throughout the paper, that
a ≤ b. For fixed d,4 we have that D(d, a, b) ⊂ Dgen(d). Hence,
we consider subsets D(d, a, b) of the set Dgen(d) parametrized
by the coherence parameters a and b.

For D ∈ D(d, a, b) we derive sparsity thresholds in terms of
d, a, and b and show that these thresholds improve upon those
in (7) for general dictionaries D ∈ Dgen(d). This improvement
is a result of the restriction to a subset of dictionaries in Dgen(d),
namely D(d, a, b), and of exploiting the additional structural
information (in terms of the coherence parameters a and b)
available about dictionaries D in this subset.

Every dictionary in Dgen(d) can be viewed as the concate-
nation of two sub-dictionaries. Our results therefore state that
viewing a dictionary D ∈ Dgen(d) as the concatenation of two
sub-dictionaries leads to improved sparsity thresholds provided
that the coherence parameters a and b of the respective sub-
dictionaries are known. Moreover, the improvements will be
seen to be up to a factor of two if a and b are sufficiently small.

The sparsity threshold for uniqueness of the solution of (P0)
for dictionariesD ∈ D(d, a, b), formalized in Theorem 2 below,
is based on a novel uncertainty relation for pairs of general
dictionaries, stated in the following lemma.

Lemma 1: Let A ∈ CM×Na be a dictionary with coherence
a, B ∈ CM×Nb a dictionary with coherence b, and denote
the coherence of the concatenated dictionary D = [A B],
D ∈ CM×N , by d. For every vector s ∈ CM that can be
represented as a linear combination of na columns of A and,

4We assume throughout the paper that d > 0. For d = 0 the dictionary D
consists of orthonormal columns, and, hence, every unknown vector x can be
uniquely recovered from the measurement outcome y according to x = DHy.
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equivalently, as a linear combination of nb columns of B,5 the
following inequality holds:

nanb ≥
[1− a(na − 1)]+ [1− b(nb − 1)]+

d2
. (8)

Proof: See Appendix A.
The uncertainty relation for the union of two-ONB case derived
in [2] is a special case of (8). In particular, if a = b = 0, then (8)
reduces to the result reported in [2, Thm. 1]:

nanb ≥
1

d2
. (9)

Note that, differently from [2, Thm. 1], the lower bound in (9)
holds not only for the concatenation of two ONBs, but also for
the concatenation of two sub-dictionaries A and B that contain
orthonormal columns but individually do not necessarily span
CM (but their concatenation spans CM ). Lemma 1 allows us
to easily recover several other well-known results such as, e.g.,
the well-known lower bound in (6) on the spark of a dictionary.
To see this note that when nb = 0 in Lemma 1 (and thus s =
0M , by definition) then the na columns in A participating in the
representation of s are linearly dependent. Moreover, for nb = 0
we have [1− b(nb − 1)]+ = (1 + b) > 0. Therefore, it follows
from (8) that necessarily [1− a(na − 1)]+ = 0 and thus na ≥
1+1/a, which agrees with the lower bound on the spark of the
(sub-)dictionary A [8]–[10]. A similar observation follows for
na = 0.

More importantly, Lemma 1 also allows us to derive a new
lower bound on the spark of the overall dictionary D =
[A B] ∈ D(d, a, b). When used in (1), this result then yields
a new sparsity threshold guaranteeing uniqueness of the (P0)-
solution. We show that this threshold improves upon that in (7),
which would be obtained if we viewed D simply as a general
dictionary in Dgen(d), thereby ignoring the fact that the dictio-
nary under consideration belongs to a subset, namely D(d, a, b),
of Dgen(d).

Theorem 2: ForD ∈ D(d, a, b), a sufficient condition for the
vector x to be the unique solution of (P0) applied to y = Dx is
that

�x�0 <
f(x̂) + x̂

2
(10)

where
f(x) =

(1 + a)(1 + b)− xb(1 + a)

x(d2 − ab) + a(1 + b)

and x̂ = min{xb, xs}. Furthermore,

xb =
1 + b

b+ d2

and

xs =






1

d
, if a = b = d,

d
�
(1 + a)(1 + b)− a− ab

d2 − ab
, otherwise.

Proof: See Appendix B.

5For na = 0 or nb = 0 we define s = 0M . We exclude the trivial case
na = nb = 0.
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b

Figure 1. Deterministic sparsity thresholds guaranteeing uniqueness of (P0)
and recoverability via BP and OMP for dictionaries in Dgen(d), Donb(d), and
D(d, a, b). We set d = 0.01 and consider the special case a = b. Note that for
a = b, the threshold in (10) reduces to that in (11).

The sparsity threshold in (10) reduces to that in (7) when b =
d (irrespective of a) or when d = 1 (irrespective of a and b).
Hence, the sparsity threshold in (10) does not improve upon that
in (7) if the pair of columns achieving the overall dictionary
coherence d appears in the same sub-dictionary B (recall that
we assumed b ≥ a), or if d = 1. In all other cases, the sparsity
threshold in (10) can be shown to be strictly larger than that
in (7). This result is proven in Appendix C. The improvement
can be up to a factor of two. We demonstrate this for the special
case a = b, for which the sparsity threshold in (10) takes a
particularly simple form. In this case, as can easily be verified,
xs ≤ xb so that (10) reduces to

�x�0 <
1 + b

d+ b
. (11)

For a = b = 0 the sparsity threshold in (11) reduces to the
known sparsity threshold for dictionaries in Donb(d) specified
in (4). Note, however, that the threshold in (11) with b = 0 holds
for all D ∈ D(d, 0, 0), thereby also including sub-dictionaries
A and B that contain orthonormal columns but do not necessar-
ily individually span CM (but their concatenation spans CM ).
Setting b = �d with � ∈ [0, 1] we see that for d � 1 the ratio
between the sparsity threshold in (11) and that in (7) is roughly
2/(1 + �), which for � � 1 is almost two. Note that, for small
coherence parameters a and b, the elements in each of the two
sub-dictionaries A and B are close to being orthogonal to each
other. Fig. 1 shows the sparsity threshold in (11) for d = 0.01 as
a function of b. We can see that for b � d the threshold in (11)
is, indeed, almost a factor of two larger than that in (7).

So far, we focused on thresholds guaranteeing (P0)-
uniqueness. We next present thresholds guaranteeing recovery
of the unique (P0)-solution via BP and OMP for dictionaries
D ∈ D(d, a, b). The recovery conditions we report in Theo-
rem 3 and Corollary 4 below, depend on b and d, but not on
a. Slightly improved thresholds that also depend on a can be
derived following similar ideas as in the proofs of Theorem 3
and Corollary 4. The resulting expressions are, however, un-
wieldy and will therefore not be presented here.

Theorem 3: Suppose that y ∈ CM can be represented as
y = Dx, where x has na nonzero entries corresponding to
columns of A and nb nonzero entries corresponding to columns
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of B. Without loss of generality, we assume that na ≤ nb. A
sufficient condition for BP and OMP to recover x is

(1 + b)(2nab+ nb(d+ b)) + 2nanb(d
2 − b2) < (1 + b)2.

(12)

Proof: See Appendix D.
Theorem 3 generalizes the result in [2, Sec. 6], [10, Cor. 3.8] for
the concatenation of two ONBs to dictionaries D ∈ D(d, a, b).
In particular, (12) reduces to [10, Eq. (16)] when b = 0 (since
a ≤ b, this implies a = 0). Furthermore, when b = d,
the condition in (12) simplifies to na + nb < (1 + 1/d)/2,
thereby recovering the sparsity threshold in (7). Thus, if the
pair of columns achieving the overall dictionary coherence is
in the same sub-dictionary B (recall that we assumed b ≥ a),
no improvement over the well-known (1 + 1/d)/2-threshold
for dictionaries in Dgen(d) is obtained. Theorem 3 depends ex-
plicitly on na and nb. In the following corollary, we provide
a recovery guarantee in the form of a sparsity threshold that
depends on na and nb only through the overall sparsity level
of x according to �x�0 = na + nb.

Corollary 4: For D ∈ D(d, a, b) a sufficient condition for
BP and OMP to deliver the unique solution of (P0) is

�x�0<






(1 + b)
�
ξ − (d+ 3b)

�

2(d2 − b2)
, if b < d and κ(d, b) > 1,

1 + 2d2 + 3b− d(1 + b)

2(d2 + b)
, otherwise

(13)
with

κ(d, b) =
(1 + b)(ξ − 4b)

4(d2 − b2)
(14)

and ξ = 2
√
2
�

d(b+ d).
Proof: See Appendix E.

The sparsity threshold in (13) reduces to the sparsity thresh-
old in (7) when b = d or when d = 1 (irrespective of b). In all
other cases, the sparsity threshold in (13) is strictly larger than
that in (7) (see Appendix F). The threshold in (13) is compli-
cated as we have to deal with two different cases. The distinction
between these two cases is, however, crucial to ensure that the
threshold in (13) does not fall below that in (7).6 It turns out
that the first case in (13) is active whenever b < d < 3/5,
which covers essentially all practically relevant cases. In fact,
for dictionaries with coherence d ≥ 3/5, the sparsity threshold
in (13) allows for at most one nonzero entry in x.

The improvement of the sparsity threshold in (13) over that
in (7) can be up to a factor of almost two. This can be seen by
setting b = �d with � ∈ [0, 1) and noting that for d � 1 the ratio
between the sparsity threshold in the first case in (13) and that
in (7) is roughly (2

�
2(1 + �)− (1 + 3�))/(1− �2), which for

� � 1 is approximately 1.8. Fig. 1 shows the threshold in (13)
for d = 0.01 as a function of b. We can see that for b � d the
threshold in (13) is, indeed, almost a factor of two larger than
that in (7).

If D is the concatenation of two ONBs, and hence a = b = 0,

6Recall that for d > 2(
√
2− 1) the threshold in (5) drops below that in (7).

the sparsity threshold in (13) reduces to

�x�0 <






√
2− 0.5

d
, if d <

1√
2
,

1 +
1− d

2d2
, otherwise.

(15)

For d < 1/
√
2, this threshold is the same as that in (5) but

improves on (5) if d ≥ 1/
√
2. In particular, unlike the threshold

in (5), the threshold in (15) is guaranteed to be at least as large
as that in (7).

III. ROBUST SPARSITY THRESHOLDS

The deterministic sparsity thresholds for dictionaries in
D(d, a, b) derived in the previous section (as those available in
the literature for dictionaries in Donb(d) and Dgen(d)) all suf-
fer from the so-called square-root bottleneck [12]. Specifically,
from the Welch lower bound on coherence [21]

d ≥
�

N −M

M(N − 1)

we can conclude that, for N � M , the deterministic sparsity
thresholds reported in this paper scale at best as

√
M as M

grows large. Put differently, for a fixed number of nonzero
entries S in x, i.e., for a fixed sparsity level, the number of
measurements M required to recover x through (P0), BP, or
OMP is on the order of S2. The square-root bottleneck stems
from the fact that deterministic sparsity thresholds are universal
thresholds in the sense of applying to all possible sparsity pat-
terns (of cardinality S) and values of the corresponding nonzero
entries of x. As already mentioned in Section I, the probabilis-
tic (i.e., robust) sparsity thresholds scale fundamentally better,
namely according to M/ logN , which implies that the number
of measurements required to recoverx is on the order ofS logN
instead of S2.

We next address the following question: Given a general dic-
tionary, can we break the square-root bottleneck by randomizing
the sparsity pattern over a certain part of the overall dictionary?
The answer turns out to be in the affirmative. It was shown
in [17], [12]—for the concatenation of two ONBs—that ran-
domization of the sparsity pattern is required only over one of
the two ONBs. Before stating our results for general dictionaries
let us briefly summarize the known results for the concatenation
of two ONBs.

A. A Brief Review of Relevant Previous Work

Robust sparsity thresholds for the concatenation of two ONBs
were first reported in [11] (based on earlier work in [17]) and
later improved in [12]. In Theorem 5 below, we restate a result
from [12] (obtained by combining Theorems D, 13, and 14
in [12]) in a slightly modified form better suited to draw parallels
to the case of dictionaries in D(d, a, b) considered in this paper.

Theorem 5 (Tropp, 2008): Assume that7 N > 2. Let D ∈
CM×N be the union of two ONBs for CM given by A and

7In [12] it is assumed that M ≥ 3 (and hence N ≥ 6). However, it can be
shown that N > 2 is sufficient to establish the result.



6

B (i.e., N = 2M ) and denote the coherence of D as d. Fix
s ≥ 1. Let the vector x ∈ CN have an arbitrarily chosen
sparsity pattern of na nonzero entries corresponding to columns
of sub-dictionary A and a randomly chosen sparsity pattern of
nb nonzero entries corresponding to columns of sub-dictionary
B. Suppose that

na + nb < min

�
c d−2

s logN
,
d−2

2

�
(16)

where c = 0.004212. If the entries of x restricted to the chosen
sparsity pattern are jointly continuous random variables,8 then
the unique solution of (P0) applied to y = Dx is given by x
with probability exceeding (1−N−s).

If the total number of nonzero entries satisfies

na + nb < min

�
c d−2

s logN
,
d−2

2
,

d−2

8(s+ 1) logN

�
(17)

and the entries of x restricted to the chosen sparsity pattern are
jointly continuous random variables with i.i.d. phases that are
uniformly distributed in [0, 2π) (the magnitudes need not be
i.i.d.), then the unique solution of both (P0) and BP applied to
y = Dx is given by x with probability exceeding (1− 3N−s).

An important consequence of Theorem 5 is the following:
For the concatenation of two ONBs a robust sparsity threshold
S = na+nb of order M/(logN) is possible if the coherence d
of the overall dictionary is on the order of 1/

√
M . Note that for

the same coherence d, deterministic sparsity thresholds would
suffer from the square-root bottleneck as discussed in [12].
Remarkably, Theorem 5 does not require that the positions of
all nonzero entries of x are chosen randomly: It suffices to
pick the positions of the nonzero entries of x corresponding
to one of the two ONBs at random, while the positions of the
remaining nonzero entries—all corresponding to columns in the
other ONB—can be chosen arbitrarily. This essentially means
that the result is universal with respect to one of the two ONBs
(A by choice of notation here) in the sense that all possible
combinations of na columns in A are allowed. Randomization
over the other ONB ensures that the overall sparsity patterns
that cannot be recovered (with on the order of S logN measure-
ments) are “weeded out”. Moreover, randomization is needed
on the values of all nonzero entries of x, which reflects the fact
that there exist certain value assignments on a given sparsity
pattern that cannot be recovered with on the order of S logN
measurements. In summary, Theorem 5 states that every sparsity
pattern in A in conjunction with most sparsity patterns in B and
most value assignments on the resulting overall sparsity pattern
can be recovered.

This result is interesting as it hints at the possibility of iso-
lating specific parts of the dictionary D that require random-
ization to “weed out” the support sets that are not recoverable.
Unfortunately, the two-ONB structure is too restrictive to bring
out this aspect. Specifically, as the two ONBs are on equal
footing, the result in Theorem 5 does not allow us to under-
stand which properties of a sub-dictionary are responsible for
problematic sparsity patterns. This motivates looking at robust
sparsity thresholds for the concatenation of two general dictio-

8For a definition of joint continuity, we refer to [22, pp. 40].

naries. Now, we could interpret the concatenation of two general
(sub-)dictionaries as a general dictionary in Dgen(d) and apply
the robust sparsity thresholds for general dictionaries reported
in [12]. This requires, however, randomization over the entire
dictionary (i.e., the positions of all nonzero entries of x have to
be chosen at random and the values as well). Hence, the robust
sparsity threshold for general dictionaries does not allow us to
isolate specific parts of the dictionary D that require random-
ization to “weed out” the support sets that are not recoverable
with on the order of S logN measurements.

B. Robust Sparsity Thresholds for the Concatenation of Gen-
eral Signal Sets

We next derive robust sparsity thresholds for dictionaries
D ∈ D(d, a, b). Our results not only generalize Theorem 5 to
the concatenation of two general dictionaries but, since every
dictionary in Dgen(d) can be viewed as the concatenation of
two sub-dictionaries, also allow us to understand which part of
a general dictionary requires randomization to “weed out” the
support sets that are not recoverable.

Theorem 6: Assume that N > 2. Let D = [A B] be a
dictionary in D(d, a, b). Fix s ≥ 1 and γ ∈ [0, 1]. Consider
a random vector x =

�
xT

a
xT

b

�T where xa ∈ CNa has an
arbitrarily chosen sparsity pattern of cardinality na such that

6
√
2
�
nad2s logN + 2(na − 1)a ≤ (1− γ)e−1/4 (18)

and xb ∈ CNb has a randomly chosen sparsity pattern of cardi-
nality9 nb such that

24
�

nbb2s logN +
4nb

Nb

�B�2 + 2

�
nb

Nb

�A��B� ≤ γe−1/4.

(19)
If the total number of nonzero entries of x satisfies

na + nb ≤
d−2

2
(20)

and the entries of x restricted to the chosen sparsity pattern are
jointly continuous random variables, then the unique solution
of (P0) applied to y = Dx is given by x with probability
exceeding (1−N−s).

If the total number of nonzero entries of x satisfies

na + nb < min

�
d−2

2
,

d−2

8(s+ 1) logN

�
(21)

and the entries of x restricted to the chosen sparsity pattern are
jointly continuous random variables with i.i.d. phases that are
uniformly distributed in [0, 2π) (the magnitudes need not be
i.i.d.), then the unique solution of both (P0) and BP applied to
y = Dx is given by x with probability exceeding (1− 3N−s).

Proof: The proof is based on the following lemma proven
in Appendix G.

Lemma 7: Fix s ≥ 1 and γ ∈ [0, 1]. LetS be a sub-dictionary
of D = [A B] ∈ D(d, a, b) containing na arbitrarily chosen
columns of A and nb randomly chosen columns of B. If na and

9Since we will be interested in the individual scaling behavior ofna andnb as
M grows large, we shall assume in the remainder of the paper that na, nb ≥ 1.
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nb satisfy (18) and (19), respectively, then the minimum singular
value σmin(S) of the sub-dictionary S obeys

P
�
σmin(S) ≤

1√
2

�
≤ N−s.

The proof of Theorem 6 then follows from Lemma 7 and the
results in [12] as follows. The sparsity pattern of x obtained ac-
cording to the conditions in Theorem 6 induces a sub-dictionary
S of D containing na arbitrarily chosen columns of A and nb

randomly chosen columns of B. As a consequence of Lemma 7,
the smallest singular value of this sub-dictionary exceeds 1/

√
2

with probability at least (1−N−s).
Lemma 7 together with condition (20) and the requirement

that the entries of x restricted to the chosen sparsity pattern are
jointly continuous random variables implies, as a consequence
of [12, Thm. 13] (see also Appendix H where [12, Thm. 13]
is restated for completeness), that the unique solution of (P0)
applied to y = Dx is given by x with probability at least (1−
N−s).

The second statement in Theorem 6 is proven as follows.
Lemma 7, together with condition (21), and the requirement
that the entries of x restricted to the chosen sparsity pattern
are jointly continuous random variables with i.i.d. phases that
are uniformly distributed in [0, 2π), implies, as a consequence
of [12, Thm. 13] and [12, Thm. 14] (see also Appendix H), that
the unique solution of both (P0) and BP applied to y = Dx is
given by x with probability at least (1 − N−s)(1 − 2N−s) ≥
(1− 3N−s).

Theorem 6 generalizes the result in Theorem 5 to the con-
catenation D = [A B] of the general dictionaries A and B.
Next, we determine conditions on D = [A B] for break-
ing the square-root bottleneck. More precisely, we determine
conditions on D = [A B] such that for vectors x with10

na = Θ(M/(logN)) and nb = Θ(M/(logN)) the unique
solution of both (P0) and BP applied to y = Dx is given by x
with probability at least 1−3N−s. This implies a robust sparsity
threshold S = na+nb of Θ(M/(logN)). Note that we say the
square-root bottleneck is broken only if both na and nb are on
the order of M/(logN).

Conditions (18)–(21) in Theorem 6 yield upper bounds on the
possible values of na and nb (such that the unique solution of
both (P0) and BP is given by x) that depend on the dictionary
parameters d, a, b, Na, Nb, and the spectral norms of A and B.
In the following, we rewrite these upper bounds by absorbing
all constants (including γ and s defined in Theorem 6) that are
independent of d, a, b, Na, Nb, and of the spectral norms of A
and B in a constant c. Note that c can take on a different value
at each appearance. We then derive necessary and sufficient
conditions on the dictionary parameters d, a, b, Na, Nb, and
the spectral norms of A and B for the resulting upper bounds
on na and nb to be on the order of M/(logN), respectively.

10Whenever for some function g(M,N) we write Θ(g(M,N)),
Ω(g(M,N)), or O(g(M,N)), we mean that the ratio M/N remains
fixed while M → ∞.

We start with condition (18), which, together with the obvious
condition na ≤ Na, yields the following constraint on na:

na ≤ cmin

�
d−2

logN
, a−1, Na

�
.

As M grows large, this upper bound is compatible11 with the
scaling behavior na = Θ(M/(logN)) if and only if all of the
following conditions are met:

i) the coherence of D satisfies d = O(1/
√
M)

ii) the coherence of A satisfies a = O((logN)/M)
iii) the cardinality of A satisfies Na = Ω(M/(logN)).

Similarly, we get from (19) that12

nb ≤ cmin

�
b−2

logN
,

Nb

�B�2
,

Nb

�A�2 �B�2

�
. (22)

This upper bound is compatible with the scaling behavior nb =
Θ(M/(logN)) if and only if all of the following conditions are
met:
iv) the coherence of B satisfies b = O(1/

√
M)

v) the spectral norm of B satisfies �B�2 ≤ cNb(logN)/M
vi) the spectral norm of A satisfies �A�2 ≤

cNb(logN)/(�B�2M).
Note that iv) is implied by i) since b ≤ d, by assumption.
Finally, it follows from i) that conditions (20) and (21) are
compatible with the scaling behavior na = Θ(M/(logN)) and
nb = Θ(M/(logN)).

In the special case of A and B being ONBs for CM , condi-
tions ii) – vi) are trivially satisfied. Hence, in the two-ONB case
the square-root bottleneck is broken by randomizing according
to the specifications in Theorem 5 whenever d = O(1/

√
M),

as already shown in [12]. The additional requirements ii) – vi)
become relevant for general dictionaries D only.

Note that in the case of all the positions of nonzero entries
of x being chosen randomly, a robust sparsity threshold S =
Θ(M/(logN)) can be obtained even if d = O(1/(logN)) [23].
However, since we allow for an arbitrary sparsity pattern in the
part xa of x (i.e., the part of x that corresponds to sub-dictionary
A) of cardinality na = Θ(M/(logN)), our derivation in Ap-
pendix G shows that the coherence d of the overall dictionary
D has to satisfy d = O(1/

√
M) for a robust sparsity threshold

of order M/(logN) to be possible.
We next present an example of a non-trivial dictionary D

with sub-dictionaries A and B (not both ONBs) that satisfy
i) – vi). Let M = pk, with p prime and k ∈ N+. For this
choice of M it is possible to design M + 1 ONBs for CM ,
which, upon concatenation, form a dictionary D with coherence
d equal to 1/

√
M [24], [25], [9]. In particular, the absolute

value of the inner product between two distinct columns of D
is, by construction, either 0 or 1/

√
M . Obviously, for such a

dictionary i) is satisfied. Furthermore, identifying A with one of
the M+1 ONBs and B with the concatenation of the remaining
M ONBs, we have a = 0 and Na = M . Hence ii) and iii) are
satisfied. Since B consists of the concatenation of the remaining

11We say that an upper bound on na, nb is compatible with the scaling
behavior Θ(M/(logN)), if it does not preclude this scaling behavior.

12Note that the obvious condition nb ≤ Nb is implied by nb ≤ Nb/�B�
2

since �B� ≥ 1.
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M ONBs, it has coherence b = 1/
√
M , and, hence, iv) is

satisfied. Moreover, since B is the concatenation of M ONBs
for CM , it forms a tight frame for CM . For a tight frame B
with Nb = M2 frame elements in CM (all �2-normalized to
one) the nonzero eigenvalues of the Gram matrix BHB are all
equal to Nb/M = M . Hence, the spectral norm of B satisfies
�B�2 = M . Thus, v) is met. Finally, since A is an ONB, its
spectral norm satisfies �A�2 = 1 and, therefore, condition vi)
is met. Now, as a consequence of Theorem 6, we obtain a robust
sparsity threshold S = na + nb of order M/(logN) for the
dictionary D = [A B]. This threshold does not require that
the positions of all nonzero entries of x are chosen randomly.
Specifically, it suffices to randomize over the positions of the
nonzero entries of x corresponding to B, while the positions
of the nonzero entries corresponding to A can be chosen arbi-
trarily. As for the two-ONB case, once the support set of x is
chosen, we need to randomize over the values of all nonzero
entries of x.

Finally, as every dictionary D ∈ Dgen(d) can be viewed as
the concatenation of two general dictionaries A and B such that
D = [A B], we can now ask the following question: Given
a general dictionary D, over which part of the dictionary do
we need to randomize to “weed out” the sparsity patterns that
prohibit breaking the square-root bottleneck? From the results
above we obtain the intuitive answer that in the “low-coherence”
part of the dictionary, namelyA, we can pick the sparsity pattern
arbitrarily, whereas the “high-coherence” part of the dictionary,
namely B, requires randomization. Note that, due to the bounds
on the coherence parameters a and b in ii) and iv), respectively,
the “low-coherence” part A of the overall dictionary D has,
in general, fewer elements than the “high-coherence” part B.
Conditions i) – vi) can be used to identify the largest possible
part A of the overall dictionary D where the corresponding
sparsity pattern can be picked arbitrarily. Note, however, that
the task of identifying the largest possible part A is in general
difficult.

IV. DISCUSSION AND CONCLUSION

We presented a generalization of the uncertainty relation for
the representation of a signal in two different ONBs [2] to the
representation of a signal in two general (possibly redundant
or incomplete) signal sets. This novel uncertainty relation is
important in the context of the analysis of signals containing
two distinct features each of which can be described sparsely
only in an overcomplete signal set. As shown in [4], the general
uncertainty relation reported in this paper also forms the basis
for establishing recovery guarantees for signals that are sparse
in a (possibly overcomplete) dictionary and corrupted by noise
that is also sparse in a (possibly overcomplete) dictionary.

We furthermore presented a novel deterministic sparsity
threshold guaranteeing uniqueness of the (P0)-solution for gen-
eral dictionaries D ∈ D(d, a, b), as well as thresholds guaran-
teeing equivalence of this unique (P0)-solution to the solution
obtained through BP and OMP. These thresholds improve on
those previously known by up to a factor of two. Moreover,
the known sparsity thresholds for general dictionaries and those
for the concatenation of two ONBs follow from our results as
special cases.

Finally, the probabilistic recovery guarantees presented in this
paper allow us to understand which parts of a general dictionary
one needs to randomize over to “weed out” the sparsity patterns
that prohibit breaking the square-root bottleneck.

An interesting extension to the results in this paper would be
to consider the setup where the signal y is impaired by an addi-
tive noise term, which is typically the case in real-world appli-
cations. For stochastic additive noise and redundant dictionaries
such an investigation can be found in [26] for the case of the
positions of all nonzero entries of x chosen randomly. Building
on the deterministic framework developed in this paper, results
for the recovery of sparse signals subject to sparse additive noise
were reported in [4]. Finally, [27] extends the findings in [4] to
account for (stochastic) measurement noise in addition to sparse
noise.

APPENDIX A
PROOF OF LEMMA 1

Assume that s ∈ CM can be represented as a linear com-
bination of na columns of A and, equivalently, as a linear
combination of nb columns of B. This means that there exists a
vector p with na nonzero entries and a vector q with nb nonzero
entries such that

s = Ap = Bq. (23)

We exclude the trivial case na = nb = 0 and note that for
na = 0 or nb = 0 we have s = 0M , by definition.

Left-multiplication in (23) by AH yields

AHAp = AHBq. (24)

We next lower-bound the absolute value of the ith entry (i =
1, . . . , Na) of the vector AHAp according to

���AHAp
�
i

�� =

������
[p]i +

�

j �=i

�
AHA

�
i,j

[p]j

������

≥ |[p]i|− a
�

j �=i

|[p]j | (25)

= (1 + a)|[p]i|− a�p�1 (26)

where (25) follows from the reverse triangle inequality and the
fact that the off-diagonal entries of AHA can be upper-bounded
in absolute value by a. Next, we upper-bound the absolute value
of the ith entry of the vector AHBq as follows:

���AHBq
�
i

�� ≤ d�q�1 . (27)

Combining (26) and (27) yields

(1 + a)|[p]i|− a�p�1 ≤ d�q�1 .

If we now sum over all i for which [p]i �= 0, we obtain

[(1 + a)− naa]�p�1 ≤ nad�q�1 (28)

where we used that �p�0 = na, by assumption. Since
nad�q�1 ≥ 0, we can replace the LHS of (28) by the tighter
bound

[(1 + a)− naa]
+ �p�1 ≤ nad�q�1 . (29)
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Multiplying both sides of (23) by BH and following steps sim-
ilar to the ones used to arrive at (29) yields

[(1 + b)− nbb]
+ �q�1 ≤ nbd�p�1 . (30)

We now have to distinguish three cases. If bothna ≥ 1 andnb ≥
1, and, hence, �p�1 > 0 and �q�1 > 0, we can combine (29)
and (30) to obtain

nanbd
2 ≥ [(1 + a)− naa]

+ [(1 + b)− nbb]
+ . (31)

If na = 0 and nb ≥ 1 (i.e., �p�1 = 0 and �q�1 > 0), we get
from (30) that

nb ≥ 1 +
1

b
. (32)

Similarly, if nb = 0 and na ≥ 1 (i.e., �q�1 = 0 and �p�1 > 0),
we obtain from (29) that

na ≥ 1 +
1

a
. (33)

Both (32) and (33) are contained in (31) as special cases, as is
easily verified.

APPENDIX B
PROOF OF THEOREM 2

The proof will be effected by deriving a lower bound on
the spark of dictionaries in D(d, a, b), which together with (1),
yields the desired result (10). This will be accomplished by find-
ing a lower bound on the minimum number of nonzero entries
that a nonzero vector v ∈ CN in the kernel of D = [A B]
must have. Without loss of generality, we may view v as the
concatenation of two vectors p ∈ CNa and q ∈ CNb , i.e.,
v = [pT qT ]T . As v is in the kernel of D = [A B], we have

[A B]

�
p
q

�
= 0M .

Therefore, the vectors p and q satisfy Ap = B(−q) � s.
Let na � �p�0 and nb � �−q�0 = �q�0 and recall that
na = 0 is equivalent to p = 0Na and nb = 0 is equivalent
to q = 0Nb , both by definition. Since we require v to be a
nonzero vector, the case of na = nb = 0 (and hence p = 0Na

and q = 0Nb , and, therefore v = 0N ) is excluded. For all
other cases, the uncertainty relation in Lemma 1 requires that
the number of nonzero entries in p and −q (representing s
according to Ap = B(−q) = s) satisfy

nanb ≥
[1− a(na − 1)]+ [1− b(nb − 1)]+

d2
. (34)

Based on (34), we now derive a lower bound on spark(D) by
considering the following three different cases:

The case nb ≥ 1 and na = 0: In this case, the vector
v = [pT qT ]T in the kernel of D = [A B] has nonzero entries
only in the part q corresponding to sub-dictionary B. It follows
directly from (34) that

nb ≥ 1 +
1

b
. (35)

The case na ≥ 1 and nb = 0: In this case, the vector
v = [pT qT ]T in the kernel of D = [A B] has nonzero entries

only in the part p corresponding to sub-dictionary A. Again,
direct application of (34) yields

na ≥ 1 +
1

a
. (36)

The case na ≥ 1 and nb ≥ 1: In this case, the vector
v = [pT qT ]T in the kernel of D = [A B] has nonzero entries
in both parts p and q corresponding to sub-dictionary A and B,
respectively. Let Z(D) denote the smallest possible number of
nonzero entries of v in this case. Together with (35) and (36)
we now have

spark(D) ≥ min

�
1 +

1

b
, 1 +

1

a
, Z(D)

�

= min

�
1 +

1

b
, Z(D)

�
(37)

where we used that a ≤ b, by assumption. We next derive a
lower bound on Z(D) that is explicit in d, a, and b. Specifically,
we minimize na + nb over all pairs (na, nb) (with na ≥ 1 and
nb ≥ 1) that satisfy (34). Since, eventually, we are interested in
finding a lower bound on spark(D), it follows from (37) that it
suffices to restrict the minimization to those pairs (na, nb), for
which both na ≤ 1 + 1/b and nb ≤ 1 + 1/b. This implies that
[1− a(na − 1)] ≥ 0 and [1− b(nb − 1)] ≥ 0, and we thus have
from (34) that

nanb ≥
[1− a(na − 1)][1− b(nb − 1)]

d2
. (38)

Solving (38) for na, we get

na ≥ (1 + a)(1 + b)− nbb(1 + a)

nb(d2 − ab) + a(1 + b)
� f(nb).

Finally, adding nb on both sides yields

na + nb ≥ f(nb) + nb. (39)

To arrive at a lower bound onna+nb that is explicit in d, a, and b
only (in particular, the lower bound should be independent of na

and nb), we further lower-bound the RHS of (39) by minimizing
f(nb) + nb as a function of nb, under the constraints na ≥ 1
and nb ≥ 1 (implied by assumption). This yields the following
lower bound on Z(D):13

Z(D) ≥ min
nb≥1

[max{f(nb), 1}+ nb] � Z(d, a, b).

We now have that
Z(d, a, b) = min

nb≥1
[max{f(nb), 1}+ nb]

≤ [max{f(nb), 1}+ nb]
��
nb=1/b

= 1 +
1

b

(40)

where we used the fact that f(1/b) ≤ 1. As a consequence
of (37), the inequality in (40) implies that

spark(D) ≥ Z(d, a, b)

= min
nb≥1

[max{f(nb), 1}+ nb]

13The constraints na ≥ f(nb) and na ≥ 1 are combined into na ≥

max{f(nb), 1}.
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≥ min
x≥1

[max{f(x), 1}+ x] (41)

where (41) follows because minimizing over all x ∈ R with
x ≥ 1 yields a lower bound on the minimum taken over
the integer parameter nb only. We next compute the minimum
in (41). The function f(x) can be shown to be strictly de-
creasing. Furthermore, the equation f(x) = 1 has the unique
solution xb = (1+b)

�
(b+d2) ≥ 1, where the inequality follows

because d ≤ 1, by definition. We can therefore rewrite (41) as

min
x≥1

[max{f(x), 1}+ x] = min
1≤x≤xb

[f(x) + x]. (42)

In the case a = b = d, the function g(x) � f(x) + x reduces
to the constant 1 + 1/d so that spark(D) ≥ 1 + 1/d. In all
other cases, the function g(x) is strictly convex for x ≥ 0.
Furthermore, we have g(1) ≥ g(xb) as a consequence of the
assumption a ≤ b. Hence, the minimum in (42) is attained either
at the boundary point xb, or at the stationary point xs of g(x),
which is given by

xs =
d
�

(1 + a)(1 + b)− a(1 + b)

d2 − ab
≥ 1. (43)

The inequality in (43) follows from the convexity of g(x) and
the fact that g(1) ≥ g(xb). If the stationary point xs is inside the
interval [1, xb], the minimum is attained at x̂ = xs, otherwise it
is attained at x̂ = xb.

APPENDIX C
THE SPARSITY THRESHOLD IN THEOREM 2 IMPROVES ON

THE THRESHOLD IN (7)
We show that the threshold in (10) improves on that in (7),

unless b = d or d = 1, in which case the threshold in (10) is the
same as that in (7). This will be accomplished by considering
the two (mutually exclusive) cases xb ≤ xs and xb > xs.

The case xb ≤ xs: The threshold in (10) equals

f(x̂) + x̂

2
=

f(xb) + xb

2
=

1

2

�
1 +

1 + b

b+ d2

�
.

It is now easily verified that

1

2

�
1 +

1 + b

b+ d2

�
≥ 1

2

�
1 +

1

d

�

for all b ≤ d ≤ 1 with equality if and only if b = d or d = 1.
Note that for b = d (irrespective of a) or for d = 1 (irrespective
of a and b), we have xb ≤ xs.

The case xb > xs: Set ∆ =
�
(1 + a)(1 + b) − d. The

function f(xs)+xs, which we denote as h(a, b, d) to highlight
its dependency on the variables a, b, and d, is strictly decreasing
in a (for fixed b and d) as long as b/d < ∆ < d/b. Since xb > xs

implies b < d, and since a ≤ b, by assumption, the inequality
∆ < d/b is always satisfied. The inequality b/d < ∆ holds
whenever xs < xb, which is satisfied by assumption. Hence,
we have that

f(xs) + xs

2
=

h(a, b, d)

2
≥ h(b, b, d)

2
(44)

=
1 + b

d+ b

≥ 1

2

�
1 +

1

d

�
. (45)

Note that equality in (44) and (45) holds if and only if a = b =
d, already treated in the case xb ≤ xs.

APPENDIX D
PROOF OF THEOREM 3

Our proof essentially follows the program laid out in [28]
for dictionaries in Donb(d), with appropriate modifications to
account for the fact that we are dealing with the concatenation
of two general dictionaries. Let S be the matrix that contains
the columns of A and B participating in the representation of
y = [A B]x, i.e., the columns in [A B] corresponding to the
nonzero entries in x. A sufficient condition for BP and OMP
applied to y = [A B]x to recover x is [10, Thm. 3.1, Thm.
3.3]

max
di

��S†di

��
1
< 1 (46)

where the maximization in (46) is performed over all columns
di in D that do not appear in S. We prove the theorem by first
carefully bounding the absolute value of each element of the
vector S†di. Concretely, we start with the following inequality

��[S†di]k
�� =

��[(SHS)−1SHdi]k
��

=

�����
�

l

[(SHS)−1]k,l[S
Hdi]l

�����

≤
�

l

��[(SHS)−1]k,l
�� ��[SHdi]l

��

and then bound the absolute value of each entry of the matrix
(SHS)−1 and of each element of the vector SHdi. We will
verify below that the matrix SHS is invertible. To simplify
notation, for any matrix A, we let |A| be the matrix with entries

[|A|]k,l = |[A]k,l| .

Furthermore, if for two matrices A and B of the same size we
have that

|[A]k,l| ≤ |[B]k,l|

for all pairs (k, l), we shall write |A|
e
≤ |B|.

A. Bound on the Elements of (SHS)−1

Since the columns of D are �2-normalized to 1, we can write

SHS = Ina+nb −K

where −K contains the off-diagonal elements of SHS. Clearly,

|K|
e
≤

�
a(1na,na − Ina) d1na,nb

d1nb,na b(1nb,nb − Inb)

�

e
≤

�
b(1na,na − Ina) d1na,nb

d1nb,na b(1nb,nb − Inb)

�

= −bIna+nb + d1na+nb,na+nb − (d− b)T (47)

where we set

T =

�
1na,na 0na,nb

0nb,na 1nb,nb

�
.

As a consequence of (47) and using the assumption nb ≥ na,
we have that �K�1,1 ≤ dnb+b(na−1). Since �·�1,1 is a matrix



11

norm [29, p. 294], the matrix SHS is invertible whenever dnb+
b(na − 1) < 1, and, moreover, we can expand (SHS)−1 into a
Neumann series according to (SHS)−1 = Ina+nb +

�∞
k=1 K

k.
As the condition in (12) implies that dnb + b(na − 1) < 1, we
have

��(SHS)−1
�� =

�����Ina+nb +
∞�

k=1

Kk

����� (48)

e
≤ Ina+nb +

∞�

k=1

|K|k (49)

e
≤ Ina+nb +

∞�

k=1

[−bIna+nb + d1na+nb,na+nb − (d− b)T]k

=
�
(1 + b)Ina+nb + (d− b)T� �� �

�X

−d1na+nb,na+nb

�−1

=
�
Ina+nb − dX−11na+nb,na+nb

�−1
X−1. (50)

Here, in (49) we used the triangle inequality and the fact that��Kk
�� e
≤ |K|k. We next compute the inverses in (50). To get

X−1, we use the fact thatX is a block-diagonal matrix and apply
Woodbury’s identity [29, p.19] to each of the two blocks,14

which yields

X−1 =





1

1 + b
(Ina − ca1na,na) 0na,nb

0nb,na

1

1 + b
(Inb − cb1nb,nb)





(51)

where ca = [(d−b)na+1+b]−1 and cb = [(d−b)nb+1+b]−1.
Next, setting

v = d

�
ca1na

cb1nb

�

steps similar to the ones reported in [28, Eq. (A.2)-(A.3)] yield
�
Ina+nb − dX−11na+nb,na+nb

�−1
=

= Ina+nb +
1

1− d(cana + cbnb)
v1T

na+nb
. (52)

Using the fact, shown in (50), that
��(SHS)−1

�� e
≤

�
Ina+nb − dX−11na+nb,na+nb

�−1
X−1

we can combine (51) and (52) to obtain an upper bound on the
absolute value of each entry of (SHS)−1.

B. Bound on the Elements of SHdi

Let di be a column of D that does not appear in S. Assume
that di ∈ A (we will later show that in searching the maximum
in (46) it is, indeed, sufficient to assume di ∈ A). Then, we
have

��SHdi

�� e
≤

�
a1na

d1nb

�
e
≤

�
b1na

d1nb

�
. (53)

As a sideremark, we note that we loose the dependency of our
final result on a through the bounds (47) and (53).

14To apply Woodbury’s identity, we exploit the fact that 1n,n = 1n1T
n .

C. Putting the Pieces Together
Substituting (52) into (50), we get

��S†di

�� e
≤

e
≤

�
Ina+nb +

1

1− d(cana + cbnb)
v1T

na+nb

�
X−1

�
b1na

d1nb

�

=

�
Ina+nb +

1

1− d(cana + cbnb)
v1T

na+nb

��
bca1na

dcb1nb

�

=
1

1− d(cana + cbnb)

�
(bca + (d− b)dnbcacb)1na

(dcb − (d− b)dnacacb)1nb

�
. (54)

Summing the RHS of (54) over all entries of the vector S†di

yields the following upper bound on
��S†di

��
1
:

��S†di

��
1
≤ bcana + dcbnb

1− d(cana + cbnb)
. (55)

If we instead assume that di ∈ B and apply the same steps
as before, we find that

��S†di

��
1
≤ dcana + bcbnb

1− d(cana + cbnb)
. (56)

Since bcana + dcbnb ≥ dcana + bcbnb it follows that
dcana + bcbnb

1− d(cana + cbnb)
≤ bcana + dcbnb

1− d(cana + cbnb)

and hence

max
di

��S†di

��
1
≤ bcana + dcbnb

1− d(cana + cbnb)
.

We can therefore conclude that a sufficient condition for BP and
OMP applied to y = Dx to recover x is

bcana + dcbnb

1− d(cana + cbnb)
< 1. (57)

Simple algebraic manipulations reveal that (57) is equivalent
to (12).

APPENDIX E
PROOF OF COROLLARY 4

We obtain Corollary 4 as a consequence of Theorem 3 as
follows. For given nb ≥ na it follows from (12) that a sufficient
condition for BP and OMP to recover the unknown vector x is

na <
(1 + b)2 − nb(1 + b)(d+ b)

2b(1 + b) + 2nb(d2 − b2)
� h(nb).

To arrive at a sparsity threshold that is explicit in b and d only,
we minimize h(nb) + nb over nb, under the constraint nb ≥ 1
(recall that nb ≥ na and note that representing a nonzero vector
y ∈ CM requires at least one column of D). Furthermore, we
have that

min
nb≥1

[h(nb) + nb] ≥ min
x≥1

[h(x) + x] � S (58)

where x ∈ R. Clearly, minimizing over all x ≥ 1 with x ∈ R,
as opposed to integer values nb only, can only yield a smaller
value for the minimum. In the case b = d, the function h(x) +
x reduces to the constant (1 + 1/d)/2, thereby recovering the
previously known sparsity threshold in (7). In all other cases,
the function h(x) + x is strictly convex for x ≥ 0. Hence, the
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minimum in (58) is attained either at the boundary point x = 1
or at the stationary point xs of h(x) + x, given by

xs =
(1 + b)(

�
2d(b+ d)− 2b)

2(d2 − b2)
.

If the stationary point satisfies xs > 1, then the minimum in (58)
is attained at the stationary point, otherwise the minimum is
attained at the boundary point x = 1. The condition xs > 1 is
equivalent to the condition κ(d, b) > 1 (where κ(d, b) is defined
in (14)). If κ(d, b) > 1 the minimum in (58) is given by

S =
(1 + b)

�
2
√
2
�
d(b+ d)− (d+ 3b)

�

2(d2 − b2)
.

If κ(d, b) ≤ 1, the minimum in (58) is attained at the boundary
point x = 1 and is given by

S =
1 + 2d2 + 3b− d(1 + b)

2(d2 + b)
. (59)

Note that for b = d the sparsity threshold in (59) reduces to that
in (7).

APPENDIX F
THE SPARSITY THRESHOLD IN COROLLARY 4 IMPROVES

ON THE THRESHOLD IN (7)
We show that the threshold in Corollary 4 improves on that

in (7), unless b = d or d = 1, in which case the threshold in
Corollary 4 is the same as that in (7). Let us first consider the
case when the RHS of (13) in Corollary 4 reduces to

S � 1 + 2d2 + 3b− d(1 + b)

2(d2 + b)
.

We need to establish that
1 + 2d2 + 3b− d(1 + b)

2(d2 + b)
≥ 1

2

�
1 +

1

d

�
(60)

with equality if and only if b = d or d = 1. Straightforward
calculations reveal that the inequality (60) is equivalent to

(d− b)(1− d)2 ≥ 0 (61)

which is satisfied for all b ≤ d. Furthermore, equality in (61)
holds if and only if b = d or d = 1.

Next, we consider the case b < d and κ(d, b) > 1 so that the
RHS of (13) reduces to

S =
(1 + b)

�
2
√
2
�
d(b+ d)− (d+ 3b)

�

2(d2 − b2)
.

For d ≤ 7/9 it can be verified that

(1 + b)
�
2
√
2
�
d(b+ d)− (d+ 3b)

�

2(d2 − b2)
>

1

2

�
1 +

1

d

�
.

It turns out that a necessary condition for κ(d, b) > 1 is d <
1/

√
2. The proof is completed by noting that 1/

√
2 < 7/9.

APPENDIX G
PROOF OF LEMMA 7

Since the minimum singular value σmin(S) of the sub-
dictionary S can be lower-bounded as σ2

min(S) ≥ 1 −

��SHS− Ina+nb

��, we have

P
�
σmin(S) ≤

1√
2

�
= P

�
σ2

min(S) ≤
1

2

�

≤ P
�
1−

��SHS− Ina+nb

�� ≤ 1

2

�

= P
���SHS− Ina+nb

�� ≥ 1

2

�
. (62)

Next, we study the tail behavior of the random variable H =��SHS− Ina+nb

��, which will then allow us to upper-bound
P
���SHS− Ina+nb

�� ≥ 1/2
�

. To this end the following lemma,
which follows from Markov’s inequality, will be useful.

Lemma 8 ([12, Prop. 10]): If the moments of a nonnegative
random variable R can be upper-bounded as [E(Rq)]1/q ≤
α
√
q + β for all q ≥ Q ≥ 1, where α,β > 0, then,

P{R ≥ e1/4(αu+ β)} ≤ e−u
2
/4

for all u ≥
√
Q.

To be able to apply Lemma 8 to H =
��SHS− Ina+nb

��, we
first need an upper bound on [E(Hq)]1/q that is of the form
α
√
q + β. To derive this upper bound, we start by writing S as

S = [Sa Sb], where Sa and Sb denote the matrices containing
the columns chosen arbitrarily from A and randomly from B,
respectively. We then obtain

SHS− Ina+nb =

�
SH

a
Sa − Ina SH

a
Sb

SH

b
Sa SH

b
Sb − Inb

�
.

Applying the triangle inequality for operator norms, we can now
upper-bound H according to

H =

����

�
SH

a
Sa − Ina SH

a
Sb

SH

b
Sa SH

b
Sb − Inb

�����

≤
����

�
SH

a
Sa − Ina 0
0 SH

b
Sb − Inb

�����+

����

�
0 SH

a
Sb

SH

b
Sa 0

�����

≤ max
���SH

a
Sa − Ina

�� ,
��SH

b
Sb − Inb

���+
��SH

a
Sb

��

≤
��SH

a
Sa − Ina

��+
��SH

b
Sb − Inb

��+
��SH

a
Sb

�� (63)

where the second inequality follows because the spectral norm
of both a block-diagonal matrix and an anti-block-diagonal ma-
trix is given by the largest among the spectral norms of the indi-
vidual nonzero blocks. Next, we define Ha =

��SH

a
Sa − Ina

��,
Hb =

��SH

b
Sb − Inb

��, and Z =
��SH

a
Sb

��. It then follows
from (63) that for all q ≥ 1

[E(Hq)]1/q ≤ [E((Ha +Hb + Z)q)]
1/q

≤ [E(Hq

a
)]1/q + [E(Hq

b
)]
1/q

+ [E(Zq)]1/q

= Ha + [E(Hq

b
)]
1/q

+ [E(Zq)]1/q (64)

where the second inequality is a consequence of the triangle
inequality for the norm [E(|·|q)]1/q (recall that we assumed
q ≥ 1 and hence [E(|·|q)]1/q is a norm), and in the last step we
used the fact thatHa is a deterministic quantity. All expectations
in (64) are with respect to the random choice of columns from
the sub-dictionary B.



13

We next upper-bound the three terms on the RHS of (64) in-
dividually. Applying Geršgorin’s disc theorem [29, Thm. 6.1.1]
to the first term, we obtain

Ha =
��SH

a
Sa − Ina

�� ≤ (na − 1)a. (65)

For the second term, we use [12, Eq. (6.1)] to get

[E(Hq

b
)]
1/q

=
�
E
���SH

b
Sb − Inb

��q
��1/q

≤
�
144b2nbr1 +

2nb

Nb

�B�2 (66)

where r1 = max{1, log(nb/2 + 1), q/4}. Assuming that q ≥
max{4 log(nb/2 + 1), 4} and, hence, r1 = q/4, we can sim-
plify (66) to

[E(Hq

b
)]
1/q ≤ 6

�
b2nb

√
q +

2nb

Nb

�B�2 . (67)

To bound the third term, we use the upper bound in [12, Thm. 8]
on the spectral norm of a random compression combined with
the fact that rank(SH

a
Sb) ≤ nb, which is a consequence of

SH

a
Sb being of dimension na × nb. This yields

[E(Zq)]1/q =
�
E
���SH

a
Sb

��q
��1/q

≤ 3
√
r2

��SH

a
B
��
1,2

+

�
nb

Nb

��SH

a
B
�� (68)

where r2 = max{2, 2 log nb, q/2}. Assuming that q ≥
max{4 log nb, 4}, we can further upper-bound the RHS of (68)
to get

[E(Zq)]1/q ≤ 3√
2

√
q
��SH

a
B
��
1,2

+

�
nb

Nb

��SH

a
B
��

≤ 3√
2

�
d2na

√
q +

�
nb

Nb

��SH

a
B
�� (69)

≤ 3√
2

�
d2na

√
q +

�
nb

Nb

�A� �B� (70)

where (69) follows from the fact that the magnitude of each
entry of SH

a
B is upper-bounded by d and, thus,

��SH

a
B
��
1,2

≤√
d2na. To arrive at (70) we used

��SH

a
B
�� ≤

��SH

a

�� �B� ≤
�A� �B�, which follows from the sub-multiplicativity of the
spectral norm and the fact that the spectral norm of the submatrix
Sa of A cannot exceed that of A [29, Thm. 4.3.3]. We can now
combine the upper bounds (65), (67), and (70) to obtain

[E(Hq)]1/q ≤ (na − 1)a+ 6
�
b2nb

√
q +

2nb

Nb

�B�2 +

+
3√
2

�
d2na

√
q +

�
nb

Nb

�A� �B�

=

�
6
�

b2nb +
3√
2

�
d2na

�

� �� �
α

√
q+

+ (na − 1)a+
2nb

Nb

�B�2 +
�

nb

Nb

�A� �B�
� �� �

β

= α
√
q + β

for all q ≥ Q1 = max{4 log(nb/2 + 1), 4 log nb, 4}.
Hence, Lemma 8 yields

P{H ≥ e1/4(αu+ β)} ≤ e−u
2
/4

for all u ≥
√
Q1. In particular, under the assumption N ≥

e ≈ 2.7, it follows that the choice u =
√
4s logN satisfies

u ≥
√
Q1 for s ≥ 1. Straightforward calculations reveal that

conditions (18) and (19) ensure that e1/4(αu+β) ≤ 1/2, which
together with (62) leads to

P
�
σmin(S) ≤ 1/

√
2
�
≤ P{H ≥ 1/2}

≤ P{H ≥ e1/4(αu+ β)}
≤ e−u

2
/4 = N−s.

APPENDIX H
PRIOR ART

A. Tropp’s (M0) Model and (P0)-uniqueness

In [12] the following model was introduced.

Model (M0) for a signal y = Dx
The dictionary D has coherence d.
The vector x has nonzero entries only in the

positions corresponding to the
columns of a sub-dictionary
S of D; furthermore, the en-
tries of x restricted to the cho-
sen sparsity pattern are jointly
continuous random variables.

The sub-dictionary S satisfies σmin(S) ≥ 1/
√
2 and

has T < d−2/2 columns.

The following theorem builds on (M0).
Theorem 9 ([12, Thm. 13]): Suppose that y = Dx is a sig-

nal drawn from Model (M0). Then x is almost surely the unique
vector that satisfies the constraints

Dx = y and �x�0 ≤ T.

B. Tropp’s (M1) Model and Recovery via BP

In [12] the following model was introduced.

Model (M1) for a signal y = Dx
The dictionary D has coherence d.
The vector x has nonzero entries only in the

positions corresponding to the
columns of a sub-dictionary S
of D; furthermore, the phases
of its nonzero entries are i.i.d.
and uniformly distributed on
[0, 2π) (the magnitudes need
not be i.i.d.).

The sub-dictionary S satisfies σmin(S) ≥ 1/
√
2 and

has T < d−2/[8(s+1) logN ]
columns (s ≥ 1).

The following theorem builds on (M1).
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Theorem 10 ([12, Thm. 14]): Suppose that y = Dx is a
signal drawn from Model (M1). Then x is the unique solution
of (BP) with probability at least 1− 2N−s.

If the requirements of both (M0) and (M1) are satisfied, then
combining Theorems 9 and 10 yields the following statement:
The unique solution of both (P0) and BP applied to y = Dx is
given by x with probability at least 1− 2N−s. Note, however,
that both (M0) and (M1) require the sub-dictionary S to have
σmin(S) ≥ 1/

√
2. Lemma 7 shows that for D = [A B]

and S consisting of na arbitrarily chosen columns of A and
nb randomly chosen columns of B the sub-dictionary S has
σmin(S) ≥ 1/

√
2 with probability at least 1−N−s.
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