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Abstract:
This paper studies how the optimal energy management of a hybrid electric vehicle and a plug-in
hybrid electric vehicle is affected by uncertain estimates of the battery state of charge. A simple
model for the battery dynamics and the state of charge estimation is postulated, inspired by the
known characteristics of previously proposed estimation schemes. Based on the assumption that
the drive cycle is perfectly known, the effects of state of charge estimation uncertainty is studied
by including the estimation uncertainty in the optimization of the energy management strategy.
The simulations indicate lower battery usage and higher fuel consumption as the estimation
uncertainty increases.
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1. INTRODUCTION

Increased electrification of powertrains has during the last
decade emerged as a promising technology for reducing
the environmental impact of road transportation. The
first electrified vehicles introduced to the mass market
were Hybrid Electric Vehicles (HEVs), which in addition
to the Internal Combustion Engine (ICE) are equipped
with an Electric Machine (EM) and an energy buffer. The
HEV powertrain improves the energy efficiency by engine
downsizing and brake energy recovery.

From a control engineering perspective the additional trac-
tion source in the HEV powertrain introduces a degree
of freedom in meeting the driver’s traction request. Dur-
ing recent years significant attention has been given to
the development of control strategies, also called Energy
Management Strategies (EMS), that exploit this degree
of freedom in an efficient way, see Paganelli et al. (2002),
Musardo et al. (2005) and Sciarretta and Guzzella (2007).
Common to all proposed EMS are that they aim to min-
imize fuel consumption and/or emissions, while satisfying
constraints on the battery charge level in order to main-
tain battery life length. The key variable to control is
therefore the battery State of Charge (SoC), defined as
the remaining battery capacity divided with the nominal
battery capacity.

However, a complicating fact when designing the EMS is
that SoC is a non measurable quantity that is dependent
on the ionic concentrations at the anode/cathode. When
implementing the EMS the SoC must therefore be esti-
mated by the Battery Management System (BMS). The

⋆ This work has been supported by the Swedish Hybrid Vehicle
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estimation is typically based on a sensor fusion of current
and voltage measurements, where the measured current
is integrated and the inherent drift is compensated for by
comparing the measured battery terminal voltage with the
predicted voltage from a dynamic battery model. Several
different estimation techniques have been suggested for the
BMS; one is to use an Extended Kalman Filter as proposed
by Plett (2004), another is to use Particle Filtering and
Bayesian estimation, see Saha et al. (2007). However, no
matter what estimation technique is used, there will always
be a relatively large SoC estimation uncertainty due to
the difficulty of accurately modeling the battery terminal
voltage during dynamic operation.

All published methods known to the authors for designing
an EMS are based on the certainty equivalence principle
(see any text book in optimal control e.g. Anderson and
Moore (1971)), meaning that the EMS is optimized based
on the assumption that the SoC is perfectly known. The
question in this paper is to investigate the validity of
assuming certainty equivalence when designing an EMS
for an HEV with a Li-Ion battery. The methodology used
to answer this question is to first postulate a simple model
for the SoC estimation uncertainty based on known char-
acteristics of published SoC estimation schemes for Li-Ion
batteries, see Plett (2004). The SoC estimation uncertainty
model is then included in the optimization of the EMS and
the resulting optimal EMS for a predetermined drive cycle
is analyzed for varying levels of the estimation uncertainty.
This is done in order to get an understanding of how un-
certain SoC estimates affect the optimal EMS. Moreover,
the study is done for both an HEV and a Plug-in HEV
(PHEV) since these differ considerably in battery usage
and depth of discharge.
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Fig. 1. Voltage vs. SoC for a typical Li-Ion battery.

1.1 Paper Outline

The outline of the paper is as follows. In Section 2 SoC
estimation is explained briefly and the model of the SoC
estimation uncertainty is postulated. Section 3 describes
the vehicle model used in the paper and Section 4 covers
the optimization of the EMS. Simulations are shown in
Section 5 and the paper is ended with conclusions and
discussion in Section 6.

2. SOC ESTIMATION

One can argue that the main problem with SoC esti-
mation for Li-Ion batteries is not necessarily inaccurate
current and voltage measurements, but rather that during
dynamic operation the battery terminal voltage is only
to a limited extent dependent on the SoC compared to
other factors such as battery temperature and the memory
and hysteresis effects. Hence, for precise SoC estimation a
dynamic model for the battery terminal voltage is needed.

In order to accurately model the battery terminal voltage,
a chemical model with several dynamic states and param-
eters is needed. However, such a model is typically not
practical for implementation in a BMS, both due to the dif-
ficulty of obtaining correct values for the model parameters
as well as the computational requirements. The battery
is therefore normally modeled as an equivalent circuit
consisting of a voltage source with one or several capacitors
and resistors, see for example Musardo et al. (2005) and
Sciarretta and Guzzella (2007). The open source voltage is
often considered to depend on SoC according to a look-up-
table determined by steady state voltage measurements at
varying SoC levels. A typical voltage vs. SoC curve for a
Li-Ion battery is shown in Figure 1. Furthermore, battery
temperature and other dynamic effects such as memory
and hysteresis effects are typically neglected.

In Figure 1 it is seen that the voltage vs. SoC curve is
almost flat at intermediate SoC levels, meaning that in
this region information obtained from voltage measure-
ments will be of limited value. The effect is that the SoC
estimator essentially relies on current integration at inter-
mediate SoC levels and voltage measurements contribute
by bringing down the uncertainty at low/high SoC values.

2.1 Estimation Uncertainty Model

In this section the behavior of the SoC estimator will be
modeled with the purpose of capturing the main contribut-
ing phenomena that influence the estimation uncertainty,
see Plett (2004).

The following model characteristics are postulated:

• the estimation uncertainty increases when the battery
is used

• the estimation uncertainty decreases when the bat-
tery is not used

• the estimation uncertainty decreases at high and low
SoC values

• the estimation uncertainty is independent of the bat-
tery temperature

• the SoC estimate is unbiased

The assumption of temperature independence is intro-
duced since a thermal model of the battery is beyond
the scope of this study. Furthermore, the SoC estimate
is assumed to be unbiased to reduce the number of model
parameters.

The estimation uncertainty model is based on a SoC
model, a measurement model and a state dependent gain.

The discrete time SoC model is simply

SoCk+1 = SoCk +
hik
Q

+ dk, (1)

and the discrete time measurement model is
˜SoCk = SoCk + wk. (2)

Here SoC represents the true state and ˜SoC corresponds
to the ”measured” state, i.e. the voltage measurement
translated to SoC using the voltage vs. SoC curve. The
sampling time is denoted h, Q is the nominal capacity of
the battery and i is battery current and control signal to
the system.

The distributions of the disturbances d and w are given by

dk ∼N(0, γ + β|ik|), (3)

wk ∼N(0, µ · α(SoCk)). (4)

The variance of d increases with current, thus representing
that the SoC uncertainty will increase during dynamic
operation both due to imprecise current measurements and
modeling errors. The measurement variance, w, depends
on the true state according to the function α(SoC),
representing the inverse of dV/dSoC as shown in Figure
2, capturing that the voltage measurements give more
information at low/high SoC values. The parameters γ,
β and µ are tuned to represent different estimator and
battery characteristics.

The estimated state, ˆSoC, is determined using a state
dependent gain, Kk = K( ˆSoCk, pk), and is given by

ˆSoCk+1 = ˆSoCk +
hik
Q

+ Kk[ ˜SoCk − ˆSoCk], (5)

where p represents the estimation uncertainty, i.e. the
variance of the estimation error, p = E[e2].

The estimation error becomes

ek+1 = SoCk+1 − ˆSoCk+1,

= (1 − Kk)ek + dk − Kkwk. (6)

Using basic calculus it is straightforward to show that

pk+1 = (1 − Kk)2pk + σ2
d,k + K2

kσ2
w,k ,

= pk + (pk + σ2
w,k)

[

Kk − pk

pk + σ2
w,k

]2

− p2
k

pk + σ2
w,k

+ σ2
d,k , (7)

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

9704



where σ2
d = E[d2] = γ +β|i| and σ2

w = E[w2] = µ ·α(SoC).

Equation (7) implies that the estimation uncertainty is
minimized if the state dependent gain is chosen as

Kk =
pk

pk+σ2
w,k

. (8)

Finally with the gain chosen according to Equation (8) the
estimation uncertainty becomes

pk+1 =
pkσ2

w,k

pk + σ2
w,k

+ σ2
d,k. (9)

However, since the true state is not measurable, the exact
value of σ2

w is unknown. Rather than assuming that SoC ≈
ˆSoC, a better approximation should be achieved if all the

information of the current state estimate is used. Hence
the true state is assumed to be β-distributed around the
estimated state as SoC ∼ B( ˆSoC, p), meaning that σ2

w can
be calculated as

σ2
w ≈ σ̂2

w = E{µ · α(SoC)| ˆSoC}

=

∫ 1

0

µ · α(SoC)β(SoC, a, b) dSoC, (10)

where β(SoC, a, b) is the probability density function of
the β-distribution, given by

β(SoC, a, b) =
SoCa−1(1 − SoC)b−1

∫ 1

0
SoCa−1(1 − SoC)b−1 dSoC

. (11)

The shaping parameters a and b are determined by the
mean and varience of the β-distribution and are thus given
by

a = ˆSoC

(

ˆSoC(1 − ˆSoC)p−1 − 1

)

(12)

and

b = (1 − ˆSoC)

(

ˆSoC(1 − ˆSoC)p−1 − 1

)

. (13)

The characteristics of the estimation uncertainty model
are illustrated in Figure 2, where Equation (9) is simulated
forwards in time for various values of the tuning param-
eters γ, β and µ at constant values of the SoC and the
current. The figure shows that the steady state estimation
uncertainty increases with increasing values of γ, β and
µ. Furthermore, intermediate SoC values and increasing
currents results in a higher uncertainty. The transient
response in the lower left plot illustrates the effect of zero
battery current.

3. VEHICLE MODELING

Two vehicle concepts are modeled in this paper, one
HEV and one PHEV. Both concepts have a parallel
configuration with the electric machine placed directly at
the drive axis, see Figure 3, representing two different
models built on the same vehicle platform. The differences
between the concepts are related to the battery; the PHEV
has a more powerful battery with higher capacity in order
to provide some 25 km of electric driving. Furthermore,
the two concepts have different constraints on the battery
usage, the PHEV is allowed to use 65% of the battery
capacity whereas the HEV is only allowed to use 20%.
These constraints are imposed on the battery usage due
to battery ageing, which is strongly correlated with the
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Fig. 2. The measurement variance µ · α(SoC), upper left
plot, and the estimation uncertainty, p, for various
values of the tuning parameters, the battery SoC and
the battery current.

battery depth of discharge, see Vetter et al. (2005). The
properties of the vehicle concepts are summarized in Table
1.

Table 1. Vehicle Model Data

Vehicle Data

HEV
Battery Li-Ion - 192V, Rin = 0.30 Ω

1.4 kWh (0.28 usable)
SoC0 ≈ SoCf ≈ 0.65

PHEV
Battery Li-Ion - 305V, Rin = 0.13 Ω

8 kWh (4.8 usable)
SoC0 = 0.85, SoCf ≈ 0.25

ICE Spark Ignited - 50 kW
EM Permanent Magnet - 50 kW
Chassis Transmission 5-stepped automatic

Gear ratios, rgb,i 4.2, 2.5, 1.6, 1.1, 0.9
Final drive, rfd 4.2
Wheel radius, rwh 0.3 m
Mass, m 1500 kg
Air resist., cdAf 0.66 m2

Rolling resist., fr 0.012
Power elec. eff., ηpe 0.95
Gearbox eff., ηgb 0.97
Final drive eff., ηfd 0.95

3.1 Powertrain Model

The powertrain is modeled using a quasi static approach,
meaning that the ICE mass fuel rate and the EM losses are
determined through linear interpolation between steady
state measurements, neglecting the internal dynamics of
the ICE and the EM. The gearbox, the final drive and the
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Fig. 3. The HEV/PHEV configuration.

power electronics are assumed to have constant efficiencies.
The battery is modeled as a voltage source in series with
an internal resistance, Rin, the open circuit voltage is de-
pendent on SoC, as in Figure 1, and the internal resistance
is assumed to be constant over the SoC interval of normal
usage. Dynamic effects such as hysteresis, memory and
battery temperature are neglected.

The torque demand at the drive axis, τdem, needed to
follow a predetermined drive cycle is calculated using an
inverse simulation approach, see Guzzella and Sciarretta
(2007), is

τdem =
rwh

rfd

(
ρair

2
Afcdv

2 + frmg cos θ + mg sin θ + m
dv

dt
),

(14)
where v and θ represents the drive cycle velocity and road
grade. The interesting equation from a control engineering
perspective is the torque split between the ICE and the
EM, given by

τdem + τfr = (τemrfd + τicerfdrgb,iηgb)ηfd, (15)

where τfr is the torque applied by the mechanical brakes.
The choice of gear, rgb,i, is given by a predetermined
gear shift strategy, i.e. a look up table as a function of
the vehicle speed with an additional hysteresis to avoid
excessive gear shifting. The dynamics during the gearshift
are neglected.

4. OPTIMAL ENERGY MANAGEMENT
STRATEGIES

If the drive cycle is considered to be deterministic the
optimal EMS can be determined by solving the following
optimization problem

J∗ = min
{uk}

E
{dk,wk}

{

Υ(xN ) +
N−1
∑

k=1

(

ṁk(uk) + Γ(xk)
) }

,

s.t. xk+1 = f(xk, uk, zk)

xk ∈ X, uk ∈ U(zk, xk), zk ∈ Z (16)

where

xk = [SoCk, ˆSoCk, pk, ICEs,k]T ,

yk = [ ˆSoCk, pk, ICEs,k]T ,

uk = [τice,k, ICEd,k]T ,

zk = [dk, wk, vk, θk, rgb,k]T . (17)

Here the state vector x, consists of the the true SoC, the
SoC estimate ˆSoC, the variance of the estimate p, and the
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Fig. 4. The penalty functions Υ and Γ plotted vs true SoC
for the HEV and PHEV concepts.

engine state ICEs. The measurement vector y, consists
of the state variables observable by the EMS. The control
signal vector u, to the system consists of the ICE torque
τice, (the EM torque τem, is given implicitly by the torque
split) and the decision to change ICE state ICEd. Finally,
the disturbance vector z, consists of the stochastic SoC
process disturbance d, the stochastic SoC measurement
disturbance w and the deterministic drive cycle, i.e. the
velocity profile v, the road grade θ and the gear rgb, (given
by the gear shift strategy). Furthermore, the variables
in the control signal vector, state vector and disturbance
vector are constrained to be within the physical limitations
of the powertrain model in Section 3.1.

The performance index, J , is composed of the fuel mass
rate, ṁ, and Γ which is a penalty function ensuring that
the SoC is kept approximately within allowed bounds.
Finally the end cost, Υ, penalizes deviations from the
preferred SoC value at the end of the driving mission,
SoCf .

The optimization problem described by Equations (16)-
(17) is solved using Dynamic Programming (DP), see
Bellman and Dreyfus (1962) or Bertsekas (2000).

The DP formulation of the problem becomes

Jk(Yk) = min
uk

E
dk,wk

{

ṁk(uk) + Γ(Yk) + Jk+1(Yk+1) |Yk

}

,

(18)
where the cost-to-go function, Jk is determined over the
discretized part of the observable state space, Yk. The
cost-to-go function is iterated recursively backwards in
time from the final time sample N to first, using linear
interpolation. At the final time sample the cost function is
initialized as JN (YN ) = Υ(YN ).

The optimal EMS is then determined by iterating Equa-
tion (18) forwards in time according to

u∗
k = arg min

uk

E
dk,wk

{

ṁk(uk) + Γ(yk) + Jk+1(yk+1) |yk

}

.

(19)
Note that the penalty functions, Υ and Γ shown in Figure
4, are defined to penalize undesired true SoC values. This
means that when optimizing the EMS, the penalty will
be smoothed out since Υ and Γ are determined by taking
the expectation over the true SoC distribution, given by
Equation (11).

5. SIMULATIONS

Simulations were performed both for the HEV and PHEV
vehicle concepts on the drive cycle shown in Figure 5. The
drive cycle consists of the HWFET and FTP72 test cycles,
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combined with a plausible altitude profile to make the
driving conditions more realistic.
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Fig. 5. The drive cycle used during the simulations.

Using the estimation uncertainty model and the power-
train model, outlined in Sections 2.1 and 3.1, optimal EMS
were determined by solving the DP formulation of the
optimization problem, given by Equation (18) in Section 4.
The optimal sequence of control actions was determined by
iterating Equation (19) forwards in time while generating
a realization of the stochastic processes d and w using a
pseudorandom number generator.

To illustrate the sensitivity of the optimal EMS against
variations in the average estimation uncertainty the µ-
parameter was varied between a low, a medium and a high
value, while γ and β were kept constant at; β = 3.9 · 10−7,
γ = 1 ·10−6. For each µ-value the average value of the final
SoC estimate and the fuel consumption were calculated
(neglecting the cost to recharge the PHEV battery). The
results based on 50 realizations are shown in Table 2.

The optimal EMS of the HEV and PHEV concepts, for
a few realizations, are shown in Figures 6-9. Figures 6
and 8 correspond to the medium µ-value and show in
descending order; the true SoC and the estimated SoC, the
estimation error, the approximate estimation uncertainty
(i.e.

√
p given by Equation (9) using the approximation

in Equation (10)) and the battery current. The figures 7
and 9 depicts the results for the low and high µ-values,
however here only the true SoC, the estimated SoC and
the approximate estimation uncertainty are shown.

Table 2. Simulated average values of the fuel
consumption and the final SoC estiamte.

Simulation Data

Final SoC est. [ ˆSoCf ] Fuel Cons. [l\100km]
µ-value [10−3] µ-value [10−3]

µlow µmed µhigh µlow µmed µhigh

Concept = 0.7 = 2.0 = 6.0 = 0.7 = 2.0 = 6.0

HEV 0.655 0.658 0.659 3.49 3.51 3.55

PHEV 0.281 0.284 0.296 1.16 1.18 1.23

5.1 HEV Concept

The simulations for the HEV concept, shown in Figures 6
and 7, suggest that the estimation uncertainty remains
almost constant throughout the drive cycle. This is a
consequence of the HEV operating region close to SoC =
0.65 where voltage measurements give limited information,
i.e. the SoC dependent measurement noise w has a fairly
constant and high variance. Also notable is that when the
average estimation uncertainty increases the battery usage
decreases, i.e. the SoC deviations from 0.65 decreases. The
reason behind this is that the strategy tries to reduce the

cost of the penalty function Γ, which is determined by
both the SoC estimate and the estimation uncertainty.
Moreover, the average fuel consumption, see Table 2,
increases with higher uncertainty, an intuitive result since
decreased battery usage limits the degree of freedom of the
EMS.
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Fig. 6. Simulation of the HEV, medium µ-value.
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5.2 PHEV Concept

Simulations for the PHEV concept, shown in Figures 8
and 9, indicate that the estimation uncertainty varies more
during a drive cycle with a PHEV than with an HEV. One
reason is that the SoC changes more throughout a drive cy-
cle for a PHEV, meaning that the variance of measurement
noise, w, has a higher variation. Furthermore, the estima-
tion uncertainty shows a tendency to decrease towards the
end of the drive cycle. This is partly motivated by that
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the measurements give more information since the SoC is
low, although the main reason is that the EMS reduces the
battery current in order to end the drive cycle with a more
precise SoC estimate and thus a lower end cost Υ. Finally,
also for the PHEV the average fuel consumption increases
with increased estimation uncertainty, here explained by
decreased battery usage at the end of the drive cycle and
an increased final SoC for higher estimation uncertainties
as seen in Table 2.
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Fig. 9. Simulation of the PHEV, low and high µ-values.

6. CONCLUSION AND DISCUSSION

The simulation results indicate that uncertainties re-
garding the SoC estimate affect the optimal EMS of
an HEV and a PHEV differently. For an HEV with
steep/discontinuous penalty functions it is clear that in-
creased estimation uncertainty leads to decreased battery

usage and therefore higher fuel consumption. However, the
magnitude of this effect will depend strongly on the SoC
constraints; smoother penalty functions and increasing the
allowed depth of discharge will decrease the effect.

The optimal EMS of a PHEV is not affected in the same
manner since the constraints on the SoC usage are less
restrictive in terms of the depth of discharge. Instead of
decreased battery usage throughout the whole drive cycle,
the trend is toward decreased battery usage during the
final part and a higher final SoC estimate, this in order
to receive a lower end cost. The effect is enhanced by
steep/discontinuous penalty functions.

To summarize, the results suggest that the assumption
of certainty equivalence when deriving the EMS is more
appropriate for a PHEV than for an HEV, at least with
sharp constraints on the SoC usage.

Finally, it is worth to point out that the postulated model
of the SoC dynamics, described by Equation (1), has the
property that battery energy essentially can be created
or vanish in a random walk behavior due to the SoC
disturbance. Therefore the modeling approach used in this
paper is not very well suited for studying energy efficiency
figures of individual realizations.
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