
Identifying Molecular Effects of Diet through Systems
Biology: Influence of Herring Diet on Sterol Metabolism
and Protein Turnover in Mice
Intawat Nookaew1., Britt G. Gabrielsson2., Agneta Holmäng3, Ann-Sofie Sandberg2, Jens Nielsen1*

1 Life Sciences/Systems Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden, 2 Life Sciences/Food

Science, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden, 3 Department of Physiology, Institute of

Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden

Abstract

Background: Changes in lifestyle have resulted in an epidemic development of obesity-related diseases that challenge the
healthcare systems worldwide. To develop strategies to tackle this problem the focus is on diet to prevent the development
of obesity-associated diseases such as cardiovascular disease (CVD). This will require methods for linking nutrient intake with
specific metabolic processes in different tissues.

Methodology/Principal Finding: Low-density lipoprotein receptor-deficient (Ldlr 2/2) mice were fed a high fat/high sugar
diet to mimic a westernized diet, being a major reason for development of obesity and atherosclerosis. The diets were
supplemented with either beef or herring, and matched in macronutrient contents. Body composition, plasma lipids and
aortic lesion areas were measured. Transcriptomes of metabolically important tissues, e.g. liver, muscle and adipose tissue
were analyzed by an integrated approach with metabolic networks to directly map the metabolic effects of diet in these
different tissues. Our analysis revealed a reduction in sterol metabolism and protein turnover at the transcriptional level in
herring-fed mice.

Conclusion: This study shows that an integrated analysis of transcriptome data using metabolic networks resulted in the
identification of signature pathways. This could not have been achieved using standard clustering methods. In particular,
this systems biology analysis could enrich the information content of biomedical or nutritional data where subtle changes in
several tissues together affects body metabolism or disease progression. This could be applied to improve diets for subjects
exposed to health risks associated with obesity.
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Introduction

More than 40% of adults in the USA are obese and it is

expected that by 2030 close to 200 million subjects (corresponding

to about 33%) in Europe will be obese. Many of these will develop

dyslipidemia, hypertension and glucose intolerance, imposing

increased costs for the health care systems. These obesity-related

disorders are mainly caused by sedentary lifestyle habits and

changes to energy-dense foods with high content of refined

carbohydrates and saturated fats. It is therefore of interest to

identify nutritional strategies that could reduce the prevalence of

these disorders, as this would shift focus from treatment to

prevention of diseases. Presently, there is a large interest in the

action of isolated bioactive food compounds that have health

benefits, e.g. resveratrol and long-chain n-3 polyunsaturated fatty

acids (LC n-3 PUFAs) [1,2]. Although there are numerous studies

on the mechanisms of action of such compounds, it is difficult to

translate or to explain the known health effects of specific food

items. To address this issue we developed a novel concept for data

analyses of dietary studies, by directly linking specific food intake

with metabolic activities in different tissues. Our approach was to

simultaneously analyze the transcriptional responses in three

metabolically important tissues; liver, muscle and adipose tissue.

Therefore, we could relate responses at the tissue level to whole

body metabolic events. A further advantage of our study is using

diets that simulated a Westernized diet commonly consumed in

modern society, as this allowed us to evaluate the integrative

effects of all the components in typical meals. An overview of the

concept is illustrated in Figure 1.

Our concept allows direct mapping of the dietary effects on

molecular mechanisms in the three tissues individually, and by

further linking concerted dietary effects in all three tissues

PLoS ONE | www.plosone.org 1 August 2010 | Volume 5 | Issue 8 | e12361



combined, gaining insight into how nutrition influences whole

body metabolism. This type of integrated analysis has previously

been proposed to be how systems biology methodology could

advance nutrigenomics [3]. Through integrated analysis, mapping

transcriptome data on metabolic networks and other types of

interaction networks we further show that it is possible to identify

complete pathway signatures in response to diet. The use of

transcriptional profiles in combination with metabolic models has

previously been used to identify signature pathways in yeast [4]

and in human tissues [5]. Important to our concept is that we

perform integrated analysis in three major metabolically important

tissues, as this reflects whole body metabolic responses to changes

in the diet. In addition, this approach could easily be adapted to

incorporate and integrate plasma measurements for identification

of biomarkers that reflect specific tissue metabolic activities and

can ultimately be used for clinical evaluations.

Results

Experimental design
We designed an experiment aimed to evaluate the influence of

herring versus beef based diet on the development of atheroscle-

rosis. We used the low-density lipoprotein receptor-deficient

(Ldlr2/2) mouse [6], as this model has a dietary dependence on

the development of atherosclerotic plaques [7]. Furthermore, the

Ldlr2/2 mouse is susceptible to diet-induced obesity with

concomitant insulin resistance [7,8] and as such mimics the

situation in the Westernized world. Epidemiological studies show

that a high dietary intake of fish reduces the incidence of CVD [9],

and these effects are usually attributed to the long chain (LC) n-3

polyunsaturated fatty acids (PUFAs) [10]. Indeed, previous studies

show that LC n-3 PUFAs supplemented diet reduced plaque

formation and hepatic steatosis in the Ldlr2/2 mouse model

[10,11]. However, the effect of fish intake on risk factors associated

to CVD has previously not been investigated in mice. This is of

interest since fish protein reduced blood lipid levels in rats, and

also affected hepatic expression of genes involved in cholesterol

metabolism [12]. Furthermore, a recent clinical study showed that

combined treatment with LC n-3 PUFAs and taurine, both

present in fish muscle, was more efficient in lowering blood lipid

levels than LC n-3 PUFAs alone [13]. In our study, Ldlr2/2 male

mice were given a 16-week high fat/high sucrose diet, supple-

mented with either minced herring fillets or minced beef, to

identify metabolic pathways that were differentially affected in

three tissues important for whole body glucose and lipid

metabolism; liver, skeletal muscle and white adipose tissue

(WAT). The macronutrient composition of the two diets was

identical except for the source of protein and fat (Table S1).

Animal phenotypes
Three animals from each diet-group were selected to represent

the whole diet group with respect to weight-gain, body composition

Figure 1. In order to obtain molecular insight into the influence of diet on the metabolism in different tissues, mice were fed with
different diets under marcronutrient control. In the study Ldlr 2/2 mice were used, as this allowed for evaluation of how diet influences the
development of atherosclerosis. The mice were fed with either a beef-based (B) diet or a herring-based (H) diet. The body weights were monitored
weekly, and at the end of the study body composition was measured and aortic plaques were detected by en face histology. Furthermore,
metabolically important tissues such as liver, muscle and adipose tissue were collected and genome-wide transcription analysis was performed on
these samples. After statistical analysis of the data there was performed, in parallel, a standard clustering and dimension reduction analysis with the
objective to identify gross patterns within the samples. In the integrated analysis different types of biological network graphs were used. Through
this analysis specific metabolic pathways activated in the specific tissues in response to the diet were identified. This information was integrated
together with histological data in order to gain new fundamental insight into the molecular effects of diet on whole body metabolism.
doi:10.1371/journal.pone.0012361.g001
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and blood lipid levels (for details see Table S2). The plasma total

cholesterol and triacylglyceride levels were lower in the mice fed

herring compared to those given beef at both time-points (week 8 p-

value ,0.001 both; week 16 p-value = 0.017 and 0.002, cholesterol

and triglycerides, respectively). Body composition, measured at

week 15, showed a trend to increased lean body mass in the herring-

fed mice in comparison with the beef-fed (p-value = 0.050). At week

16, the plaque areas in the aortic arch, assessed by en face histology,

were significantly lower in the herring-fed mice (p-value ,0.001;

0.660.1 versus 7.460.7% area, herring and beef, respectively).

Primary analysis of transcriptome data
We first performed a singular value decomposition (SVD) of

the transcriptome data to evaluate the quality of the microarray

experiments (Figure 2A). As expected, the largest separation of

the data was based on differences in the three tissues and the

tissue effect masked the diet effect. Nevertheless, in each tissue

there was a large number of genes that had significantly changed

expression in response to diet (Figure 2B). This was also

supported by hierarchical clustering of significantly changed

genes based on diet effect (Text S1 and Figure S1). As seen in

Figure 2B, the most distinct effect of diet, i.e. highest Q-values in

the logarithmic scale, was in liver where 344 genes had

significantly changed expression. However, larger number of

genes (859) in the muscle satisfied the Q-value cut-off for

significance of less than 0.05. The gene expression in WAT was

less affected by diet, where only 48 genes had significantly

changed expression.

Figure 2. Analysis of transcriptome data. Three mice from each diet group were selected for transcriptome analysis. Liver, muscle and adipose
tissue were obtained from these mice, mRNA was extracted from these tissues and the resulting samples were analyzed. A. After normalization Single
Value Decomposition (SVD) of the data were performed. This analysis points to a very clear separation of the three tissues analyzed, showing that the
tissue effect is larger than the diet effect as expected. The SVD analysis points to good consistency between the samples from the three different
mice, giving good statistical power for further analysis of the data. B. Circular mapping plot of Q-values (p-values obtained from a Student t-test and
corrected for multiple testing) according to the transcript loci arrangement on the different chromosomes for each of the three tissues. The plot
shows the distribution of Q-values in response to diet. The three smaller plots to the right indicate the Q-values for the three different tissues and
were overlaid in the figure to the left (more details in Text S1 and Figure S6, for simple boxplot of Q-values see Figure S2). C. For each tissue the
reporter Biological Process GO-terms were identified according to the influence of the diets. The reporter GO-terms of cellular component and
molecular function category are given in Figure S4. Normalized X-score for all the genes in each GO-term was identified (more details in Text S1). This
was done for each of the three tissues in each of the two groups of mice, resulting in a total of 6 categories for each GO-term (3 categories for each
GO-terms when consider only tissues factor see Figure S3). The figure illustrates the X-score for each GO-term. The analysis corrects for the size of the
group and reporter GO terms with a large number of genes therefore represents a global response, whereas GO terms with few genes represents
specific transcriptional changes.
doi:10.1371/journal.pone.0012361.g002
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Integrated data analysis
In order to identify key biological processes affected by diet in

liver, skeletal muscle and WAT, we performed integrated analysis

using three biological networks to capture different levels of

information. The first analysis provides a global view of the

response to diet, identifying significant Gene Ontology (GO)-terms

(Figure 2C). We applied the reporter algorithm [4,14], rather than

using the traditional hypogeometric test, since it has the advantage

in using the Q-value for all transcripts. The reporter algorithm

made it possible to identify key biological processes affected by diet

in the three tissues (Figure 2C; for GO ‘‘cellular component’’ and

‘‘molecular function’’ see Figure S4). In liver, the GO biological

processes that were affected by diet were related to lipid/sterol

metabolism, e.g. ‘‘lipid biosynthetic process’’ (99 transcripts),

‘‘sterol biosynthetic process’’ (25 transcripts) and ‘‘cholesterol

biosynthetic process’’ (23 transcripts). Similarly, in muscle and

WAT, the GO biological processes affected by diet were

translation (321 transcripts, muscle), cell adhesion (419 transcripts,

WAT) and defense response to bacterium (77 transcripts, WAT).

To further characterize dietary effects on metabolism by the

reporter algorithm [4,14], we also determined key metabolites,

using a generic genome-scale metabolic model (GSMM) for mouse

[15], and key Reactome processes, using curated evidences from

the Reactome database [16]. From this analysis, metabolites

related to fatty acid/sterol biosynthesis were identified as the

major responses in liver (Figure 3B). Furthermore, specific

biological processes related to protein turnover were identified in

muscle (Figure 4C). To further identify molecular mechanisms that

were triggered by diet, we screened for overrepresentation of

regulatory targets, either in the promoter regions or microRNA

targets, to identify putative regulatory drivers for the previously

identified changes. Hereby, we were able to identify known

transcription factors (TFs) and microRNAs that could explain the

transcriptional differences in liver and muscle arising from the

influence of diet as shown in Figure 3D and Figure S7 (see Text S2

for complete results).

White adipose tissue
Even though only few genes showed significantly changed

expression in WAT, it is of interest that the biological process

‘‘defense response to bacterium’’ (GO:0042742) was affected by diet.

WAT has lately been recognized to produce a number of immune-

Figure 3. Mapping of metabolic activities in the liver (green and red indicate down- and upregulated based on herring diet,
respectively). A. Overview of genes involved in sterol and lipid biosynthesis that are downregulated in response to herring diet. Besides
identification of a key reporter GO terms it is also seen that most genes in the biosynthetic pathway towards sterols and fatty acids are
downregulated. B. The downregulation (panel A) is further supported by the identification of several reporter metabolites of the cholesterol and fatty
acid biosynthesis. C. Measurements of cholesterol and triacylglyceride in the plasma. It is seen that the levels of both are down in the mice fed with
the herring diet, and this effect is seen both after 8 and 16 weeks of feeding. D. For all downregulated genes identified in the reporter GO terms
(panel A) there was searched for enrichment of transcription factors and microRNAs. The heat map shows identified transcription factors and
microRNAs and their co-occurrence matrix. It is observed that most regulatory effects are due to a single factor. For some of the identified
transcription factors the corresponding consensus binding sites were identified, and this resulted in identification of consensus binding sites for Srebf
(Srebp), Hnf4, Pparg and Ppara. The Ppar systems are important lipid-activated nuclear receptors involved in lipid and glucose metabolism; Pparg is an
important transcription factor in adipocytes and Ppara in hepatocytes. Hnf4a is an important regulator of coordinated nuclear receptor-mediated
response to xenobiotics through interaction with Cars/Pxr and through Hnf1 it activates the expression of a large number of liver-specific genes,
including those involved in glucose, cholesterol, and fatty acid metabolism. The most frequent binding site for microRNAs is the site mmu.miR.103
which implies its contribution to transcriptional inhibition of hepatic lipid synthesis (see Text S1and Figure S7).
doi:10.1371/journal.pone.0012361.g003
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related proteins that both have paracrine metabolic functions but also

can contribute to the elevated plasma levels of acute-phase proteins

associated with the metabolic syndrome [17]. However, members of

this GO class belong predominantly to the defensin family, which are

evolutionary conserved small antimicrobial peptides. In Drosophila,

defensins are synthesized in the fat body and regulated by the Toll

pathway [18]. The role of Toll-like receptors signaling in atheroscle-

rosis [19] and type 2 diabetes [20] is gaining interest since these

receptors appear to be a link between nutritional and inflammatory

responses [21]. Similar as in liver, biosynthesis of cholesterol

(GO:0006695) was lower in WAT from the herring-fed mice, and

this could be related to the observed reduced adipocyte size in the

herring-fed animals, since larger adipocytes require more cholesterol

for the triacylglyceride droplet [22].

Liver
The biological processes that were affected by the diet in liver

were predominantly related to lipid or sterol metabolism and were

downregulated in mice fed herring diet relative to the beef diet

(Figure 3A). These biological processes include genes encoding

protein involved in elongation/desaturation of fatty acids and sterol

biosynthesis. This was also reflected from the integrated analysis of

transcriptome data using the GSMM or the Reactome processes,

where the vast majority of identified metabolites identified were

related to biosynthesis of n-6 PUFAs and to a lesser extent n-3

PUFAs (Figure 3B). There was an overrepresentation of response

elements of several TFs that are known regulators of lipid/sterol

metabolic pathways, as well as microRNA targets, especially the

mmu-miR-103 family is found to play a prominent role (Figure 3D,

see Text S1 for more details). We also found an increased hepatic

expression of Cyp7a1 as a consequence of the herring diet. This gene

encodes the key enzyme for bile acid biosynthesis, and this could be

a partial explanation to the lower total cholesterol levels in herring-

fed mice (Figure 3C).

Muscle
There were some unexpected effects of the diet in skeletal

muscle (Figure 4). The herring-fed mice appeared to have lower

Figure 4. Mapping of metabolic activities in the muscle (green and red indicate down- and upregulated based on herring diet,
respectively). A. Reporter GO terms resulted in the identification of several key processes involved in protein biosynthesis and protein degradation,
and genes associated with these processes are downregulated in response to the herring diet. This points a reduced protein turn-over in response to
a herring diet. B. Reporter GO terms also show that there is downregulation of genes associated with oxidative stress and muscle contraction in
response to a herring diet. This indicates more efficient energy utilization, and the reduced oxidative stress may cause reduced protein misfolding
and hence reduced protein turn-over. C. Identification of reporter Reactome processes points to the same overall function and allows for
identification of even more specific processes affected by the diet, e.g. start site recognition and binding of activated tRNAs to the ribosome.
doi:10.1371/journal.pone.0012361.g004
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protein turnover in skeletal muscle (Figure 4A). This was reflected

in lower protein synthesis (indicated by GO-terms associated with

ribosomes and translational processes), lower protein degradation

(indicated by the GO-terms related with protein catabolic process

by ubiquitination). This was in agreement with the Reactome

processes analysis that showed that protein synthesis as well as

degradation was downregulated (Figure 4C). There was also a

reduced expression of genes related muscle contraction and

oxidative phosphorylation in the herring-fed mice (Figure 4B).

Gene co-expression modules
Concerted dietary effects in all three tissues were identified using

the approach of Zhang et al. [23] and the results are summarized

in Figure 5. One significant gene co-expression module was

identified (blue module). In this module, the strongest connected

functional groups were G-protein coupled receptor (GPCR) signal

transduction and calcium signaling via phospholipase C (PLC)

(light green symbols; Figure 5). PLC catalyzes a reaction resulting

in the formation of two second messengers; inositol 1,4,

5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 mobilizes

intracellularly stored calcium while DAG activates protein kinase

C isoforms which are involved in regulatory functions. Taste and

opioid receptors are GPCRs, whereas activation of the NMDA

receptor triggers intracellular calcium signaling events, involving

IP3, DAG and calmodulin. Fewer connections were found in

mTOR signaling pathway (dark green) and regulation of cell

morphogenesis (dark blue).

Discussion

The herring-fed mice had lower requirement for de novo

synthesis of PUFAs as the diet contained a surplus of these fatty

acids, but surprisingly there was a decreased expression of genes

involved in cholesterol and steroid biosynthesis as well (Figure 3D).

Our data show that despite the comparable cholesterol content in

the two diets, the herring-fed mice had lower plasma levels of total

cholesterol, which is consistent with the downregulation of sterol

biosynthesis (Figure 3C and Table S2). However, this group of

Figure 5. Connectivity (topological overlap) matrix for the most differentially expressed genes by the diets in the three tissues.
Based on a two-way ANNOVA, 881 genes were identified to be significantly responding to changes in diet, and these genes were used for the
analysis. The rows and columns of the half lower heatmap represent genes in a symmetric fashion. The connectivity strengths were signified by the
color intensity, red representing the strongest connection and light yellow representing no connection. The blue color bar delineates the highest
interconnected genes module. Within the rectangular frame, the functional terms that show significant enrichment within the blue module is
depicted. The colors of the circles indicate the same functional module.
doi:10.1371/journal.pone.0012361.g005
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proteins is known to be transcriptionally regulated by the sterol

regulatory element-binding factor-2 (Srebf2), which is activated by

cleavage from the endoplasmic reticulum (ER) membrane when

the membrane cholesterol levels are decreased [24]. Increased

levels of PUFAs in the ER membrane may affect cholesterol

retention in this membrane and that could lead to reduced

activation of Srebf2. It is, also possible that the effects of dietary

LC n-3 PUFAs on Srebf2 and cholesterol biosynthesis are

mediated by Ppara as previously shown in wild-type and

Ppara2/2 mice [24].

Our findings of increased cholesterol clearance through bile

acid biosynthesis adds further explains why circulating cholesterol

levels were reduced after herring-diet despite similar cholesterol

content in the two diets. Other studies using this mouse model also

found that the plasma cholesterol levels depends on the lipid

composition in the diet [11,25]. The molecular mechanisms for

LC n-3 PUFAs effects on lipid homeostasis and atherosclerosis in

these mice have been suggested to involve reduced vascular

inflammatory response [25] or an impaired clearance of

circulating lipoproteins [26]. Decreased plasma VLDL levels was

associated with reduced atherosclerosis in the Ldlr2/2 mouse

[27], which would support the latter hypothesis. Our data suggest

differential effects of diet on hepatic lipid metabolism namely

downregulation of cholesterol biosynthesis in herring-fed mice and

an enrichment of chylomicrons in livers from the beef-fed mice,

reflecting a disturbed clearance of circulating lipoprotein particles

in mice fed a beef-based diet. We hypothesize that dietary herring

ameliorates hepatic lipid handling, resulting in improved blood

lipid profile and consequently less plaque formation.

Our findings in the skeletal muscle are consistent with a study

where rats fed fish oil resulted in reduced protein turnover in this

tissue [28]. Furthermore, changes in the fatty acid composition of

skeletal and cardiac muscles, caused by fish oil consumption,

affected physical properties of the cell membranes and subse-

quently muscle function in a rat model [29,30]. Our analysis

showed that there was lower expression of genes related to muscle

contraction and oxidative phosphorylation in herring-fed mice

compared to those fed beef (Figure 4B). Reduced oxidative

phosphorylation could imply lower mitochondria content and

thereby dietary effects on skeletal muscle with a switch from type I

to type II fibers in the herring-fed mice. It would also explain the

reduction in contractility which is more a feature of slow-twitch

type I fibers. The enrichment analysis of regulatory motifs revealed

overrepresentation of Nrf1 and Mef2 regulatory elements (see Text

S1 and Figure S8) which also supports a switch in fiber type [31].

However, in this context it is of interest to note that in migrating

birds, dietary LC n-3 PUFAs increase the oxidative capacity of

muscle to a similar extent as endurance training [32]. In rats and

humans, an increased LC n-3 PUFAs content of the cell

membranes was shown to improve the efficiency of oxidative

phosphorylation, resulting in improved energy production in

skeletal muscle [29,30]. Consequently, we hypothesize that a

herring-based diet leads to suppression of protein turnover and

hereby reduces atrophy resulting in increased muscle mass. In

addition, there was a border-line significance showing increased

lean body mass in the herring-fed mice compared to the beef-fed

mice (p-value = 0.05). Our findings are also consistent with clinical

studies showing that supplementation of LC n-3 PUFAs resulted in

better preservation of body mass in cancer patients [33,34]. Thus,

our results point to a functional explanation of these gross

observations.

Analysis of concerted dietary effects across the three tissues

revealed a common theme, namely calcium handling. The effects

on skeletal muscle protein turnover could be related to this finding

since dysregulation of intracellular calcium levels is considered to

be a major cause of ER stress leading to unfolded protein response

[35]. In skeletal muscle, it has been suggested that dietary fish oil

conserves muscle-cell energy metabolism via maintaining sarco-

plasmic calcium homeostasis [36]. Changes in cell morphogenesis

suggest dietary effects on tissue remodeling. In line with this,

mTOR is a nutrient/ATP sensor that regulates pathways

controlling ribosome biogenesis and cell growth [37]. In particular,

in skeletal muscle mTOR activates phosphatidylinositol 3-kinase

and intracellular calcium-related events affecting cell growth,

differentiation and survival [38]. These findings could be relevant

to reduced plaque formation in mice fed herring since altered

sarcoplasmic reticulum calcium handling in vascular smooth

muscle cells has suggested to precede the development of

atherosclerotic lesions in mice [39].

In conclusion, our integrated analysis of the effect of diet on

metabolic function in different tissues shows some very clear effects

that have implications for disease development. We propose a

mechanistic explanation for the lowered plasma cholesterol levels

in response to herring diet, and we further find that a herring diet

had a positive effect on protein handling, which could be caused

by lower ER stress resulting in less protein misfolding and hence

reduced protein turnover. The integrated analysis of transcriptome

data using metabolic networks resulted in the identification of

signature pathways/processes that could not have been found by

standard clustering technique. The core of our concept is to

extrapolate differences in the signature pathways/processes,

linking them together and combining this with analysis of

concerted effects in different tissues to identify mechanisms behind

common complex disorders and the effects of diet.

Materials and Methods

Animal experiments
The study was approved by the local Animal Ethics Committee at

University of Gothenburg, Gothenburg, Sweden. Ldlr2/2 mice

were chosen for this study (Text S1). Seven-week old Ldlr2/2

male mice (JAX stock no 002207) were obtained from Charles River

Laboratories (Sulzfeld, Germany). The mice were allowed to

acclimatize to the conditions in our animal facility (constant

humidity, temperature and 12 h dark/light cycle) for one week

before start of the experiment. The mice were given high fat/high

sucrose supplemented with either minced herring fillets (Clupea

harengus) or minced beef (14 mice per diet group). The total fat and

cholesterol contents of the two diets were matched (Table S1). The

animals were kept on the diets for 16 weeks and body weights were

recorded weekly. At week 8, tail vein blood samples were taken and

analyzed for plasma content of triglycerides and total cholesterol

levels by enzymatically assay with Konelab autoanalyzer version 2.0

(Vantaa, Finland). At week 15, anesthetized (Isofluran, Baxter,

Deerfield, IL, USA) mice were scanned by Lunar PIXImus

densitometer (Lunar Corp, Madison, WI, USA) to analyze body

composition [40]. The mice were killed by overdose of sodium

pentobarbital at week 16. The aortas were dissected out, prepared

and analyzed by en face histology [41]. Liver, skeletal muscle

(gastrocnemoius) and epididymal white adipose tissue (WAT) were

frozen in liquid nitrogen. Statistical analysis of phenotypes was

performed by the SPSS software version 16.0, using the Mann-

Whitney U-test. A p-value less than 0.05 was considered statistically

significant.

Transcriptome experiment
Total RNA from liver, skeletal muscle and adipose tissue was

isolated from selected three mice from each group using the

Identifying Effects of Herring
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RNeasy Lipid Tissue Mini kit (liver and WATs; Qiagen, Hilden,

Germany) or the RNeasy Mini kit (skeletal muscle; Qiagen),

following the manufacturers instruction. 1 mg of total RNA was

processed and hybridized on Affymetrix MoGene 1.0 ST

(Affymetrix, Santa Clara, CA, USA.) arrays according to the

Affymetrix GeneChip Expression Analysis Technical Manual

(Affymetrix, Santa Clara, CA, USA.). cDNA was quantified in a

spectrophotometer and its quality was evaluated using an Agilent

2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany)

using RNA 6000 Nano LabChip kits (Agilent Technologies). A

GeneChip Fluidics Station FS-400 and a GeneChip Scanner 3000

7G were used for hybridization and scanning, respectively. The

scanned images (.DAT files) were converted into.CEL files by

using the Command console software (Affymetrix). The CEL files

were used for further data analysis.

Analysis of transcriptome data
The CEL-files from all three tissues (18 files) were normalized

together to allow for comparison of all expression values. The

expression signals were processed by the method of Probe

Logarithmic Intensity Error (PLIER) with quantile normalization

[42]. Perfect mach probe only (PM-only) was used to calculate the

noise and detection limits. All the transcriptome data are available

at following statistical analysis using Student’s t-test and two-way

analysis of variance, with correction for multiple testing. In

parallel, a Singular Value Decomposition (SVD) and a standard

clustering analysis were employed to identify gross patterns of the

transcriptome. All analysis were performed using R suite and

Bioconductor packages. See more details in Text S1. All the

transcriptome data are available at Gene Expression Omnibus

(GEO) under accession number GSE22532.

Integrated analysis
The statistical values were mapped and the reporter algorithm [4]

was applied using three different types of biological networks

derived from Gene Ontologies (GO) [43], a genome-scale metabolic

model (GSMM) of Mus musculus [15] and biological evidences from

the Reactome database [16], for extraction of biological responses

according to influence of different diets on each specific tissue. The

multiway comparison of selected significant features from previous

integrated analysis were performed and visualized as heat maps of

the X-score (normalized accumulative expression values). The

regulation analysis was performed on the bioinformatics predictions

of TF binding sites and microRNA targets. The statistical values of

binding site/target enrichment of each TF/microRNA were

calculated by the Fisher’s exact test. The pair wise co-occurrence

of selected binding sites/targets were presented as a half heat map

plot. The influence of diet on multi-tissue fashion were performed

over the differentially expressed genes (based on the Q-value of the

diet factor derived from 2-way ANOVA) by gene co-expression

network module analysis [23]. The strongly connected genes in the

co-expression module were further evaluated their related functions

by modular enrichment analysis [44]. All analysis were performed

using R suite and Cytoscape software [45]. See more details in Text

S1 and Figure S5.

Supporting Information

Text S1 Supplementary data

Found at: doi:10.1371/journal.pone.0012361.s001 (0.56 MB

DOC)

Text S2 Supplementary file

Found at: doi:10.1371/journal.pone.0012361.s002 (2.25 MB

PDF)

Figure S1 Primary analysis of the transcriptome data. (A) Bar

plot of eigen values of each eigen component that is indicative of

the relative variance capture capability of each eigen component.

(B) Heat map plot of loading scores of each eigen component. (C)

Unsupervised hierarchical clustering of the group of significant

genes (Q-value ,0.05). Column row colors: red - WAT, beef diet;

orange - WAT, herring diet; blue - liver, beef diet; cyan - liver,

herring diet; green - muscle, beef diet; light green - muscle, herring

diet.

Found at: doi:10.1371/journal.pone.0012361.s003 (7.71 MB TIF)

Figure S2 Boxplot of negative logarithm of Q-value derived

from A) 2-way ANOVA of tissue, diet and interaction factor,

B)from student t-test of transcripts in each of the three tissues.

Found at: doi:10.1371/journal.pone.0012361.s004 (0.90 MB TIF)

Figure S3 Multiways heatmap of the X-scores for the different

GOs in the three different tissues. The GOs were selected based on

reporter p-values ,0.001. Column row colors represent tissue by

orange, blue and green refer to WAT, liver and muscle,

respectively. (A) Biological process, (B) Cellular compartment,

(C) Molecular function. The number of genes participated in each

GO term are given in Supplementary file.

Found at: doi:10.1371/journal.pone.0012361.s005 (2.51 MB

TIF)

Figure S4 Multiway heatmap of GOs in response to diet in

different tissues. GOs were selected based on reporter p-values

,0.001. Column row colors: red - WAT, beef diet; orange - WAT,

herring diet; blue - liver, beef diet; cyan - liver, herring diet; green -

muscle, beef diet; light green - muscle, herring diet. (A) Cellular

compartment, (B) Molecular function. The number of genes

participated in each GO term are given in Supplementary file.

Found at: doi:10.1371/journal.pone.0012361.s006 (2.16 MB TIF)

Figure S5 The heat map of topological overlap matrix and its

connectivity clustering. The colour intensity signifies the connec-

tion strength between two genes, with red representing the

strongest connection and light yellow representing no connection.

The side colors represent the indentified modules.

Found at: doi:10.1371/journal.pone.0012361.s007 (0.57 MB TIF)

Figure S6 Circular mapping plot of Q-values (more details in

legend of Figure 2 in the main text)

Found at: doi:10.1371/journal.pone.0012361.s008 (0.93 MB

TIF)

Figure S7 Cumulative distribution of changes for transcripts

containing binding target of microRNA mmu-miR-103 and mmu-

miR-107 (green line) compared to transcripts without the binding

target (black line). The log2 fold changes were calculated by the

ratio of the average transcriptional values of herring-fed mice to

beef-fed mice. The p-value is calculated between ‘contain site’

group and ‘no site’ group by one-side Kolmogorov-Smirnov(KS)

test

Found at: doi:10.1371/journal.pone.0012361.s009 (0.74 MB

TIF)

Figure S8 Co-occurrence matrix heatmap of overepresented

transcript factors and regulatory microRNAs and the response

elements of Egr1, Elk1, Nrf1 and Foxn1. In this analysis, there

were no significant overepresented microRNA.

Found at: doi:10.1371/journal.pone.0012361.s010 (1.01 MB TIF)

Table S1 Macronutrient and fatty acid composition of diets.

Data for the fatty acids are shown as mean 6 SD, n = 3.

Macronutrient contents were calculated from public available food

composition data at the National Food Institute, Technical
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University of Denmark (http://www.foodcomp.dk/v7/fcdb_

default.asp).

Found at: doi:10.1371/journal.pone.0012361.s011 (0.13 MB

PDF)

Table S2 Physiological characteristics of all mice and those

selected for microarray analysis. Data are shown as mean 6 SD.

Significant difference according to the Mann-Whitney U-test is

shown as * (p-value ,0.05)

Found at: doi:10.1371/journal.pone.0012361.s012 (0.17 MB

PDF)
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