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ABSTRACT

Belief propagation (BP) is a technique for distributed inference
in wireless networks and is often used even when the underlying
graphical model contains cycles. In this paper, we propose a uni-
formly reweighted BP scheme that reduces the impact of cycles by
weighting messages by a constant “edge appearance probability”
p < 1. We apply this algorithm to distributed binary hypothesis test-
ing problems (e.g., distributed detection) in wireless networks with
Markov random field models. We demonstrate that in the considered
setting the proposed method outperforms standard BP, while main-
taining similar complexity. We then show that the optimal p can be
approximated as a simple function of the average node degree, and
can hence be computed in a distributed fashion through a consensus
algorithm.

1. INTRODUCTION

Many problems in wireless networks, such as classification or detec-
tion, can be formulated as distributed hypothesis tests, where multi-
ple nodes have to choose among a set of possible alternatives based
on certain observable data. Applications include sensor networks
[1], surveillance systems [2], spectrum sensing in cognitive radio
networks [3].

Such hypothesis testing problems can be addressed by a Bayesian
inference approach and thus mapped on probabilistic graphical mod-
els that help devise distributed solutions. We focus here on the case
of “heterogeneous” hypotheses, i.e., when to each node corresponds
a different state variable to be estimated.! Markov random fields
(MRF) are a typical graphical model used to represent the struc-
ture of this class of problems, establishing a one-to-one connection
between nodes and variables, and accounting for (pairwise) corre-
lations between neighboring nodes. Once the communication graph
is mapped onto a statistical graph, distributed inference can be per-
formed. The usual tool adopted for distributed inference on MRF
models is belief propagation (BP) [4], in its sum-product or max-
product variants. It is well known that if the MRF contain cycles, BP
does not converge to the exact solution, but often yields reasonable
approximations. Algorithms for exact inference on loopy graphs
(e.g., generalized BP [5]) are much more complex than standard BP
and not suitable for a distributed implementation.
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1Other models assume, on the contrary, the same underlying hypothesis
for all network nodes. These are referred to as “consensus problems”.

In this paper, we address the problem of distributed hypothesis
testing in networks with loops by applying a simplified version of
the tree-reweighted (TRW)-BP algorithm, introduced by Wainwright
et al. in [6, 7]. We show that the proposed algorithm provides an
improved approximation of marginal a posteriori probabilities com-
pared to loopy belief propagation (LBP), while maintaining (in the
proposed simplified version) essentially the same complexity. The
same approach can be adopted to address problems involving con-
tinuous domain variables (e.g., cooperative localization: see [10]).

The paper is organized as follows: the mathematical model is
defined in Sec. 2; in Sec. 3 we introduce BP and its variations, and
we discuss the problem of optimizing the edge appearance probabil-
ity; Sec. 4 contains simulation results to validate the proposed BP
algorithm; Sec. 5 concludes.

2. MATHEMATICAL MODEL

Consider a wireless network composed of K nodes. Each node is
characterized by a state h;, taking values in some discrete set of pos-
sible events, and collects some observation, expressed in general by
vector y; which depends on the underlying state through a likelihood
function

@i(hi) = p(yilhi). M
We denote by h £ [h1,...,hx]andby Y 2 [y1,...,yx] the set
of all nodes’ states and observations, respectively. For simplicity, we
focus here on the case of binary hypothesis, i.e., h; € {0, 1}, which
is of particular interest for the problem of signal detection. We also
assume that each node knows its own observation likelihood func-
tions for both states, ¢;(0) and ¢; (1) (in case of detection problems,
e.g., [3], these functions depend on the relative powers of the noise
and of the signal under test). Inter-dependencies among nodes in the
network are modeled by a pairwise MRF, i.e., the state of each node
depends on the states of its neighbors (i.e., devices within communi-
cation range) through pairwise correlation terms. As such, the joint
a priori distribution of vector h is given by

ph) =11 TI wuhihy), @

i=1jEN;,j<i

where N; is the set of neighbors of i, and condition j < ¢ simply
avoids double-counting the same term. Functions ;; are specific
to the problem of interest and may depend on the distance between
node ¢ and j. In Sec. 4 we consider exponential MRFs, which are
one of the most typical and widely adopted MRF models. Assum-
ing that communication and statistical graph can be mapped to each
other, a natural graphical representation of the above MRF models is
an undirected graph G = (V, E) where vertices represent network



nodes and each pair of neighboring nodes (i, 5) is linked by an edge
with weight given by ;.

Solving the multiple hypothesis testing problem means esti-
mating, in a distributed way, the marginal a posteriori probabilities
(APP) of variables h;,

p(hlY) =Y p(h|Y). ©)

h\h;
Based on Bayes rule, the joint APP is

K

p(h|Y) ccp(Y|h)p(h) =] |e:i(hi) ] sk hy)],

i=1 JEN;,i<i
(4)

where conditional mutual independence of different nodes’ observa-
tions is assumed. In the next section we introduce BP and modified
BP algorithms to approximate the marginals (3).

3. BP AND REWEIGHTED BP

3.1. Loopy BP

According to traditional BP [4], each node iteratively exchanges
with its neighbors messages of the form

piss(hy) oY | @ilhi)vii(hishy) [ mni(ha) | (5)

hi neN;\j

with initialization p;—; = 1V(i, 7). Beliefs are updated as

i) IT pnsi(h) (6)

neN;

bi(hs) o pi(h

normalized such that b;(0) 4 b;(1) = 1. If G is a tree, after a suf-
ficient number of iterations belief b; converges to the corresponding
marginal APP (3). However, when G has cycles, BP may provide
poor performance or even fail to converge [8].

3.2. Tree-reweighted BP

Tree-reweighted BP is a generalization of BP introduced in [6, 7].
While ordinary BP corresponds to finding a stationary point in the
variational problem associated to Bethe’s free energy approxima-
tion, TRW-BP is build on an improved upper bound of the log-
partition function consisting of a convex combination of spanning
trees>. From this idea, a local message passing algorithm analogous
to BP is derived. Still it does not provably converge to the exact
marginal APP, but in certain cases it provides a much better approx-
imation than ordinary BP. The TRW-BP algorithm is defined by the
following update rules:

in i (hi
pimsi(hy) o<y (cpz(hz)wl/p”(h“h )H"Ef{ \;L’;‘" ‘ ( )>
hi i (hi)
7
bi(hi) o< @i(ha) T wim (h ®)

neN;

where coefficients p;; are called edge appearance probabilities. The
vector of all edge appearance probabilities is denoted by p and has

2For a definition of Bethe’s free energy, log partition-function, and span-
ning tree, we refer the reader to [7].

length | E|. According to [7], valid choices of p must belong to the
spanning tree polytope: given a distribution p(7") over the possible
spanning trees T(G) of G, p;; is given by

pis =y p(T)nr(i,j), ©)

TET(G)

where nr (i, j) is 1 if edge (i, ) € T, 0 otherwise.

Notice that configuration p = 1 amounts to ordinary BP, and
based on the above condition is valid only if G is itself a tree. In
general, convexity properties of the TRW-BP formulation guaran-
tee that an optimal choice of p (that minimizes the tree-based upper
bound of the log-partition function) always exists, and can be found
by solving a convex optimization problem over T(G), e.g., using the
gradient descent algorithm proposed in [7].

Unfortunately, a direct application of TRW-BP to our distributed
problem is not feasible, as it involves computation of all possible
spanning trees, and iterative optimization to find the best p. Im-
plementing these tasks in a distributed fashion would be prohibitive
due to the huge amount of information to be passed throughout the
network.

3.3. Uniformly-reweighted BP

We propose a simplified version of reweighted BP, which we call
uniformly-reweighted (URW)-BP. It has the same structure as TRW-
BP, but we assign a constant appearance probability to all edges:

pij =p V(i,j) € E, with0<p<1. (10)
In doing so, we relax the tree-consistency requirement and reduce
the degrees of freedom from |E| to 1. Yet, this simplified reweight-
ing scheme turns out to outperform BP in graphs with cycles. No-
tice that in graphs satisfying certain symmetry conditions (e.g., [7],
example 3), uniform edge appearance probabilities are an optimal
choice.

3.4. Optimizing the Edge Appearance Probability

The main question for applying URW-BP in practice is how to set p.
Since p = 1 corresponds to standard BP, intuitively we expect that if
the network has a low degree of connectivity (hence few loops) the
optimal value of p will be around 1; on the other hand, we expect
lower values of p to perform better as connectivity increases.

To give insight into the dynamics of the algorithm, let us inspect
the message update rule (7). Denote by dj, the degree of vertex k,
i.e., the number of nodes connected to vertex k. Then, a generic mes-
sage /1i—; includes d; — 1 messages from nodes at 1-hop distance,
weighted by p. Each of them (say pn—i) in turn includes d,, —
messages coming from nodes at 2-hop distance from i, resulting in
weight p?, and so on. Therefore, if p < 1, the algorithm tends to
reduce the weight of messages coming from nodes that are not in di-
rect proximity, which is beneficial because (due to loops) these nodes
might have been already reached through different paths. When
the average degree d increases, incoming messages from nodes at
a given distance are more and more likely to be double-counted. For
this reason, we expect the optimal value of p to decrease with the
average node degree.

Some more precise results can be given in case of symmetric
graphs (i.e., where functions ;, 1;; exhibit symmetry). In this
case, as mentioned in Sec. 3.3 a uniform edge appearance proba-
bility is optimal in the sense of TRW-BP, and the best p (denoted as

p™) can be approximated as p* = |‘|/51 (see [7, Sec. V-DJ]). This
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Fig. 1. First row: Average KLD vs. p for a simple network of K = 4 nodes, different communication ranges (R/L) from 0.25 to 1. Second row: Avg./Max.

KLD vs. connectivity range (R/L) using LBP and URW-BP with p = p*.

can be related to the average node degree d as follows. For a general
graph with |V| vertices and | E| edges, every edge must connect two
vertices, so that a simple counting argument yields d = 2|E|/|V|.
Substitution gives

P~ 2/d. (11)
As shown in Sec. 4.3, the above choice of p turns out to be very accu-
rate in the considered MRF models, in spite of the fact that symmetry
conditions are not strictly satisfied. For this reason, (11) can be used
to set p when applying URW-BP in practice to address distributed
problems in wireless networks. Note that the value of d, and there-
fore of p*, can be computed by running a simple average consensus
algorithm [9] over the network.

4. CASE STUDY

4.1. Scenarios and Evaluation Metrics

As a reference scenario, we consider K nodes randomly deployed
in a circular region with diameter L, with random observation like-
lihood functions ¢; (0) ~ U(0, 1), pi(1) = 1 — ¢;(0), and pairwise
interactions modeled as an exponential MRF:

Wiy (i, hy) o X (hishs) (12)

where 0(hi,h;) = 1if hy = h; and 0 otherwise. This model,
that is a Gibbs distribution which can be derived from the maximum
entropy principle, captures the structure of many practical problems
where neighboring nodes are likely to have the same underlying state
(e.g., [3]). The correlation strength is given by factors A;;. For gen-
erality, we consider two possible models:

(1) Distance-based model: \;; = D;j”, where D;; is the dis-
tance (normalized by L/2) between nodes ¢ and j, and «y is a
decay exponent;

(ii) Random correlation model: Aij ~ U(Amin, Amax)-

In both cases, we assume that \;; = 0 when nodes 4 and j are at a
distance greater than 12 (communication range).

Denoting by b; the belief of node ¢ computed through LBP or
URW-BP after a number of iterations sufficient to reach conver-
gence, we use as a performance evaluation metric the Kullback-
Leibler divergence (KLD) between true APP and belief, defined as

KLD; = > bi(hi)logM

. (13)
L= p(hilY)

4.2. Results for K =4

Algorithms are first evaluated in a small network of 4 nodes, with
four possible levels of connectivity, i.e., R/L = {0.25,0.5,0.75,1}.
For each value of connectivity a simulation set of 100 Monte Carlo
runs is carried out. At every run a new topology is generated, with
random positions of the nodes and different coefficients \;;, drawn
(a) according to a distance-based model, with v = 1, or (b) accord-
ing to a random model with Amin = 0.2, Amax = 1, or (c) with
Amin = 0.2, Amax = 4. For all BP methods, message passing is
stopped after 6 iterations, which are enough to reach convergence’
of all beliefs in a network of 4 nodes. For each of the above cases,

3Cases of non-convergence were never encountered in simulations.
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average and maximum KLD over K nodes are computed for LBP
and URW-BP for p € (0, 1] (with a step of 0.05).

Fig. 1 shows that for low values of connectivity range (e.g.,
R/L = 0.25), the best p remains close to 1, which indicates that
reweighted BP does not provide significant improvement over LBP.
When the connectivity range increases, i.e., more loops appear, we
observe that: (i) p* progressively decreases; (ii) the improvement
brought by URW-BP(p*) over LBP increases (see Fig. 1, second
row); (iii) there is a wide range of values of p such that URW-BP(p)
outperforms LBP.

Comparing results obtained under different correlation models,
namely (a), (b) and (c), we notice that when the values of A are very
low (e.g., case b), the curve of KLD vs. p appears flat, with values
of KLD close to 0 for all p > 0.5. In this case, in fact, the impact
of loops is negligible, therefore LBP already provides good perfor-
mance and no further optimization is really needed. On the other
hand, especially from comparison of scenario (a) and (c), values of
p* vs. R do not change significantly for different correlation models.
This fact suggests that it is possible to infer p* just from the network
topology or more precisely, as we will see in next section, from the
average degree (d).

4.3. Results for Larger Networks and Optimization of p

Results of extensive simulations performed in networks with larger
numbers of nodes turn out to be similar to those observed in the
example of K = 4. The curve of KLD vs p is in all cases exhibits a
unique minimum in (0, 1), with values moving from 1 towards 0 as
the communication range increases. In addition, simulation results
confirm the intuition that p* is determined essentially by the average
number of neighbors of each node, i.e., by the average degree d,
rather than by the total number of nodes /K, or the connectivity range
R, or the values of correlations \;;.

The plot in Fig. 2, for instance, is obtained by merging results
from several simulations, considering 100 Monte Carlo runs for ev-
ery value of K from 4 to 15, and normalized communication ranges
from 0.25 to 1, all with correlation coefficients modeled according
to scenario (a). Single curves (K = 5,8, 11, 14) are also plotted as
examples. With any pair (K, R/L) corresponds a certain average

degree, d, and the value of p* is then plotted as a function of d. Sim-
ulation data are then compared to theoretical expression (11) found
for symmetric graphs.

Results indicate that the above expression of p* vs. d becomes
increasingly accurate as d — oo, and, in practice, it can be consid-
ered a good approximation for d > 3. Note that a correct choice
of p* is needed especially when d is large, that is where the gap be-
tween URW-BP and LBP increases. In summary, URW-BP with
p set according to (11) turns out to provide a significant perfor-
mance improvement over LBP in all considered scenarios. More-
over, URW-BP avoids complex optimization procedures as in TRW-
BP (Sec. 3.2) thus keeping complexity low, as in standard BP.

5. CONCLUSIONS

In this paper we have shown that a simple variation of BP, where
all messages are weighted by a constant factor p, leads to substantial
performance improvement in distributed inference problems in wire-
less networks. We studied in detail the case of binary hypothesis
testing (applicable, for instance, to distributed detection problems)
assuming an underlying Markov random field model.

The proposed method outperforms standard BP for a wide range
of p, especially when variables’ interactions are high. In addition,
we showed that the optimal p can be well approximated by a simple
function of the average node degree and computed in a distributed
way by a consensus algorithm. Therefore, URW-BP does not result
in a significant increase of complexity compared to traditional BP.
This property makes it suitable for application in a variety of practi-
cal problems.
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