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Abstract—Cooperative positioning is suitable for applications
where conventional non-cooperative positioning fails due to lack
of connectivity with a sufficient number of reference nodes. In a
dense network, as the number of cooperating devices increases,
the number of packet exchanges also increases proportionally.
This causes network congestion and increases packet collisions.
In order to maintain the quality of positioning, we need to reduce
the packet loss probability due to collisions. This can achieved by
reducing the broadcast of unnecessary information. We show that
by intelligently suppressing the transmission of selected nodes,
the overall network traffic can be reduced without degrading the
positioning performance significantly.

I. INTRODUCTION

Wireless positioning has been providing location-based ser-
vices in many applications, such as navigation [1], emer-
gency rescue operations [2], sensor networks [3], health care
monitoring [4], vehicular communications [5], etc. Different
positioning techniques are currently available, among them
the performance of range-based positioning depends on the
distance estimation accuracy and coverage by reference nodes.
Conventional range-based positioning may fail in some appli-
cations, such as indoor positioning, due to the lack of connec-
tivity with a sufficient number of reference nodes. In these
cases, cooperative positioning can improve the positioning
performance by exchanging positional information between
devices [3], [6].
Although cooperative positioning can provide improved po-

sitioning performance in GPS challenged conditions, it suffers
from increased network traffic, as all of the cooperating de-
vices repeatedly broadcast packets containing their positional
information. If some packets are lost due to collisions, the
overall positioning performance will also be degraded [7], [8].
By reducing unnecessary packet broadcasts over the network,
the packet collision probability can be reduced. In our previous
work [9] on non-Bayesian positioning, we showed that by
blocking the broadcasts of the nodes that do not have reliable
estimates, network traffic can be reduced without degrading
positioning performance. While network traffic reduction and
collision avoidance are traditionally higher layer issues [10],
[11], our work in [9] operates across the physical layer and
the medium access layer. In this paper, we extend our previous
work by developing a network traffic reduction method for
Bayesian positioning algorithms. We show that by blocking
the broadcast of selected nodes for which all neighbors have

satisfactory positional information, a significant reduction in
network traffic can be obtained.
The remainder of this paper is arranged as follows. In Sec-

tion II, we describe our model and assumptions. In Section III,
we briefly describe the Bayesian positioning algorithm from
[6]. In Section IV, our proposed method is explained. Results
from simulations are presented in Section V. In Section VI,
we draw our conclusions with possible future extensions of
this work.

II. PROBLEM FORMULATION

Let us consider a wireless network with two types of
static nodes: anchors, which know their positions, and agents,
whose positions have to be estimated. In distributed networks,
agents iteratively update their position estimates. The anchor
nodes act as reference points for positioning. In a cooperative
context, the position update phase of the agents depends on
agent-to-anchor range measurements as well as agent-to-agent
measurements.
We denote by xi the position of node i in the network

and by x̂i the corresponding estimated position. S→i is the
set of nodes from which node i can receive signals. Based
on a ranging protocol (e.g., time of arrival (TOA), time
differences of arrival (TDOA), receive signal strength (RSS)
etc.) with node j ∈ S→i, node i can estimate the distance
d̂j→i = ‖xi − xj‖ + nj→i, where nj→i is the ranging noise.
We assume nj→i ∼ N

(

0,σ2
j→i

)

[6]. The goal of node i is
to estimate its own position. Ideally, the positioning process
should require low complexity and communication overhead
per node as well as low latency.
In a dense cooperative network, the number of neighbors per

agent will be large. In this case, every user (agent) broadcasts
its positional information in every iteration, which increases
the network traffic. This makes the implementation of practical
cooperative positioning challenging.

III. SUM PRODUCT ALGORITHM OVER A WIRELESS
NETWORK (SPAWN)

Before describing SPAWN, we will introduce the basic idea
of factor graphs and the sum-product algorithm.

A. Factor Graphs
Factor graphs are a graphical representation of factorization

of a function [12], [13]. Consider a network comprising one
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Figure 1. Net factor graph and its message passing. Let ψA be a shorthand
for p(d̂A→1|x1,xA).

agent at position x1 and three anchors at positions xA, xB, xC

as shown in Figure 1. Assume that the agent has distance esti-
mates available w.r.t. the three anchors (d̂A→1, d̂B→1, d̂C→1).
Then the joint a posteriori distribution is given by

p
(

x1,xA,xB,xC|d̂A→1, d̂B→1, d̂C→1

)

∝ p(x1)p(xA)p(xB)p(xC)p(d̂A→1|x1,xA)

×p(d̂C→1|x1,xC)p(d̂C→1|x1,xC). (1)

The factor graph corresponding to this distribution is shown
in the same figure. This factor graph contains variable vertices
(one for every variable) and factor vertices (one for every
factor). Edges connect a variable vertex with a factor vertex
when the corresponding variable appears as an argument in
the corresponding factor.

B. Sum-Product Algorithm
The sum-product algorithm is a message passing algorithm

on a factor graph that is used to compute marginal distributions
of the original distribution. Messages are passed along the
edges between variable vertices and factor vertices in both
directions. We denote the message from variable vertex X
to factor vertex f by mX→f (x) and the message from factor
vertex f to variable vertex X by mf→X(x). Assume variables
X,Y, Z appear in f(·), then the message mf→X(x) is given
by

mf→X(x) =

∫

f(x, y, z)mY→f (y)mZ→f (z)dydz. (2)

Similarly, assume X appears in factors f, g, h, then the mes-
sage from mX→f (x) is given by the product of the incoming
messages:

mX→f (x) = mg→X(x) ×mh→X(x). (3)

Finally, the marginal distribution of X is given by

bX(x) ∝ mf→X(x)×mX→f (x),

where ∝ denotes equality up to a normalization constant. We
call bX(·) the belief.
For example, the message from factor p(d̂A→1|x1,xA)

(abbreviated by ψA in Figure 1) is given by

mψA→X1
(x1) =

∫

p(d̂A→1|x1,xA)mXA→ψA
(xA)dxA,

Algorithm 1 SPAWN (iteration k, agent i).

1: receive b(k)
Xj

(·) from neighbors j ∈ S→i

2: check whether the belief is converged
3: convert b(k)

Xj
(·) to a distribution over Xi using (3)

mXj→Xi

(

xi

)

∝

∫

p
(

d̂j→i |xi,xj

)

b
(k)
Xj

(

xj

)

dxj

4: compute new message using (3)

b
(k)
Xi

(

xi

)

∝ p
(

xi

)

∏

j∈S→i

mXj→Xi

(

xi

)

5: decide if block the broadcast
6: broadcast b(k)

Xi
(·) if not blocked
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Figure 2. Different typical distributions and their approximations.

while the reverse message is given by

mX1→ψA
(x1) = mψB→X1

(x1)×mψC→X1
(x1)× p(x1).

The marginal a posteriori distribution of X1 is given by

bX1
(x1) ∝ mψA→X1

(x1)×mX1→ψA
(x1)

= p(x1)×
∏

α∈{A,B,C}

∫

p(d̂α→1|x1,xα)p(xα)dxα,

which is of course the correct marginal.

C. Distributed Positioning Algorithm
We briefly describe the Sum-product algorithm over a wire-

less network (SPAWN). SPAWN maps a factor graph onto the
network topology and develops a distributed message passing
scheme [6]. For example, for the factor graph in Figure 1, we
can associate a sub-graph with every device in the network,
marked in dashed rectangles. Messages are either computed
within a sub-graph, i.e., internal to a devices, or exchanged
between sub-graphs, i.e. sent as packets between devices. This
concept naturally extends to large networks with many agents,
leading to a distributed algorithm, summarized in Algorithm
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Figure 3. Demonstration of network traffic reduction method in 3 different scenarios.

1. This algorithm is executed in parallel by every agent in the
network until the beliefs have converged.
Messages in SPAWN can be represented using non-

parametric [14] or parametric [15] representations. We will
make no a priori assumptions regarding the message repre-
sentations.

IV. PROPOSED METHOD

A. Message approximation
Considering Figure 2, when an agent communicates with

one anchor, its belief has ring-shape. This type of belief is not
informative for neighbors, so we will approximate it with a
single, broad Gaussian distribution with the same covariance.
When an agent communicates with two anchors, it will lie
on the intersection of two rings. Hence, its belief can be
approximated by a mixture of two Gaussian distributions.
When an agent communicates with three or more anchors,
its belief can be approximated with a single Gaussian. While
a belief can have many other shapes, we will approximate
them in the same manner: we first determine the number of
components of the belief b(k)

Xi
(xi) of agent xi at iteration k,

denoted by N
(k)
c,i ∈ {1, 2}. For every component, we then

determine the mean and the covariance matrix. For simplicity
and robustness, we further only consider the covariance matrix
with the largest trace. Finally, we approximate all beliefs at
iteration k by a mixture of two Gaussians as

b
(k)
Xi

(·) ≈
1

2
N

(

µ
(k)
1,i ,Σ

(k)
i

)

+
1

2
N

(

µ
(k)
2,i ,Σ

(k)
i

)

, (4)

where the means are equal when N
(k)
c,i = 1.

We note that (i) this approximation is used to decide
whether to block a broadcast of an agent or not and to decide
whether the agents are converged or not, while the messages
computed and propagated in SPAWN remain unaffected; (ii)
our approximation relatively simple, but, as we will see, leads
to excellent results.

B. Description of the method
We will first demonstrate the proposed network traffic

reduction method using an example shown in Figure 3 where
agent 1 has three neighbors (agent 2, 3 and 4). Here, the

dots represent the position estimates of the agents at a certain
iteration and the circles represent the uncertainty regions
of the corresponding beliefs. In Figure 3-(a), agent 1 finds
one of its neighbors (agent 4) has unsatisfactory positional
information (i.e., a broad belief). Hence, agent 1 will broadcast
its positional information to its neighbors. On the other hand,
agent 1 will block its broadcast in Figure 3-(b), as it finds that
all of its neighbors have satisfactory positional information.
Finally, in Figure 3-(c), agent 1 itself has unreliable estimate,
so it should block its broadcast.
We will assume that an agent j will stop updating its belief

when it is well-localized, i.e., trace
(

Σ
(k−1)
j

)

< γstop and

N
(k−1)
c,j = 1 for some preset value of γstop. Every agent i will

block its broadcast at iteration k when one of the following
conditions is met:

• Condition 1: trace
(

Σ
(k)
i

)

≥ γ

• Condition 2: ∀j ∈ S→i: trace
(

Σ
(k−1)
j

)

< γstop and

N
(k−1)
c,j = 1

The first condition simply reflects the fact that the agent will
not broadcast unreliable information. The second condition
reflects that an agent should not broadcast when all its
neighbors were already well localized at the previous iteration.
Both thresholds (γstop and γ, expressed in m2) depend on the
ranging model and the performance requirements.
When all neighbors of agent i satisfy the stopping threshold

(condition 2), the broadcasts of agent i will be ignored by
all neighbors. Hence, those broadcasts are unnecessary. We
can thus develop a smart network traffic reduction scheme.
We will denote by Modified SPAWN the SPAWN algorithm
with our proposed traffic reduction method. Note that this
scheme suffers from a hidden node problem: when an agent
is not aware a neighbor is present (due to packet loss, packet
blocking, or asymmetric links), it may decide to block the
broadcast too early.

V. NUMERICAL RESULTS
A. Simulation Parameters
We have simulated random networks in a 100 m×100 m

map with 13 systematically placed anchors and 100 randomly
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Figure 4. Comparison of average number of broadcasts per agent of SPAWN
and modified SPAWN.

placed agents having 20 m communication range and 10 cm
ranging noise standard deviation to evaluate the performance
of our proposed method. In our simulation we have to set
several parameters. The stopping threshold γstop is directly
related to positioning accuracy. To achieve high accuracy we
have to allow more iterations. On the other hand if we relax
our accuracy requirements most of the agents will converge
after 5-6 iterations and the overall process will be faster. After
the first iteration of the positioning phase (non-cooperative)
very few agents (those who have connections with three or
more anchors) can achieve satisfactory position estimates (i.e.,
these agents achieve concentrated beliefs) and the others have
relatively bad estimates (i.e., those agents have broad beliefs).
The blocking threshold γ should be chosen such a way that
only the agents who are satisfied with their estimates should
broadcast their positional information. Both thresholds are
dependent on the network geometry. For the final results we set
γstop = (0.28m)2, which is on the order of the ranging noise
variance, and γ = 0.2m2 = (0.45m)2 > γstop. We observe
that changes in γ around this value do not affect positioning
accuracy or average number of transmission significantly, but
too conservative blocking (i.e., higher value of γ) causes
increased network traffic.

B. Simulation Discussion
1) Traffic analysis: The main benefit of our proposed

scheme is that it can not only block the broadcasts of unreliable
information but also unnecessary information. This signifi-
cantly reduces the overall number of packet broadcasts in the
network. The average number of broadcasts in the network
is shown in Figure 4. In this figure, an average number of
broadcasts of 0.3 means that on average 30% of the agents
in the network broadcast their positional information at that
particular iteration. In the beginning of the iterative algorithm
very few nodes have good positional information. By applying
modified SPAWN we can block the broadcast of the unreliable
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Figure 6. Positioning performance comparison of SPAWN and modified
SPAWN after 10 iterations.

nodes (i.e., Condition 1 is met), which results in a low number
of broadcasts per agent. After few iterations most of the nodes
have been well-localized and start broadcasting, then modified
SPAWN start to reduce the traffic further as more and more
agents find that all of their neighbors have concentrated beliefs
(i.e., Condition 2 is met).
2) Complexity analysis: Another benefit of modified

SPAWN is to reduce the computational complexity of message
multiplication. As the overall transmission will be less and less
as iterations progress, agents will receive information from
fewer and fewer neighbors. This helps to reduce the amount of
information to fuse, which in turn make the information fusion
faster. We can see from Figure 5 that with modified SPAWN
the average number of used links can be significantly reduced.
During simulations, we observed that modified SPAWN can
execute roughly 10.5 times faster than normal SPAWN.



3) Performance analysis: Finally, we will evaluate posi-
tioning performance of our proposed method by showing the
complementary cumulative distribution function (CCDF) of
the positioning error, i.e., the probability that the positioning
error exceeds a certain value, after 10 iterations. The CCDFs
of SPAWN and modified SPAWN are shown in Figure 6. We
observe that the CCDF of modified SPAWN almost follows the
CCDF of SPAWN. Hence, modified SPAWN can still maintain
excellent positioning performance, with less packet broadcasts,
and less complexity.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have evaluated a network traffic reduction
method for cooperative positioning in dense networks, while
still maintaining good performance. All broadcast blocking
decisions are distributed and based on positional information
of the agents. By applying our proposed scheme to SPAWN we
have found that modified SPAWN (i) can reduce the network
traffic both in the first few iterations, but also when agents
start obtaining concentrated beliefs, without any significant
performance loss; (ii) can reduce the number of links that are
using for the message multiplication. These advantages of the
proposed scheme (distributed nature, reduced network traffic
and complexity, while maintain good positioning performance)
make it promising for large-scale dense networks. Future work
includes extending the proposed scheme to account for NLOS
propagation and testbed implementation.
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