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Abstract
A general formalism is developed to describe the interaction of charged particles with
electromagnetic waves in terms of coupled finite difference mapping equations that
incorporate tokamak topology. The approach is based on considering non-adiabatic changes in
the constants of particle motion and it covers a range of wave–particle resonance frequencies,
from the precessional to cyclotron frequencies of both passing and trapped ions. The concept
of overlapping resonances is used to estimate the threshold for a single plane wave to cause
stochastic particle motion. In the stochastic regime, the process is Markovian, and particle
diffusion in three-dimensional phase space takes place. Estimations of diffusion coefficients
are carried out in the two cases of waves interacting with passing and trapped ions by means of
the cyclotron and bounce resonances, respectively, and previously known results are recovered
in the proper limits.

PACS numbers: 52.20.Dq, 52.25.Gj, 52.55.Fa

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

In general, wave–particle interaction involves multiple
resonances [1–6], and the particle motion will qualitatively
differ depending on whether these resonances overlap or
not. The concept of overlapping resonances yields a physical
explanation for the ability of a single wave to cause
stochastic particle motion. The important point is that along its
trajectory, a charged particle will experience electromagnetic
oscillations not at the single frequency ω of the wave, but
at many frequencies differing from ω by multiples of the
bounce and cyclotron frequencies. The resulting complicated,
stochastic particle motion is characterized by the destruction
of one or more constants of motion, and the evolution
of stochastically moving particles may be described as a
diffusive process.

Overlap of resonances occurs in many problems
associated with magnetically confined plasmas. In a
nonuniform magnetic field, ions can move stochastically in
the presence of a wave instability. Such problems have been
studied for tokamaks [7] and for mirror machines [1, 2, 8].
The interaction between a wave and a charged particle

is of practical interest in connection with radio frequency
(RF) heating of tokamak plasmas, where the RF-waves
may effect the confinement characteristics of the plasma. In
particular, a potential problem associated with RF-heating
in the ion cyclotron frequency range is the possibility
of plasma confinement degradation due to ion cyclotron
wave induced diffusion [9–11]. A theory of wave–particle
interaction in the presence of RF-waves, with frequencies
much lower than the cyclotron frequency of trapped particles,
in tokamaks was presented in [12, 13]. Stochastic ion motion
has also been found for the lower hybrid heating scheme in
tokamaks [14–16]. Another interesting issue is connected with
the conditions under which it is possible to apply quasi-linear
theory to describe the heating processes.

The aim of the present paper is to develop a general
formalism to describe wave–particle interaction in a tokamak.
The approach is based on the concept of overlapping
resonances and results in a set of finite difference mapping
equations for the constants of particle motion. The main
advantage of this approach is that the number of phase space
variables is less than that which appears in the Hamiltonian
formalism [1–6, 16, 17].
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The paper is organized in the following manner. In
section 2, some basic concepts of particle motion in tokamaks
are discussed. In section 3, the equations describing time
evolution of the invariants of particle motion are derived and
solved by means of the stationary phase method. Finally, in
section 4, a set of finite difference mapping equations for the
invariants of the particle motion is derived, and the condition
for stochastic particle trajectories as well as the coefficients
of particle diffusion in the three-dimensional particle invariant
space are determined. Estimations of the diffusion coefficients
are given in the two cases of waves interacting with passing
and trapped ions by means of the cyclotron and bounce
resonances, respectively. We also briefly discuss additional
mechanisms which may destroy the regular particle motion
along the bounce orbits in the presence of electromagnetic
waves.

2. Unperturbed particle motion

We adopt the coordinate system (x1, x2, x3), where x1
= const

represents a magnetic surface, and x2
= θ and x3

= ζ are the
poloidal and toroidal angular coordinates on that surface. We
can then introduce an orthonormal basis

ea = ∇x1/|∇x1
|, eb = e‖ × ea, e‖ = B0/B0, (1)

with B0 the equilibrium magnetic field. Since all calculations
in this work will be carried out for a large aspect ratio,
axisymmetric tokamak with cirular cross section, the only
nonzero metric components are given by

grr = 1, gθθ = r2, gζ ζ = R2, (2)

with R = R0(1 + ε cos θ) the major radius, R0 the radial
position of the magnetic axis, and ε = r/R0 � 1 the
inverse aspect ratio. Then, the orthornormal basis vectors
perpendicular to B0 can be approximated by

ea = er = er , eb = e‖ × ea ≈
1

r
eθ , (3)

and the background magnetic field can be written in the form
B0 = Bθeθ + Bζ eζ , with Bθ � Bζ . Hence,

e‖ =
B0

B0
≈

1

R

(
1

q
eθ + eζ

)
, (4)

where q(r) is the safety factor, and by axisymmetry B0 =

Bs(1 + ε cos θ)−1 with Bs the magnetic field strength at the
magnetic axis.

In order to describe the particle trajectories in the absence
of wave fields, we adopt the guiding center approximation,
and write the particle position and velocity as r = rgc + rL

and v = vgc + vL. Here, vL = drL/dt is the Larmor rotation
velocity and vgc = drgc/dt is the velocity of the guiding
center, obtained by averaging over the Larmor motion. The
Larmor gyration around the magnetic field lines is determined
by the equation

dvL

dt
=

e

m
vL × B0. (5)

Transforming to curvilinear coordinates with basis vectors
given by (3) and (4), we get

va
L = vL cosα, vb

L = vL sinα, (6)

and it follows that
dα

dt
= −ωc (7)

where ωc is the cyclotron (Larmor) frequency. Hence,

α(t)= α0 −

∫ t

0
ωc(t

′)dt ′, (8)

and up to terms ofO(rL/L), where L is the length scale of the
magnetic field inhomogeneity, we obtain

rL (t)−rL (t0) =ea

[
−

vL

ωc(t)
sin(α (t))+

vL

ωc (t0)
sin(α(t0))

]

+eb

[
vL

ωc(t)
cos(α(t))−

vL

ωc (t0)
cos(α(t0))

]
.

(9)

The guiding center velocity vgc is described by making
the standard decomposition vgc = v‖e‖ + vD, where the drift
velocity due to the magnetic field inhomogeneity and
curvature is given by

vD =
1

2ωc B0
(v2

⊥
+ 2v2

‖
)
(
e‖ × ∇B0

)
= −v‖ e‖ × ∇

(
v‖

ωc

)
.

(10)
The covariant components of vgc then become

dr

dt
=
v‖

r

∂

∂θ

(
v‖

ωc

)
, (11a)

dθ

dt
=
v‖

q R
−
v‖

r

∂

∂r

(
v‖

ωc

)
, (11b)

dζ

dt
=
v‖

R
. (11c)

The unperturbed particle motion in an axisymmetric
magnetic field has two exact invariants: the particle kinetic
energy

W =
m

2
(v2

‖
+ v2

⊥
), (12)

and the canonical angular momentum (see the appendix)

Pζ = R(mvζ + eAζ ). (13)

Moreover, the magnetic moment

µ=
mv2

⊥

2B0
, (14)

is an adiabatic invariant of particle motion. Using the
expressions (12) and (14), the parallel particle velocity can
be written as

v‖ = ±

√
2

m
(W −µB0)= ±

v‖0

κ

√
κ2 − sin2 θ

2
, (15)

where

v‖0 =
∣∣v‖ (0)

∣∣ = 2κ

√
µBsε

m
. (16)
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Here, the trapping parameter κ is defined by

κ2
=

W −µBs(1 − ε)

2µBsε
, (17)

with κ2<1 for trapped particles and κ2>1 for passing
particles. We now know v‖ as a function of θ , and can then use
equation (11b) to derive a relation between t and θ . Assuming
that qrL/r �

√
ε, we get to lowest order

t =

∫ t

0
dt ′

≈
q R0κ

v‖0

∫ θ(t)

θ(0)

√
κ2 − sin2 θ

2
dθ, (18)

where we have Taylor expanded around the average radial
position r̄ ≡ 〈r〉B of the periodic poloidal particle motion, and
all quantities are understood to be calculated at r̄ . Here, the
poloidal average, or simply bounce average, is defined as

〈· · ·〉B ≡
1

τB

∫ τB

0
(· · ·) dt, (19)

where τB is the period of the poloidal particle motion, the
so-called bounce period, and ωB = 2π/τB is the bounce
frequency.

The character of the integral (18) depends on whether κ
is larger or smaller than 1. For passing particles (κ2 > 1), we
use θ0 = −π , and get

t =
2q R0

v‖0
[K(κ−1)+ u], (20)

where

u
(
φ, κ−1

)
=

∫ φ

0

dα√
1 − κ−2 sin2 α

, (21)

K (κ−1)= u(π2 , κ
−1) is the complete elliptic integral of

the first kind and θ = 2φ = 2 am(u), with am the Jacobi
amplitude. Thus, setting t = τB, we find the bounce period for
passing particles to be

τB =
4q R0κK(κ−1)

v‖0
. (22)

For trapped particles (κ2 < 1), we use θ0 = −θB, with ±θB =

±2 arcsin κ the poloidal angles at which the trapped particles
bounce. We then get

t =
2q R0

v‖0
[K (κ)+ u] , (23)

where now

u(ϕ, κ)=

∫ ϕ

0

dα√
1 − κ2 sin2 α

, (24)

and θ = 2 arcsin[κ sn(u)], with sn(u)= sin[am(u)]. The
bounce period for the trapped particles is given by

τB =
8q R0κK (κ)

v‖0
. (25)

3. Evolution equations for the invariants

The present study is primarily concerned with the effect of
a prescribed electromagnetic perturbation on the trajectory
of a test particle. The electric and magnetic wave fields are
represented as plane waves according to

(E1, B1)= (Ek, Bk) e−iωt+ik·r, (26)

where the amplitudes Ek and Bk are assumed to be small.
Here, k is the wave vector and ω is the wave frequency. Since
the poloidal and toroidal coordinates are both 2π -periodic, the
k2 and k3 components of the wave vector must be integers m
and n, respectively. Using the orthonormal coordinate system
(1), we can express the physical components of the wave field
E1 and the wave vector k in the form

Ea = ea · E1, Eb = eb · E1, E‖ = e‖ · E1, (27)

ika = ea · ∇ ln E1, ikb = eb · ∇ ln E1, ik‖ = e‖ · ∇ ln E1.

(28)

Similar expressions can be written for the components of the
vectors v and B1.

The appropriate equations describing the time evolution
of the particle invariants W ,µ and Pζ due to the wave–particle
interaction are derived in the appendix. The resulting
expressions are given by

dW

dt
= e v · Ek e−iωt+ik·r, (29a)

d

dt
(µB)=e

[(
1−

k‖v‖

ω

)
v · Ek −

(
1 −

k · v
ω

)
v‖E‖

]
e−iωt+ik·r,

(29b)

dPζ
dt

= e
kζ R

ω

[
v · Ek + (ω− k · v)

k · Ek

k2

]
e−iωt+ik·r. (29c)

In order to determine the time evolution of the invariants
we apply an approach based on the reduction of
equations (29a)–(29c) to a set of difference equations,
which determine I ≡ (W, µ, Pζ ) for a particle in terms of
its values one bounce period earlier. The procedure involves
integrating equations (29a)–(29c) along the unperturbed
particle trajectories derived in section 2. We note that an
alternative method for deriving the difference equations is
based on the Hamilton formalism [1–6, 16, 17]. However, the
number of phase space variables in the Hamiltonian approach
is larger than that of the method presented here.

The time integration of (29a)–(29c) is performed by
expanding the invariants according to I = I(0) + I(1) + . . . in
the small wave amplitude Ek . To lowest order, I is then a
conserved quantity,

dI(0)

dt
= 0, (30)

and to first order the non-adiabatic change in I is determined
by equations (29a)–(29c), where it is now understood that r
and v are the unperturbed (zeroth order) particle position and
velocity, respectively.

3
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Introducing a constant angle χ such that ka = k⊥cosχ ,
kb = k⊥sinχ , and using the standard expansion

e−iξ sin(α−χ)
=

∞∑
l=−∞

Jl(ξ) e−i(α−χ), (31)

where ξ = k⊥vL/ωc, we obtain the first order non-adiabatic
change in, for instance, W , during a bounce period τB as

1W = e
∞∑

l=−∞

e−iψl0

∫ τB

0
Ek · Ql e−iψl (t) dt. (32)

Here, ψl0 = l(α0 −χ), and the phase is given by

ψl(t)=

∫ t

0
dt ′(ω− lωc − k · vgc). (33)

Furthermore,

Ql =

((
l

ξ
vL + vD1

)
Jl , ivL J ′

l + vD2 Jl , v‖ Jl

)
, (34)

where the primes denote derivatives with respect to ξ , and we
have transformed to a system where coordinates are labeled
1, 2, 3, and vector components are given by

A1 =
k⊥

k⊥

· A, A2 =

[
k⊥

k⊥

× A
]

‖

, A3 = A‖. (35)

The physical meaning of the representation (32) is that in
cylindrical geometry in velocity space the plane wave consists
of a sum of cyclotron harmonics, and the particle interacts
with each of them. Besides, by separating the fast and slow
variations according to (31), it will be possible to apply the
stationary phase method to evaluate time integrals of the type
(32), with the stationary points determined by the condition

dψl

dt
= ω− lωc − k‖v‖ − k⊥ · vD = 0. (36)

However, the calculations have to be done for passing and
trapped particles separately. For simplicity, we assume in the
rest of the paper that krvD � ω.

3.1. Passing particles κ2 > 1

Using the relations (20)–(22), we can rewrite 1W as

1W =

∞∑
l=−∞

1Wl , (37)

where each harmonic contribution is given by

1Wl =
e

ωB
e−i[ψl (π)+ψl0]

∫ π

−π

Ek · Ql e−iψl dτ. (38)

Here, the integration variable is τ =
π

K (κ−1)
u, and we have

ψl =
2q R0

v‖0
1ω u − 2 λ am(u)−2nqε cn(u) sn(u)+

κ2π

ωB K(κ−1)

×

[
Gp Z(u)−nωD

2

3

ε

1+2εκ2
cn(u) dn(u) sn(u)

]
(39)

with

ψl(π)=

(
1ω

ωB
− λ

)
π, (40)

1ω = ω− l 〈ωc〉B − n〈ωζ 〉B, (41)

Z (u)=

∫ u

0
dn2

(
u′

)
du′

−
E(κ−1)

K(κ−1)
u, (42)

Gp=2 lεωcs−nωD

[
1 −

2

3

ε

1 + 2εκ2

(
1

2
− κ2

)
+

2 s

1 + 2εκ2

]
,

(43)
and

λ= q R0k‖, ωcs =
eBs

m
, ωD = −

2qW

r R0 mωcs
, s =

r

q

dq

dr
.

(44)

In these expressions, am and dn are Jacobian elliptic
functions (more precisely the Jacobian amplitude and the
delta amplitude) and K and E are the complete elliptical
integrals of the first and second kind, respectively. Applying
the definition (19), the bounce averages of ωc and ωζ are
given by

〈ωc〉B = ωcs

{
1 − ε

[
1 − 2κ2

(
1 −

E(κ−1)

K(κ−1)

)]}
, (45)

〈ωζ 〉B = ωD[G1 + 2 s G2], (46)

where

G1 =
1

2
− κ2

[
1 −

E(κ−1)

K(κ−1)

]
+

2

3

εκ2

1 + 2εκ2

[
1 − κ2

−

(
1

2
− κ2

)
E(κ−1)

K(κ−1)

]
, (47)

G2 =
κ2

1 + 2εκ2

E(κ−1)

K(κ−1)

[
1 −

π2

4 K(κ−1)E(κ−1)

]
. (48)

Note that all quantities in the above expressions are calculated
at the average radial particle position r̄ , and that we have
neglected terms of O(ε2).

We now apply the stationary phase method on all the
harmonic contributions 1Wl by expanding the phase ψl

around each of its stationary points according to

ψl = ψlr +
σ

2
|ψ̈lr | (τ − τr )

2 . (49)

The subscript r denotes quantities evaluated at the stationary
(resonant) points, and we have ψlr = ψ(τr ), σ = sign(ψ̈lr ),
and

ψ̈lr ≡
d2ψl

dτ 2

∣∣∣∣
τ=τr

=

(
K(κ−1)

π

)2
d2ψl

du2

∣∣∣∣∣
u=ur

. (50)

The expression ψ̇l = 0 determining the stationary points is a
fourth order algebraic equation for the even function dn(u). In
general, there are then eight stationary points of the passing
particle motion. The analysis can, however, be made more
explicit by neglecting the effect of the particle precessional

4



Phys. Scr. 84 (2011) 015503 R M Nyqvist et al

 
Trapped orbit
Passing orbit
Resonance

θ

dθ/dt

Figure 1. Case (a): qualitative illustration of the resonance
conditions for passing and trapped particles when ω� |k · vD| and
l 6= 0, k‖ 6= 0.

motion, i.e. in the limitω� | k · vD|. Then, the resonant points
are given by

1ω− v‖0

[
k‖+

nε

R0

]
dn(u)+ κ2Gp

[
dn2(u)−

E(κ−1)

K(κ−1)

]
= 0,

(51)

where we have neglected small terms of O(ε/κ2). The
solution to (51) is

dn (±ur )= dp +

[
d2

p +
E(κ−1)

K(κ−1)
−
1ω

Gp

]1/2

, (52)

where dp =
v‖0

2κ2Gp
(k‖ + nε/R0). In the particular case when

l = 0, we get

dn (±ur )=
ω

v‖0
(
k‖ + nε/R0

) . (53)

Figures 1–3 illustrate qualitatively the resonance conditions
(for both passing and trapped particles) under the assumption
ω�| k · vD| and in situations when: (a) l 6= 0, k‖ 6= 0; (b) l 6= 0,
k‖ = 0; (c) l = 0, k‖ 6= 0. As can be seen, passing particles
always interact with the wave and there exist two resonant
points.

Finally, adding the contributions to 1Wl from the two
stationary points obtained in the limit ω� | k · vD| yields

1Wl = e−i[ψl0+ψl (π)] αW cos
(
ψlr + σ

π

4

)
, (54)

where

αW =
2e

ωB

√
2π∣∣ψ̈lr

∣∣ Ql · Ek, (55)

Ql =

(
l

ξ
vL Jl , ivL J ′

l , v‖0 dn(ur ) Jl

)
, (56)

and we have used that ψl(τ )= −ψl(−τ).

 
Trapped orbit
Passing orbit
Resonance

θ

dθ/dt

Figure 2. Case (b): qualitative illustration of the resonance
conditions for passing and trapped particles when ω� |k · vD| and
l 6= 0, k‖ = 0.

 
Trapped orbit
Passing orbit
Resonance

θ

dθ/dt

Figure 3. Case (c): qualitative illustration of the resonance
conditions for passing and trapped particles when ω� |k · vD| and
l = 0, k‖ 6= 0.

3.2. Trapped particles κ2 < 1

For trapped particles, we use the relations in equations
(23)–(25), and write 1W once more in the forms (37) and
(38), where now the integration variable is τ =

π
K (κ) u. We

then have

ψl =
2q R0κ

v‖0
1ω u − 2λ arcsin[κ sn(u)]

+
πG t

2ωB K(κ)
Z(u)− 2nεqκ dn(u) sn(u), (57)

with

ψl(π)=
1ω

ωB

π

2
− 2λ arcsin κ − 2nεqκ

√
1 − κ2, (58)

and 1ω = ω− l〈ωc〉B − n〈ωζ 〉B as for passing particles. In
these expressions,

Z(u)=

∫ u

0
dn2(u′)du′

−
E(κ)

K(κ)
u (59)

5
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and
G t = 2 lεωcs − nωD[1 + 2 s], (60)

and the bounce averaged frequencies are given by

〈ωc〉B = ωcs

{
1 + ε

[
1 − 2

E(κ)

K (κ)

]}
, (61)

〈ωζ 〉B = nωD

{
E(κ)

K (κ)
−

1

2
+ 2 s

[
E(κ)

K (κ)
+ κ2

− 1

]}
. (62)

As usual, all quantities have been calculated at the average
radial position r̄ during the poloidal bounce motion, and we
have neglected small terms of O(εκ2).

Applying once more the stationary phase method, we
approximate ψl around its minima by (49). The resonant
points are then determined by

1ω− v‖0

[
k‖ +

nε

R0

]
cn(u)

+G t

[
1 − κ2

−
E(κ)

K (κ)
+ κ2cn2 (u)

]
=0, (63)

where we have neglected terms of O(εκ2). Since cn(u)
is even, there are in general four solutions to (63),
given by

cn (±ur )= dt ±

[
d2

t −
1

κ2

(
1 − κ2

−
E(κ)

K (κ)

)
−
1ω

κ2G t

]1/2

,

(64)

with dt =
v‖0

2κ2G t
(k‖ + nε/R0). Figures 1–3 illustrate that for

trapped particles, the interaction is indeed characterized by
four resonant points. Adding the contributions from each of
these points and invoking the limit ω� | k · vD| yields

1Wl = e−i[ψl0+ψl (π)]
∑
±

α±

W cos
(
ψ±

lr + σ±

π

4

)
, (65)

where

α±

W =
2e

ωB

√
2π

|ψ̈±

lr |
Q±

l · Ek, (66)

Q±

l =

(
l

ξ
vL Jl , ivL J ′

l , v‖0 cn(u±

r )Jl

)
. (67)

Here, ± labels the two pairs of stationary points
corresponding to the ± in the right hand side of (64).
Note that in the special case when l = 0, there are only two
resonant points (see figure 3), determined by

cn (±ur )=
ω

v‖0(k‖ + nε/R0)
. (68)

The obtained expressions for 1W determine the
non-adiabatic change in the particle kinetic energy for passing
and trapped particles. Non-adiabatic changes in the magnetic
moment µ and the canonical angular momentum Pζ follow
from equations (29b) and (29c), respectively. Since the term
containing ω− k · v in (29b) is of the order |ψ̈lr |

−3/2 at
the resonance it can be neglected, and the similar term in
(29c) vanishes identically due to the time integration. The
calculations of the first order changes 1µ and 1Pζ are then
very similar to those leading to 1W , with the only effect

being that the coefficients αW and α±

W are altered. In the limit
ω� | k · vD|, we have

α±

µ =
lωcs

ωBs
α±

W , α±

Pζ
=

kζ R0

ω
α±

W , (69)

where the notation ± is to be ignored for passing particles.
Note that in general, α±

µ and α±

Pζ
also contains contributions

due to the particle drifts, and that these are omitted here
by invoking the limit ω� | k · vD|. We finally note that the
stationary phase approximation is valid if the time of resonant
interaction is much less than the period of the poloidal particle
motion. This is satisfied under the condition |ψ̈l | � 1.

4. Stochastic nature of the wave–particle interaction

Using the expressions for 1W , 1µ and 1Pζ , we can trace
the motion of a particle on the phase space with coordinates
W , µ and Pζ by examining the value of I ≡ (W, µ, Pζ ) at
discrete times, separated by intervals of the bounce period τB.
A set of finite difference mapping equations, connecting I and
ψ̃l ≡ ψl0 +ψl(π) for each harmonic from one bounce point to
the next, can be written as

I j+1 = I j + eiψ̃ j Eαl cos
(
ψlr +

π

4

)
, (70a)

ψ̃ j+1 = ψ̃ j + 2ψl (π) , (70b)

for a passing orbit, and as

I j+1 = I j + eiψ̃ j

[
Eα+

l cos
(
ψ+

lr +
π

4

)
+ Eα−

l cos
(
ψ−

lr +
π

4

)]
,

(71a)

ψ̃ j+1 = ψ̃ j + 2ψl (π) , (71b)

for a trapped orbit. Here,

Eα±

l = (α±

W , α
±

µ , α
±

Pζ
), (72)

and ψl(π) is given by (40) for passing particles and (58)
for trapped particles. The mapping equations (70a) and (70b)
and (71a) and (71b) are written for the resonant points
characterized by ψ̈lr > 0, and we have suppressed the index
l on ψ̃l, j in order to keep the notation clear.

Since the functions ψl(π) and ψlr depend on I, the
mapping equations represent a coupled system of nonlinear
equations. The strongest interaction takes place if ψl(π)=

sπ , with s = 0, ±1, ±2, . . ., which can be written as

1ω = (s + λ)ωB ≈

(
k‖ +

s

q R0

)
v‖0 (73)

for passing particles and

1ω =

(
2 s +

4

π
λ arcsin κ +

4

π
nεqκ

√
1 − κ2

)
ωB (74)

for trapped particles. Equations (73) and (74) define a set
of resonant surfaces in I-space. Since the nonlinear terms in
equations (70a) and (70b) and (71a) and (71b) are harmonic
functions, their solutions should oscillate around the resonant
surfaces, and the period and amplitude of these oscillations
will depend on the value of the coupling coefficients Eα.
Thus, although non-adiabatic interaction between the wave

6
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and particles occurs, equations (70a) and (70b) and (71a) and
(71b) describe a regular time evolution of I (superadiabaticity)
if the wave amplitude is below a certain threshold. The
transition from superadiabatic to stochastic behaviour occurs
for sufficiently large values of Eα, when the resonances overlap
in phase space.

In order to obtain an approximate criterion for the onset
of stochasticity, we consider a point Is on the resonant surface
and expand ψl(π) in the vicinity of this point:

ψl (π)= sπ + [I j+1 − Is] ·

[
∂ψl (π)

∂I j+1

]
I j+1=Is

. (75)

Introducing the new variables Ĩ j,n = 2 ∂ψl (π)

∂ Is,n
(I j,n − Is,n),

where the index n runs over the coordinates I, the system of
mapping equations may be rewritten as

Ĩ j+1 = Ĩ j + K eiψ̃ j , (76a)

ψ̃ j+1 = ψ̃ j +
3∑

n=1

Ĩ j+1, n, (76b)

where

Kn = 2
∂ψl(π)

∂ Is,n
αn cos

(
ψlr (Is)+

π

4

)
(77)

for passing particles, and

Kn =2
∂ψl (π)

∂ Is,n

[
α+

n cos
(
ψ+

lr (Is)+
π

4

)
+α−

n cos
(
ψ−

lr (Is)+
π

4

)]
(78)

for trapped particles. In order to investigate the system (76a)
and (76b) more closely, we add the three equations (76a) and
obtain

Ī j+1 = Ī j + Ke eiψ̃ j , (79a)

ψ̃ j+1 = ψ̃ j + Ī j+1, (79b)

where Ī j = Ĩ j,1 + Ĩ j,2 + Ĩ j,3, and Ke = K1 + K2 + K3. The
system of equations (79a) and (79b) has the same structure
as the 1D standard mapping [5]. Therefore, we can by
analogy conclude that the particle motion is stochastic for
|Ke|> 1, and superadiabatic for Ke ' 1. Since Ke is a
function of I, the condition Ke ' 1 determines a phase
space stochasticity boundary. In the stochastic regime, i.e.
when the wave amplitude is above the threshold value for
stochastic motion, the process is Markovian, and the diffusion
coefficients in the appropriate Fokker–Planck equation can be
calculated as

D{1I ,1I} = 〈1I ·1I 〉 ∼
1

2
Eα · Eα∗, (80)

where the bra-ket notation denotes an average over the wave
phase at the resonant point. In (80), it is necessary to specify
the wave characteristics, i.e. the polarization, frequency and
wave vector.

Let us estimate the particle energy diffusion coefficients
in the two cases of waves interacting with passing and trapped

ions by means of the cyclotron and bounce resonances,
respectively. In the first case, considering quasi-linear
diffusion without bounce resonances and assuming well
passing particles, we obtain

D =
4πe2µBs

m2τB

∑
l

∣∣ψ̈lr

∣∣−1
[

J 2
l−1 |E+|

2 + J 2
l+1 |E−|

2
]
, (81)

where E± =
1
2 (E1 ± E2). This expression is in agreement

with the result obtained in [11]. In the second case we consider
the interaction between well trapped particles and a wave
having frequency much lower than the cyclotron frequency
but much larger than the particle precession frequency, and
with the electric field and wave vector pointing along the
magnetic field. Here, the velocity diffusion coefficient can be
estimated as

D =
2πe2

|E‖|
2v‖0s2

m2k‖λ2κ2
, (82)

which coincides with the result of [13].
Finally, we briefly discuss additional mechanisms which

may destroy the regular particle motion along the bounce
orbits in the presence of wave fields. The first mechanism is
associated with Coulomb collisions of particles. The effect
of collisions may be taken into account in the difference
equations (70a) and (70b) and (71a) and (71b) by adding
an appropriate term in the phase equations [12]. Assuming
that the trapping parameter can be written as κ2

= κ̄2 + κ̃2,
where κ and κ̃ are the regular and non-regular (connected with
collisions) parts of κ , respectively, the new term appearing
in the phase equations is [dψl(π)/dκ2 ]̃κ2. Collisions will
sufficiently change the phase if[

dψl(π)

dκ2

]
〈̃κ2

〉 '
π

2
. (83)

Here, 〈̃κ2
〉 is the dispersion of κ̃2 during the bounce period

τB, i.e.

〈(κ2)2〉 ' ν∗τb, (84)

where ν∗ is the effective collision frequency. For trapped
particles, ν∗ ' ν/

√
ε, and for passing particles, ν∗ ' ν.

Substituting (84) into (83) and estimating dψl(π)/dκ2, we
find that in the case when ω� | k · vD|, the effect of collisions
is small if

lεωcs

ωB
(ν∗τB)

1/2
� 1, l 6= 0, (85a)

ω

ωB
(ν∗τB)

1/2
� 1, l = 0. (85b)

Since ωB � ωcs, so that the particles complete a large
number of Larmor orbits between the resonant points, the
conditions (85a) and (85b) are satisfied for sufficiently small
values of ν∗. However, a relatively small distortion of the
toroidal symmetry of the equilibrium magnetic field can
lead to a large effective collision frequency and may result
in collisional particle diffusion. In tokamaks, this situation
arises in the presence of a toroidal magnetic field ripple
δωcs cos(Nζ ), where δ is the relative amplitude of the field

7
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ripple and N is the number of toroidal field coils. Actually,
the effective collision frequency is large, ν∗ =

N 2q2

2ε ν � ν,
and the diffusion of banana trapped particles can take
place even in the case of very small pitch-angle scattering.
According to (85a) and (85b), the ripple effects may be
neglected if

δ �

√
εωcs

νN 2q2

(
ρ

q R0

)3/2

, (86)

where

ρ =

√
µBsε/m

ωcs
. (87)

Appendix. Derivation of the evolution equations

To derive equations describing the evolution of W and µ in
the presence of an electromagnetic wave, we start from the
equation of motion for a charged particle, i.e.

m
dv
dt

= q [E1 + v × (B0 + B1)] , (A.1)

where B0 is the equilibrium magnetic field and E1 and B1 are
the wave fields given by equation (26). By means of Faraday’s
law

∇ × E1 = −
∂B1

∂t
, (A.2)

the equation of motion (A.1) can be rewritten as

m
dv
dt

=
q

c
v × B0 + q

[(
1 −

k · v
ω

)
Ek +

k (v · Ek)

ω

]
e−iωt+ik·r.

(A.3)

The equations describing the evolution of W and µ due to
the wave–particle interaction are now obtained by taking the
scalar product of equation (A.3) with the vectors v and v⊥,
respectively. The results are

dW

dt
= e v · Ek e−iωt+ik·r (A.4)

and

d

dt
(µB0)= e

[(
1 −

k‖v‖

ω

)
v · Ek−

(
1−

k · v
ω

)
v‖E‖

]
e−iωt+ik·r.

(A.5)

In order to derive an equation describing the time
evolution of Pζ , one has to resort to Lagrangian mechanics.
The charged particle Lagrangian is given by

L=
m

2
ṙ · ṙ + e ṙ · A − e φ, (A.6)

where the scalar and vector potentials φ and A are functions
of r and t only, satisfying

E = −∇φ−
∂A
∂t
, B = ∇ × A. (A.7)

The generalized momenta are given by

Pi =
∂L
∂ ṙi
, (A.8)

and the Euler–Lagrange equations reads

d

dt

(
∂L
∂ ṙi

)
=

dPi

dt
=
∂L
∂ri
. (A.9)

Thus, using the standard toroidal coordinates (r , θ , ζ )
introduced in section 2, we get the generalized (canonical)
angular momentum

Pζ = R
(
mvζ + eAζ

)
, (A.10)

where Aζ = A · ζ̂ is the projection of A in the toroidal
direction (i.e. not the covariant ζ component of A), and the
toroidal speed is vζ = Rζ̇ . The evolution equation for Pζ is
given by the Euler–Lagrange equation (A.9). It reads

dPζ
dt

= −e
∂φ

∂ζ
+ e ṙ ·

∂A
∂ζ
. (A.11)

We can thus conclude that Pζ is conserved in axisymmetric
devices, where ∂φ

∂ζ
=

∂A
∂ζ

= 0. In the presence of the wave field
(26) however, axisymmetry is broken, and Pζ is no longer an
invariant. We then have

E1 = −∇φ1 −
∂A1

∂t
, (A.12)

and by imposing the Coulomb gauge condition ∇ · A0 =

k · A1 = 0, equation (A.11) takes the form

dPζ
dt

= e
kζ R

ω

[
v · Ek + (ω− k · v)

k · Ek

k2

]
e−iωt+ik·r, (A.13)

where kζ = −
n
R . Note that upon integrating to obtain Pζ as a

function of time, the second term inside the bracket behaves
as a total derivative which can be evaluated directly.

References

[1] Rosenbluth M N 1972 Phys. Rev. Lett. 29 408
[2] Timofeev A V 1974 Nucl. Fusion 14 165
[3] Zaslavsky G M and Chirikov B V 1972 Sov. Phys.—Usp.

14 549
[4] Chirikov B V 1960 J. Nucl. Energy C 1 253
[5] Chirikov B V 1979 Phys. Rep. 52 263
[6] Smith G R and Kaufman A N 1978 Phys. Fluids 21 2230
[7] Smith G R 1977 Phys. Rev. Lett. 38 970
[8] Smith G R, Byers J A and LoDestro L L 1980 Phys. Fluids

23 278
[9] Shimomura Y and Odijama K 1987 Commun. Plasma Phys.

X 207
[10] Helander P and Lisak M 1992 Phys. Fluids B 4 1927
[11] Belikov V S and Kolesnichenko Ya I 1994 Plasma Phys.

Control. Fusion 36 1703
[12] Belikov V S and Kolesnichenko Ya I 1987 Nucl. Fusion

27 1371
[13] Marchenko V S 1994 Nucl. Fusion 34 740
[14] Fukuyama A, Momota H, Itatani R and Takizuka T 1977

Phys. Rev. Lett. 38 701
[15] Karney C F F and Bers A 1977 Phys. Rev. Lett. 39 550
[16] Karney C F F 1979 Phys. Fluids 21 1584

Karney C F F 1979 Phys. Fluids 22 2188
[17] Morozov A I and Solov’ev L S 1996 Reviews of Plasma

Physics vol 2 (New York: Consultants Bureau)

8

http://dx.doi.org/10.1103/PhysRevLett.29.408
http://dx.doi.org/10.1088/0029-5515/14/2/003
http://dx.doi.org/10.1070/PU1972v014n05ABEH004669
http://dx.doi.org/10.1088/0368-3281/1/4/311
http://dx.doi.org/10.1016/0370-1573(79)90023-1
http://dx.doi.org/10.1063/1.862161
http://dx.doi.org/10.1103/PhysRevLett.38.970
http://dx.doi.org/10.1063/1.862960
http://dx.doi.org/10.1063/1.862960
http://dx.doi.org/10.1063/1.860045
http://dx.doi.org/10.1088/0741-3335/36/11/001
http://dx.doi.org/10.1088/0029-5515/27/9/001
http://dx.doi.org/10.1088/0029-5515/27/9/001
http://dx.doi.org/10.1088/0029-5515/34/5/I03
http://dx.doi.org/10.1103/PhysRevLett.38.701
http://dx.doi.org/10.1103/PhysRevLett.39.550
http://dx.doi.org/10.1063/1.862406
http://dx.doi.org/10.1063/1.862512

	1. Introduction
	2. Unperturbed particle motion
	3. Evolution equations for the invariants
	3.1. Passing particles 2>1
	3.2. Trapped particles 2<1

	4. Stochastic nature of the wave-- particle interaction
	Appendix. Derivation of the evolution equations
	References

