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Abstract. A unified approach is given for the analysis of the weak error of

spatially semidiscrete finite element methods for linear stochastic partial dif-
ferential equations driven by additive noise. An error representation formula is

found in an abstract setting based on the semigroup formulation of stochastic

evolution equations. This is then applied to the stochastic heat, linearized
Cahn-Hilliard, and wave equations. In all cases it is found that the rate of

weak convergence is twice the rate of strong convergence, sometimes up to a

logarithmic factor, under the same or, essentially the same, regularity require-
ments.

1. Introduction

Let U,H be real separable Hilbert spaces and consider the following abstract
stochastic Cauchy problem

(1.1) dX(t) +AX(t) dt = B dW (t), t > 0; X(0) = X0,

where −A is the generator of a strongly continuous semigroup {E(t)}t≥0 on H,
B ∈ B(U,H), where B(U,H) denotes the space of bounded linear operators from
U to H, {W (t)}t≥0 is a U -valued Wiener process with covariance operator Q with
respect to a filtration {Ft}t≥0 on a probability space (Ω,F , P ), and X0 is an F0-
measurable H-valued random variable. The covariance operator Q ∈ B(U,U) with
Q ≥ 0 (selfadjoint, positive semidefinite). Under appropriate conditions, see (3.5)
below, the unique weak solution is given by

X(t) = E(t)X0 +
∫ t

0

E(t− s)B dW (s).(1.2)

Let Vh ⊂ H be a family finite dimensional subspaces and let Bh ∈ B(U,H) be
a family of operators with Bh : U → Vh, 0 < h ≤ 1. We consider approximating
stochastic Cauchy problems of the form

(1.3) dXh(t) +AhXh(t) dt = Bh dW (t), t > 0; Xh(0) = Xh0,
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where −Ah is the generator of a strongly continuous semigroup {Eh(t)}t≥0 on Vh.
We take Xh0 to be an F0-measurable random variable. As above the unique weak
solution is given by

Xh(t) = Eh(t)Xh0 +
∫ t

0

Eh(t− s)Bh dW (s).(1.4)

This framework is designed to accomodate standard spatial finite element discretiza-
tions of various linear stochastic evolution problems including the heat equation,
the linearized Cahn-Hilliard equation, and the wave equation. For further details on
stochastic integration and the semigroup approach to stochastic partial differential
equations we refer to [1].

Let G : H → R be a function with globally bounded, continuous Fréchet deriva-
tives of order 1 and 2, that is, G ∈ C2

b(H,R). We consider the weak error eh(T ) at
T > 0 defined as

eh(T ) := E
(
G(Xh(T ))

)
−E

(
G(X(T ))

)
.(1.5)

While the literature on strong convergence of numerical approximations of sto-
chastic partial differential equations is abundant, especially for parabolic problems
(see [5] for an exhaustive list of references), there is very little on weak convergence.
In particular, there are no results on the weak error of the finite element method
for the linear stochastic Cahn-Hilliard and wave equations. The papers [4, 5, 9]
consider the stochastic heat equation and so does [7], which proves similar results
but under a stronger restriction on the test function G. The results in [3] are con-
cerned with the Schrödinger equation and [8] proves weak convergence of the leap
frog scheme for the stochastic wave equation. In all cases it is observed that the
rate of weak convergence is twice that of strong convergence.

We now present a brief outline of this paper. Precise definitions and statements
are given in the following sections. In Section 2 we recall basic facts about trace
class and Hilbert-Schmidt operators. In Section 3 we work in the abstract setting
(1.2), (1.4) and derive a formula for the weak error in Theorem 3.1. This is then
applied to semidiscretizations of parabolic equations in Section 4 and a hyperbolic
equation in Section 5. An important difference is that the semigroup E(t) = e−tA

is analytic in Section 4 but only strongly continuous in Section 5.
Let D ⊂ Rd be a spatial domain and consider the Laplace operator Λ = −∆ as an

unbounded operator on L2(D) with domain of definition D(Λ) = H2(D) ∩H1
0 (D).

In Subsection 4.1 we study the stochastic heat equation,

(1.6) dX + ΛX dt = dW, t > 0; X(0) = X0.

This is of the form (1.1) with H = U = L2(D), A = Λ, B = I.
Let Sh ⊂ H1

0 (D) be a family of standard finite element spaces consisting of
continuous piecewise polynomials of degree ≤ r − 1 parametrized by meshsize h.
Thus r ≥ 2 is the formal convergence order of the finite element method. The
spatially discrete approximation of (1.6) is

(1.7) dXh + ΛhXh dt = Ph dW, t > 0; Xh(0) = PhX0.

Here Λh denotes the discrete Laplacian and Ph : L2(D) → Sh is the orthogonal
projection. This is clearly of the form (1.3) with Vh = Sh, Ah = Λh, Bh = Ph,
Xh0 = PhX0.
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In [14] it was assumed that

(1.8) ‖Λ
β−1

2 Q
1
2 ‖HS <∞, for some β ≥ 0,

where ‖ · ‖HS denotes the Hilbert-Schmidt norm of bounded linear operators, see
(2.1). Under appropriate smoothness of the initial value it was then shown that the
solution has regularity of order β in the mean square,

(1.9)
(
E
(
‖Λ

β
2X(t)‖2

))1/2

<∞,

and that the finite element approximation has strong convergence of order β,

(1.10)
(
E
(
‖Xh(t)−X(t)‖

)2)1/2

= O(hβ), 0 ≤ β ≤ r.

Here ‖ · ‖ denotes the norm in H = L2(D).
In the present work we first show in Theorem 4.1 that under the condition (1.8)

we have weak convergence of essentially order 2β,

(1.11) eh(T ) = O(h2β | log(h)|), 0 < β ≤ 1.

For larger β we assume in Theorem 4.2 that

(1.12) ‖Λβ−1Q‖Tr <∞,
where the trace norm (2.3) is used, and we show weak order O(h2β | log(h)|) for
1 ≤ β ≤ r

2 .
In order to compare (1.12) and (1.8), we show in Theorem 2.1 that

(1.13) ‖Λ
β−1

2 Q
1
2 ‖HS ≤ ‖Λβ−1Q‖Tr ≤ ‖Λβ−1+αQ‖B(H)‖Λ−α‖Tr, β ≥ 0, α > 0.

It is clear that (1.12) implies (1.8) and that they coincide in two important cases:
(i) if Λ and Q commute, in particular, if Q = I; and (ii) if β = 1, that is, if
Tr(Q) < ∞. Thus, the rate of weak convergence is essentially twice the rate of
strong convergence under essentially the same regularity assumption.

A result similar to (1.11) was first proved in [5]. More precisely, there it was
assumed that

(1.14) ‖ΛδQ‖B(H) <∞, ‖Λ−α‖Tr <∞, for some α > 0, α− 1 ≤ δ ≤ α.

In view of (1.13) is is clear that (1.14) implies (1.8) with β = 1 − α + δ. Under
this assumption was shown in [5] that we have weak convergence of order O(h2γ)
for 0 < γ < β ≤ 1, which is almost (1.11). Weak convergence of the form (1.11)
was also proved in [9] under assumption (1.8) but with stronger restrictions on the
test function G and on r.

Hence, for the stochastic heat equation, we slightly sharpen and simplify the
results of [5] and [9] and we extend them to higher order.

In Subsection 4.2 study the linearized stochastic Cahn-Hilliard equation (lin-
earized Cahn-Hilliard-Cook equation),

(1.15) dX + Λ2X dt = dW, t > 0; X(0) = X0,

with finite element approximation

(1.16) dXh + Λ2
hXh dt = PhdW, t > 0; Xh(0) = PhX0.

Under the assumption ‖Λ
β−2

2 Q
1
2 ‖HS < ∞, it was shown in [11] that we have reg-

ularity of order β for β ≥ 0 and strong convergence of order O(hβ | log(h)|) for
1 ≤ β ≤ r. Here, in Theorem 4.4, if we assume, for example, that Sh is based on
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a quasi-uniform mesh family and that for some α > 0 we have 0 < β ≤ min(2, r2 ),
0 ≤ β − 2 + α ≤ 1 and

‖Λβ−2+αQ‖B(H) <∞, ‖Λ−α‖Tr <∞,

then the weak convergence is of order O(h2β | log(h)|).
Our most novel result concerns the stochastic wave equation in Section 5,

(1.17)
dX1 −X2 dt = 0, t > 0;
dX2 + ΛX1 dt = dW, t > 0;

X1(0) = X0,1,

X2(0) = X0,2,

with its straight-forward finite element approximation based on Sh and Λh. This
is of the form (1.1) with H = L2(D)× (H1

0 (D))∗, U = L2(D), and

A =
[

0 −I
Λ 0

]
, B =

[
0
I

]
, X =

[
X1

X2

]
, X0 =

[
X0,1

X0,2

]
.

Under assumption (1.8) it was shown in [10] for the first component X1 (the dis-
placement) that we have regularity of order β for β ≥ 0 and strong convergence of
order O(h

r
r+1β) for 0 ≤ β ≤ r + 1. Here, in Theorem 5.1, we assume

(1.18) ‖Λβ− 1
2QΛ−

1
2 ‖Tr <∞

and show weak convergence of order O(h
r
r+1 2β) for 0 ≤ β ≤ r+1

2 . Again, we show
in Theorem 2.1 that the new condition (1.18) implies (1.8) and that they coincide
if Λ and Q commute.

2. Preliminaries

Let H be a separable real Hilbert space with scalar product 〈·, ·〉 and norm
‖ · ‖ and let B(H) denote the space of bounded linear operators on H with the
usual norm ‖ · ‖B(H). An operator T ∈ B(H) is called Hilbert-Schmidt, if for some
orthonormal basis {ek}∞k=1 the sum

(2.1) ‖T‖2HS :=
∞∑
k=1

‖Tek‖2

is finite. In this case the sum is independent of the choice of the orthonormal
basis and the quantity ‖T‖HS is called the Hilbert-Schmidt norm of T . The set of
Hilbert-Schmidt operators is denoted by L2(H). If S ∈ B(H) and T ∈ L2(H), then
T ∗, TS, and ST belong to L2(H) and

(2.2) ‖T ∗‖HS = ‖T‖HS, ‖TS‖HS ≤ ‖T‖HS‖S‖B(H), ‖ST‖HS ≤ ‖T‖HS‖S‖B(H).

Let L1(H) denote the set of nuclear operators from H to H, that is, T ∈ L1(H)
if T ∈ B(H) and there are sequences {aj}, {bj} ⊂ H with

∑∞
j=1 ‖aj‖‖bj‖ <∞ and

such that

Tx =
∞∑
j=1

〈x, bj〉aj , x ∈ H.

Sometimes these operators are referred to as trace class operators. It is well known
that L1(H) becomes a Banach space under the norm

(2.3) ‖T‖Tr = inf
{ ∞∑
j=1

‖aj‖‖bj‖ : Tx =
∞∑
j=1

〈x, bj〉aj
}
.
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If T ∈ L1(H), then for any orthonormal basis {ek}∞k=1 ⊂ H the trace of T , defined
as

(2.4) Tr(T ) =
∞∑
k=1

〈Tek, ek〉,

is finite and the sum is independent of the choice of the orthonormal basis. If T ≥ 0
(selfadjoint, positive semidefinite) and the sum in (2.4) converges for one particular
orthonormal basis, then T ∈ L1(H). We recall the following well known properties
of the trace and trace norm which we frequently use, see [1, App. C], [12, Chapt. 30]
and [15, Chapt. 7]. If S ∈ B(H) and T ∈ L1(H), then both TS and ST belong to
L1(H) and

Tr(TS) = Tr(ST ),(2.5)

|Tr(TS)| = |Tr(ST )| ≤ ‖T‖Tr‖S‖B(H),(2.6)

‖TS‖Tr ≤ ‖T‖Tr‖S‖B(H), ‖ST‖Tr ≤ ‖T‖Tr‖S‖B(H).(2.7)

Furthermore, if T ∈ L1(H), then its adjoint T ∗ ∈ L1(H) and

Tr(T ) = Tr(T ∗), ‖T‖Tr = ‖T ∗‖Tr.(2.8)

If both T, S ∈ L2(H), then TS ∈ L1(H) and

‖TS‖Tr ≤ ‖T‖HS ‖S‖HS.(2.9)

The following theorem compares the conditions (1.8), (1.12), (1.14), and (1.18)
on the covariance operator Q. Since ‖T‖2HS = Tr(T ∗T ) = ‖T ∗T‖Tr, we note that
(1.8) is expressed as the trace of a symmetric, positive semidefinite operator:

‖Λ
β−1

2 Q
1
2 ‖2HS = Tr([Λ

β−1
2 Q

1
2 ]∗Λ

β−1
2 Q

1
2 ) = ‖[Λ

β−1
2 Q

1
2 ]∗Λ

β−1
2 Q

1
2 ‖Tr,

while (1.12) and (1.18) involve the trace norm of a nonsymmetric operator.

Theorem 2.1. Assume that Q ∈ B(H) is selfadjoint, positive semidefinite and that
A is a densely defined, unbounded, selfadjoint, positive definite, linear operator on
H with an orthonormal basis of eigenvectors. Then the following inequalities hold,
for s ∈ R, α > 0,

‖A s
2Q

1
2 ‖2HS ≤ ‖AsQ‖Tr ≤ ‖As+αQ‖B(H)‖‖A−α‖Tr,(2.10)

‖A s
2Q

1
2 ‖2HS ≤ ‖As+

1
2QA−

1
2 ‖Tr,(2.11)

provided that the respective norms are finite. Furthermore, if A and Q have a
common basis of eigenvectors, in particular, if Q = I, then

(2.12) ‖A s
2Q

1
2 ‖2HS = ‖AsQ‖Tr = ‖As+ 1

2QA−
1
2 ‖Tr.

Proof. If {(λk, φk)}∞k=1 denotes a set of eigenpairs of A with orthonormal eigenvec-
tors, then we define

Asx =
∞∑
k=1

λsk〈x, φk〉φk.
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Although [A
s
2Q

1
2 ]∗ is not equal to Q

1
2A

s
2 in general, we do have [A

s
2Q

1
2 ]∗φk =

Q
1
2A

s
2φk, and we compute using (2.2), (2.1), (2.4), (2.6), and (2.7),

‖A s
2Q

1
2 ‖2HS = ‖[A s

2Q
1
2 ]∗‖2HS =

∞∑
k=1

‖[A s
2Q

1
2 ]∗φk‖2 =

∞∑
k=1

‖Q 1
2A

s
2φk‖2

=
∞∑
k=1

λsk‖Q
1
2φk‖2 =

∞∑
k=1

λsk〈Qφk, φk〉 =
∞∑
k=1

〈Qφk, Asφk〉

=
∞∑
k=1

〈AsQφk, φk〉 = Tr(AsQ) ≤ ‖AsQ‖Tr ≤ ‖As+αQ‖B(H)‖A−α‖Tr.

This is (2.10). Similarly, (2.11) is proved by

‖A s
2Q

1
2 ‖2HS =

∞∑
k=1

λsk〈Qφk, φk〉 =
∞∑
k=1

〈Qλ−
1
2

k φk, λ
s+ 1

2
k φk〉

=
∞∑
k=1

〈As+ 1
2QA−

1
2φk, φk〉 = Tr(As+

1
2QA−

1
2 ) ≤ ‖As+ 1

2QA−
1
2 ‖Tr.

To show (2.12) we assume that Q has the same eigenvectors φk with eigenvalues
γk. Then

AsQx =
∞∑
k=1

λskγk〈x, φk〉φk,

and hence

‖AsQ‖Tr ≤
∞∑
k=1

λskγk =
∞∑
k=1

‖A s
2Q

1
2φk‖2 = ‖A s

2Q
1
2 ‖2HS,

which shows the first equality in (2.12) in view of (2.10). The second equality in
(2.12) can be shown in a similar fashion. �

Finally, we define C2
b(H,R) to be the set of all real-valued, twice Fréchet differen-

tiable functions G, whose first and second derivatives are continuous and bounded.
By the Riesz representation theorem, we may identify the first derivative DG(x) at
x ∈ H with an element G′(x) ∈ H such that

DG(x)y = 〈G′(x), y〉, y ∈ H,

and the second derivative D2G(x) with a selfadjoint linear operator G′′(x) ∈ B(H)
such that

D2G(x)(y, z) = 〈G′′(x)y, z〉, y, z ∈ H.

We say that G ∈ C2(H,R) if G, G′, and G′′ are continuous, that is, G ∈ C(H,R),
G′ ∈ C(H,H), and G′′ ∈ C(H,B(H)). Thus, we define

C2
b(H) :=

{
G ∈ C2(H,R) : ‖G‖C2

b(H) <∞
}
,

with the seminorm

‖G‖C2
b(H) := sup

x∈H
‖G′(x)‖H + sup

x∈H
‖G′′(x)‖B(H).

Note that we do not assume that the function G itself is bounded.
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3. Error Representation

In this section we derive a representation of the weak error in the general frame-
work. In the following sections we use this to obtain the weak convergence order
for finite element approximations of various equations.

If condition (3.5) below holds, then there is a unique weak solution of

dY (t) = E(T − t)B dW (t), t ∈ (0, T ]; Y (0) = E(T )X0,

which is given by

Y (t) = E(T )X0 +
∫ t

0

E(T − s)B dW (s), t ∈ [0, T ].

Notice that X(T ) = Y (T ), where X is given by (1.2). Similarly, we define

Yh(t) = Eh(T )Xh0 +
∫ t

0

Eh(T − s)Bh dW (s), t ∈ [0, T ],

and note that Xh(T ) = Yh(T ), where Xh is given by (1.4). We also consider the
auxiliary problem

dZ(t) = E(T − t)B dW (t), t ∈ (τ, T ]; Z(τ) = ξ,

where ξ is an Fτ -measurable random variable. Its unique weak solution is given by

Z(t, τ, ξ) = ξ +
∫ t

τ

E(T − s)B dW (s), t ∈ [τ, T ].(3.1)

For G ∈ C2
b(H,R), we define a function u : H × [0, T ]→ R by

u(x, t) = E
(
G(Z(T, t, x))

)
.

It follows from (3.1) that its partial derivatives are given by

ux(x, t) = E
(
G′(Z(T, t, x))

)
,(3.2)

uxx(x, t) = E
(
G′′(Z(T, t, x))

)
.(3.3)

It is known (see, for example, [2, Chapters 3 and 6]) that u is a solution to Kol-
mogorov’s equation

ut(x, t) +
1
2

Tr
(
uxx(x, t)E(T − t)BQB∗E(T − t)∗

)
= 0, (x, t) ∈ H × [0, T ),

u(x, T ) = G(x), x ∈ H.

(3.4)

We are now ready to prove a representation formula for the weak error.

Theorem 3.1. If

(3.5) Tr
(∫ T

0

E(t)BQB∗E(t)∗ dt
)
<∞
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and G ∈ C2
b(H,R), then the weak error eh(T ) in (1.5) has the representation

eh(T ) = E
(
u(Yh(0), 0)− u(Y (0), 0)

)
+

1
2
E
∫ T

0

Tr
(
uxx(Yh(t), t)

×
[
Eh(T − t)Bh + E(T − t)B

]
Q
[
Eh(T − t)Bh − E(T − t)B

]∗)dt
(3.6)

= E
(
u(Yh(0), 0)− u(Y (0), 0)

)
+

1
2
E
∫ T

0

Tr
(
uxx(Yh(t), t)

×
[
Eh(T − t)Bh − E(T − t)B

]
Q
[
Eh(T − t)Bh + E(T − t)B

]∗)dt.
(3.7)

Proof. Condition (3.5) guarantees that the stochastic convolution in (1.2) exists.
Since Eh(t)Bh acts in a finite-dimensional space, a condition analogous to (3.5)
holds and hence (1.4) exists. As in [1, Theorem 9.8], if ξ is Ft-measurable, then

(3.8) u(ξ, t) = E
(
G(Z(T, t, ξ))

∣∣∣Ft).
Therefore, by the law of double expectation,

E
(
u(ξ, t)

)
= E

(
E
(
G(Z(T, t, ξ))

∣∣∣Ft)) = E
(
G(Z(T, t, ξ))

)
.

Thus, with ξ = Y (0) = E(T )X0, and since Y (T ) = X(T ),

E
(
u(Y (0), 0)

)
= E

(
G(Z(T, 0, Y (0))

)
= E

(
G(Y (T ))

)
= E

(
G(X(T ))

)
and, with ξ = Yh(T ),

E
(
u(Yh(T ), T )

)
= E

(
G(Z(T, T, Yh(T )))

)
= E

(
G(Yh(T ))

)
= E

(
G(Xh(T ))

)
.

Hence,

eh(T ) = E
(
G(Xh(T ))−G(X(T ))

)
= E

(
u(Yh(T ), T )− u(Y (0), 0)

)
= E

(
u(Yh(0), 0)− u(Y (0), 0)

)
+ E

(
u(Yh(T ), T )− u(Yh(0), 0)

)
.

(3.9)

Using Itô’s formula for u(Yh(t), t) and Kolmogorov’s equation (3.4) we get

E
(
u(Yh(T ), T )− u(Yh(0), 0)

)
= E

∫ T

0

{
ut(Yh(t), t)

+
1
2

Tr
(
uxx(Yh(t), t)[Eh(T − t)Bh]Q[Eh(T − t)Bh]∗

)}
dt

=
1
2
E
∫ T

0

Tr
(
uxx(Yh(t), t)

×
{

[Eh(T − t)Bh]Q[Eh(T − t)Bh]∗ − E(T − t)BQB∗E(T − t)∗
})

dt.
(3.10)
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(Note that Bh ∈ B(U,H) with Bh : U → Vh, Eh(s) : Vh → Vh, and that we consider
Eh(s)Bh as an operator in B(U,H). Since Eh(s) acts only on Vh the corresponding
adjoint [Eh(s)Bh]∗ is not equal to B∗hEh(s)∗.) Now consider the identity

uxx(ξ, r)
{

[Eh(s)Bh]Q[Eh(s)Bh]∗ − E(s)BQB∗E(s)∗
}

= uxx(ξ, r)[Eh(s)Bh − E(s)B]Q[Eh(s)Bh]∗

+ uxx(ξ, r)E(s)BQ[Eh(s)Bh − E(s)B]∗ =: S1 + S2.

The first term has finite trace since, for example, Eh(s)Bh has finite trace and so
has the second term, since E(s)BQB∗E(s)∗ has finite trace for almost every s by
(3.5). Therefore, using (2.8), (2.5), and that Q, uxx(ξ, r) are selfadjoint, we get

Tr(S1 + S2) = Tr(S1) + Tr(S2) = Tr(S1) + Tr(S∗2 )

= Tr(S1) + Tr([Eh(s)Bh − E(s)B]QB∗E(s)∗uxx(ξ, r))

= Tr(S1) + Tr(uxx(ξ, r)[Eh(s)Bh − E(s)B]QB∗E(s)∗)

= Tr
(
uxx(ξ, r)[Eh(s)Bh − E(s)B]Q[Eh(s)Bh + E(s)B]∗

)
(3.11)

= Tr
(

[Eh(s)Bh + E(s)B]Q[Eh(s)Bh − E(s)B]∗uxx(ξ, r)
)

= Tr
(
uxx(ξ, r)[Eh(s)Bh + E(s)B]Q[Eh(s)Bh − E(s)B]∗

)
.(3.12)

The proof is completed by inserting (3.11) or (3.12) into (3.10) and using (3.9). �

4. Application to Parabolic Equations

In this section we apply the error representation in Section 3 to finite element
approximations of the linear stochastic heat and Cahn-Hilliard equations.

4.1. The stochastic heat equation. Let D ⊂ Rd be a bounded domain, let
Λ := −∆, where ∆ =

∑d
k=1 ∂

2/∂ξ2
k is the Laplace operator, and set D(Λ) =

H2(D) ∩ H1
0 (D). Let U = H := L2(D) with norm ‖ · ‖ and inner product 〈·, ·〉,

B := I and A := Λ. Then (1.1) takes the form of the stochastic heat equation
(1.6). In order to quantify spatial regularity we introduce the following spaces and
norms. Let

Ḣα := D(Λα/2), |v|α := ‖Λα/2v‖ =
( ∞∑
j=1

λαj 〈v, φj〉2
)1/2

, α ∈ R,

where {(λj , φj)}∞j=1 are the eigenpairs of Λ with orthonormal eigenvectors. Then
Ḣα ⊂ Ḣβ for α ≥ β. It is known that Ḣ0 = L2(D), Ḣ1 = H1

0 (D), Ḣ2 =
H2(D) ∩ H1

0 (D) with equivalent norms and that Ḣ−β can be identified with the
dual space (Ḣβ)∗ for β > 0, see [13, Chapt. 3].

Let {Sh}h>0 be a family of function spaces consisting of continuous piecewise
polynomials of degree ≤ r − 1 with respect to a family of triangulations of D
and such that Sh ⊂ H1

0 (D). The parameter h is the maximal mesh size of the
triangulation and r may be referred to as the order of the finite element method.
Let Ph : H → Sh denote the orthogonal projection and let Λh : Sh → Sh be the
”discrete Laplacian” defined by

〈Λhψ, χ〉 = 〈∇ψ,∇χ〉, ∀ψ, χ ∈ Sh.
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Our basic assumption on the finite element method is that the Ritz projection
Rh : Ḣ1 → Sh defined as

(4.1) 〈∇Rhv,∇χ〉 = 〈∇v,∇χ〉, ∀v ∈ Ḣ1, χ ∈ Sh,

satisfies the error bound

(4.2) ‖Rhv − v‖ ≤ Chβ |v|β , v ∈ Ḣβ , 1 ≤ β ≤ r.

This holds, for example, with r = 2 if D is a convex polygonal domain and Sh
consists of piecewise linear functions. See [13] for further details.

If we set Vh := Sh, Bh := Ph, Ah := Λh, and Xh0 := PhX0, then (1.4) takes the
form of the semidiscrete finite element approximation (1.7). We have the following
result for the weak error.

Theorem 4.1. Let X and Xh be the solutions of (1.6) and (1.7), respectively.
Let g ∈ C2

b(H,R) and assume that ‖A
β−1

2 Q
1
2 ‖HS = ‖Λ

β−1
2 Q

1
2 ‖HS < ∞ for some

β ∈ (0, 1]. Then there are C > 0, h0 > 0, depending on g, X0, Q, β, and T but not
on h, such that for h ≤ h0,∣∣E(g(Xh(T ))− g(X(T ))

)∣∣ ≤ Ch2β | log(h)|.

If, in addition X0 ∈ L1(Ω, Ḣ2β), then C is independent of T as well.

Proof. If ‖A
β−1

2 Q
1
2 ‖HS < ∞ for some β ∈ (0, 1], then (3.5) holds, see [14]. This

guarantees that X(t) and Xh(t) are defined. Let Fh(t) := Eh(t)Ph − E(t) be
the deterministic error operator with h ≤ h0 small enough. We recall the error
estimates, see [13, Chapt. 3],

(4.3) ‖Fh(t)v‖ ≤ Chst−
s−γ

2 |v|γ , 0 ≤ γ ≤ s ≤ r.

We use Theorem 3.1 to estimate the weak error with G := g. First, by the chain
rule, and Yh(0)− Y (0) = Eh(T )PhX0 − E(T )X0 = Fh(T )X0,

E (u(Yh(0), 0)− u(Y (0), 0))

= E
∫ 1

0

〈ux(Y (0) + s(Yh(0)− Y (0)), 0), Yh(0)− Y (0)〉ds

= E
∫ 1

0

〈ux(E(T )X0 + sFh(T )X0, 0), Fh(T )X0〉ds.

Thus, using (3.2) and (4.3), we obtain

|E (u(Yh(0), 0)− u(Y (0), 0))| ≤ sup
x∈H
‖ux(x, 0)‖E

(
‖Fh(T )X0‖

)
≤ Ch2βT−

2β−γ
2 E

(
|X0|γ

)
sup
x∈H
‖g′(x)‖, 0 ≤ γ ≤ 2β.

If γ = 2β there is no dependence on T . Next, we estimate the second term (3.6)
in the error representation in Theorem 3.1. Since E(t), Eh(t)Ph, and hence also
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Fh(t), are selfadjoint, we obtain by means of (2.6), (2.7), (2.8), and (2.9),∣∣∣E∫ T

0

Tr
(
uxx(Yh(t), t)

× [Eh(T − t)Bh + E(T − t)B]Q[Eh(T − t)Bh − E(T − t)B]∗
)

dt
∣∣∣

=
∣∣∣E∫ T

0

Tr
(
uxx(Yh(t), t)[Eh(T − t)Ph + E(T − t)]∗

×A
1−β

2 A
β−1

2 Q
1
2Q

1
2A

β−1
2 A

1−β
2 Fh(T − t)

)
dt
∣∣∣

=
∣∣∣E∫ T

0

Tr
(
uxx(Yh(t), t)(A

1−β
2 [Eh(T − t)Ph + E(T − t)])∗

×A
β−1

2 Q
1
2Q

1
2A

β−1
2 A

1−β
2 Fh(T − t)

)
dt
∣∣∣

≤ E
∫ T

0

‖uxx(Yh(t), t)(A
1−β

2 [Eh(T − t)Ph + E(T − t)])∗A
β−1

2 Q
1
2 ‖HS

× ‖Q 1
2A

β−1
2 A

1−β
2 Fh(T − t)‖HS dt

≤ sup
(x,t)∈H×[0,T ]

‖uxx(x, t)‖B(H)‖A
β−1

2 Q
1
2 ‖2HS(4.4)

×
∫ T

0

‖A
1−β

2 (Eh(t)Ph + E(t))‖B(H)‖A
1−β

2 Fh(t)‖B(H) dt.(4.5)

Since ‖A 1
2 vh‖ = ‖∇vh‖ = ‖A

1
2
h vh‖ for vh ∈ Sh, we conclude ‖Aδvh‖ ≤ ‖Aδhvh‖ for

vh ∈ Sh, δ ∈ [0, 1
2 ], and using also the analyticity of the semigroups we have

(4.6) ‖Aδ(Eh(t)Ph + E(t))‖B(H) ≤ Ce−ωtt−δ, δ ∈ [0, 1
2 ].

To estimate ‖A
1−β

2 Fh(t)‖B(H) we use interpolation. By analyticity, as above,

(4.7) ‖AδFh(t)‖B(H) ≤ Ct−δ, δ ∈ [0, 1
2 ].

Interpolation between (4.7) with δ = 1
2 and (4.3) with s = 2 and γ = 0 yields

‖A
1−β

2 Fh(t)‖B(H) ≤ ‖Fh(t)‖βB(H)‖A
1
2Fh(t)‖1−βB(H) ≤ Ch

2βt−
1+β
2 , β ∈ [0, 1].

Therefore, for β ∈ (0, 1] one may estimate the integral in (4.5) as follows∫ T

0

‖A
1−β

2 (Eh(t)Ph + E(t))‖B(H)‖A
1−β

2 Fh(t)‖B(H) dt

=

(∫ h2

0

+
∫ T

h2

)
‖A

1−β
2 (Eh(t)Ph + E(t))‖B(H)‖A

1−β
2 Fh(t)‖B(H) dt

≤ C
∫ h2

0

t−
1−β

2 t−
1−β

2 dt+ C

∫ T

h2
e−ωtt−

1−β
2 h2βt−

1+β
2 dt ≤ Ch2β | log(h)|.

Finally, using (3.3), we obtain

(4.8) sup
(x,t)∈H×[0,T ]

‖uxx(x, t)‖B(H) ≤ sup
x∈H
‖g′′(x)‖B(H),

and the proof is complete in view of (4.4). �
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By inspection of the above proof we see that the error estimate is∣∣E(g(Xh(T ))− g(X(T ))
)∣∣ ≤ Ch2βT−

2β−γ
2 E

(
|X0|γ

)
sup
x∈H
‖g′(x)‖

+ Ch2β | log(h)|β−1 sup
x∈H
‖g′′(x)‖‖A

β−1
2 Q

1
2 ‖2HS.

Similar remarks can be made about the theorems to follow.
Theorem 4.1 does not allow β > 1. This is satisfactory if r = 2, but for higher

order elements, that is, r > 2, it is insufficient. Under a slightly stronger condition
on A and Q we now extend the result to the case β > 1.

Theorem 4.2. Let X and Xh be the solutions of (1.6) and (1.7), respectively. Let
g ∈ C2

b(H,R) and assume that ‖Aβ−1Q‖Tr = ‖Λβ−1Q‖Tr <∞ for some β ∈ [1, r2 ].
Then there are C > 0, h0 > 0, depending on g, X0, Q, β, and T but not on h, such
that for h ≤ h0, ∣∣E(g(Xh(T ))− g(X(T ))

)∣∣ ≤ Ch2β | log(h)|.

If, in addition X0 ∈ L1(Ω, Ḣ2β), then C is independent of T as well.

Proof. If ‖Aβ−1Q‖Tr <∞ for some β ∈ [1, r2 ], then (3.5) holds by Theorem 2.1 and
[14], so that X(t) and Xh(t) are defined. From (4.3) with γ = 2β − 2 ≤ s = 2β it
follows that

(4.9) ‖Fh(t)A1−β‖B(H) ≤ Ch2βt−1, 1 ≤ β ≤ r

2
,

and, by (4.7) and since β ≥ 1,

(4.10) ‖Fh(t)A1−β‖B(H) ≤ ‖Fh(t)‖B(H)‖A1−β‖B(H) ≤ C.

The first term in the error representation in Theorem 3.1 can be estimated the same
way as in Theorem 4.1. To bound the second term (3.7) we use (4.6) with δ = 0
and (2.5) to obtain∣∣∣E∫ T

0

Tr
(
uxx(Yh(t), t)

× [Eh(T − t)Bh − E(T − t)B]Q[Eh(T − t)Bh + E(T − t)B]∗
)

dt
∣∣∣

=
∣∣∣E∫ T

0

Tr
(
uxx(Yh(t), t)

× Fh(t)A1−βAβ−1Q[Eh(T − t)Ph + E(T − t)]∗
)

dt
∣∣∣

≤ C sup
(x,t)∈H×[0,T ]

‖uxx(x, t)‖B(H)‖Aβ−1Q‖Tr

∫ T

0

‖Fh(t)Aβ−1‖B(H)e
−ωt dt.

Using (4.9) and (4.10) we now have∫ T

0

‖Fh(t)A1−β‖B(H)e
−ωt dt =

(∫ h2β

0

+
∫ T

h2β

)
‖Fh(t)A1−β‖B(H)e

−ωt dt

≤ C
∫ h2β

0

dt+ Ch2β

∫ T

h2β
t−1e−ωt dt ≤ Ch2β | log(h)|,

and the proof is complete in view of (4.8). �
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In [14] the strong rate of convergence is found to be O(hβ) under the condition
‖Λ

β−1
2 Q

1
2 ‖HS <∞. Theorem 2.1 shows that ‖Λβ−1Q‖Tr <∞ provides a sufficient

condition for this and the conditions coincide if β = 1 or if Λ and Q commute.
In the special case Q = I a simple calculation using the asymptotics λj ∼ j2/d,

j →∞, of the eigenvalues of Λ shows that the spatial dimension d has to be 1 and
β < 1

2 , which gives a weak order of almost h. If Tr(Q) < ∞, then we may take
β = 1 and hence the rate of weak convergence is at least O(h2| log(h)|).

4.2. The linear Cahn-Hilliard-Cook equation. Let D be a bounded domain in
Rd for d ≤ 3. Let H = U be the subspace of L2(D), which is orthogonal to constants
with norm ‖ · ‖ and inner product 〈·, ·〉, i.e., H = U = {v ∈ L2 : 〈v, 1〉 = 0}, and let
B = I. Let Hs = Hs(D) be the usual Sobolev space. We define the linear operator
Λ := −∆ with domain of definition

D(Λ) =
{
v ∈ H2 ∩H :

∂v

∂n
= 0 on ∂D

}
.

Then Λ is a selfadjoint, positive definite, densely defined operator on H. If we
set A := Λ2, then −A generates an analytic semigroup on H. We also define
Ḣs = D(Λ

s
2 ) with norms |v|s = ‖Λ s

2 v‖ for real s. It is well known that, for integer
s ≥ 0, Ḣs is a subspace of Hs∩H characterized by certain boundary conditions and
that the norm | · |s is equivalent to the standard norm ‖ · ‖Hs on Ḣs. In particular,
we have Ḣ1 = H1 ∩H and the norm |v|1 = ‖Λ 1

2 v‖ = ‖∇v‖ is equivalent to ‖v‖H1

on Ḣ1. With these definitions (1.1) takes the form of the linear Cahn-Hilliard-Cook
equation (1.15).

With Sh ⊂ H1 being a family of finite dimensional subspaces we set Vh := {χ ∈
Sh : 〈χ, 1〉 = 0} and define Λh : Vh → Vh by

〈Λhχ, η〉 = 〈∇χ,∇η〉, χ, η ∈ Vh.

Finally, we set Ah := Λ2
h, Bh := Ph : H → Vh the orthogonal projection, and set

Xh0 := PhX0. Then (1.3) takes the form (1.16).
As for the heat equation, we assume that the Ritz projection Rh : Ḣ1 → Vh

defined as in (4.1) satisfies an error estimate of the form (4.2). This holds, for
example, with r = 2 if D is a convex polygonal domain and with Sh being the
standard family of finite element spaces consisting of continuous piecewise linear
functions on a regular family of triangulations of D with maximum mesh size h.

Theorem 4.3. Let X and Xh be the solutions of (1.15) and (1.16), respectively.
Let g ∈ C2

b(H,R), assume that 0 < β ≤ min(2, r2 ), and, for some K,

‖A
β−2

2 Q‖Tr = ‖Λβ−2Q‖Tr ≤ K,(4.11)

‖A
β−2

2
h PhQ‖Tr = ‖Λβ−2

h PhQ‖Tr ≤ K, 0 < h ≤ 1.(4.12)

Then there are C > 0, h0 > 0, depending on g, X0, K, β, and T but not on h,
such that for h ≤ h0,∣∣E(g(Xh(T ))− g(X(T ))

)∣∣ ≤ Ch2β | log(h)|.

If, in addition X0 ∈ L1(Ω, Ḣ2β), then C is independent of T as well.
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Proof. If ‖A
β−2

2 Q‖Tr < ∞ for some β ≥ 0, then (3.5) holds, see [11], and X and
Xh exist. Let Fh(t) := Eh(t)Ph − E(t) be the deterministic error operator with
h ≤ h0 small enough. We recall from [6] the error estimate

(4.13) ‖Fh(t)v‖ ≤ Chst−
s−γ

4 |v|γ , 0 ≤ γ ≤ s ≤ r.

We use Theorem 3.1 to estimate the weak error. As in the proof of Theorem 4.1
we get, for 0 ≤ γ ≤ 2β ≤ r,∣∣E(u(Yh(0), 0)− u(Y (0), 0)

)∣∣ ≤ Ch2βT−
2β−γ

4 E
(
|X0|γ

)
sup
x∈H
‖g′(x)‖.

To estimate the second term (3.6) in the error representation we proceed as in (4.4),

(4.5). By inserting both A±
β−2

2 = Λ±(β−2) and A
± β−2

2
h = Λ±(β−2)

h , we obtain this
time ∣∣∣E∫ T

0

Tr
(
uxx(Yh(t), t)

× [Eh(T − t)Bh + E(T − t)B]Q[Eh(T − t)Bh − E(T − t)B]∗
)

dt
∣∣∣

=
∣∣∣E∫ T

0

Tr
(
uxx(Yh(t), t)[A

2−β
2

h Eh(T − t)A
β−2

2
h Ph

+A
2−β

2 E(T − t)A
β−2

2 ]QFh(T − t)∗
)

dt
∣∣∣

≤ sup
(x,t)∈H×[0,T ]

‖uxx(x, t)‖B(H)

(
‖A

β−2
2

h PhQ‖Tr + ‖A
β−2

2 Q‖Tr

)
×
∫ T

0

(
‖A

2−β
2

h Eh(t)Ph‖B(H) + ‖A
2−β

2 E(t)‖B(H)

)
‖Fh(t)‖B(H) dt.

In view of (4.8) and (4.11), (4.12) it remains to bound the integral. By analyticity
of the semigroups we have

(4.14) ‖Aδh(Eh(t)Ph‖B(H) + ‖AδE(t))‖B(H) ≤ Ce−ωtt−δ, δ ≥ 0.

Therefore, by using (4.14) with δ = 2−β
2 ∈ [0, 1), that is, β ∈ (0, 2], and (4.13) with

s = 0 and s = 2β ≤ r, γ = 0,∫ T

0

(
‖A

2−β
2

h Eh(t)Ph‖B(H) + ‖A
2−β

2 E(t)‖B(H)

)
‖Fh(t)‖B(H) dt

=
(∫ h4

0

+
∫ T

h4

)
‖A

2−β
2 [Eh(t)Ph + E(t)]‖B(H)‖Fh(t)‖B(H) dt

≤ C
∫ h4

0

t−
2−β

2 dt+ C

∫ T

h4
e−ωtt−

2−β
2 h2βt−

2β
4 dt ≤ Ch2β | log(h)|.

This completes the proof. �

In [11] the strong rate of convergence is found to be O(hβ | log(h)|) under the
condition ‖A

β−2
4 Q

1
2 ‖HS < ∞. Theorem 2.1 shows that (4.11) provides a sufficient

condition for this and that the conditions coincide if A and Q commute or if β = 2,
that is, Tr(Q) <∞.

It remains to identify conditions under which we have (4.12) together with (4.11).
This is addressed in the next theorem.
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Theorem 4.4. Let X and Xh be the solutions of (1.15) and (1.16), respectively.
Let g ∈ C2

b(H,R) and make one of the following assumptions.
(i) Assume that Q = I, 0 < β ≤ min(2, r2 ), and ‖Λβ−2‖Tr <∞.
(ii) Assume that Tr(Q) <∞, r = 4, and β = 2.

(iii) Assume that r ≥ 3, 3
2 ≤ β ≤ min(2, r2 ), and ‖Λβ−2Q‖Tr <∞.

(iv) Assume that Sh is based on a quasi-uniform mesh family and that, for some
α > 0, we have 0 < β ≤ min(2, r2 ), 0 ≤ β − 2 + α ≤ 1 and

(4.15) ‖Λβ−2+αQ‖B(H) <∞, ‖Λ−α‖Tr <∞.

Then there are C > 0, h0 > 0, depending on g, X0, Q, β, and T but not on h,
such that for h ≤ h0,∣∣E(g(Xh(T ))− g(X(T ))

)∣∣ ≤ Ch2β | log(h)|.

If, in addition X0 ∈ L1(Ω, Ḣ2β), then C is independent of T as well.

Proof. We must show that (4.11) and (4.12) hold in each of the four cases.
(i) The eigenvalues of Λh and Λ satisfy λh,j ≥ λj and ‖Ph‖B(H) ≤ 1, so that

‖Λ−αh Ph‖Tr ≤ ‖Λ−αh ‖Tr =
Nh∑
j=1

λ−αh,j ≤
∞∑
j=1

λ−αj = ‖Λ−α‖Tr, α ≥ 0.(4.16)

With α = 2− β ≥ 0 and Q = I we obtain

‖Λβ−2
h PhQ‖Tr ≤ ‖Λβ−2

h ‖Tr ≤ ‖Λβ−2‖Tr = ‖Λβ−2Q‖Tr, 0 < h ≤ 1.

In case (ii) we have

‖Λβ−2
h PhQ‖Tr = ‖PhQ‖Tr ≤ ‖Q‖Tr = ‖Λβ−2Q‖Tr, 0 < h ≤ 1.

For case (iii) we use the fact that

‖Λ−δh PhΛδ‖ ≤ C, 0 ≤ δ ≤ 1
2
.

For δ = 1
2 this follows by using ‖Λ

1
2
hwh‖ = ‖Λ 1

2wh‖ for wh ∈ Sh in the calculation

‖Λ−
1
2

h Phf‖ = sup
vh∈Sh

|〈Λ−
1
2

h Phf, vh〉|
‖vh‖

= sup
vh∈Sh

|〈f,Λ−
1
2

h vh〉|
‖vh‖

= sup
wh∈Sh

|〈f, wh〉|

‖Λ
1
2
hwh‖

= sup
wh∈Sh

|〈f, wh〉|
‖Λ 1

2wh‖
≤ sup
v∈Ḣ0

|〈f,Λ− 1
2 v〉|

‖v‖
= ‖Λ− 1

2 f‖.

The case δ = 0 is obvious and the general case follows by interpolation. Hence,
with δ = 2− β ∈ [0, 1

2 ], that is, 3
2 ≤ β ≤ 2, we have

‖Λβ−2
h PhQ‖Tr = ‖Λβ−2

h PhΛ2−βΛβ−2Q‖Tr

≤ ‖Λ−(2−β)
h PhΛ2−β‖B(H)‖Λβ−2Q‖Tr ≤ C‖Λβ−2Q‖Tr.

Finally, for case (iv) we first note that Theorem 2.1 shows that (4.15) implies
(4.11). For quasi-uniform mesh families we have the inverse inequality ‖∇vh‖ ≤
Ch−1‖vh‖, vh ∈ Sh, so that

‖Λh‖B(H) = max
1≤j≤Nh

λh,j = max
vh∈Sh

‖∇vh‖2

‖vh‖2
≤ Ch−2.
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Hence, using also Rh = Λ−1
h PhΛ and (4.2), we get

‖ΛhPhΛ−1f‖ = ‖ΛhPhΛ−1f − ΛhΛ−1
h PhΛΛ−1f + Phf‖

≤ ‖ΛhPh(I − Λ−1
h PhΛ)Λ−1f‖+ ‖Phf‖

≤ Ch−2‖(I −Rh)Λ−1f‖+ ‖f‖
≤ Ch−2Ch2‖f‖+ ‖f‖ ≤ C‖f‖.

We conclude

‖ΛδhPhΛ−δ‖B(H) ≤ C, 0 ≤ δ ≤ 1.

With δ = β − 2 + α ∈ [0, 1] and (4.16) we obtain

‖Λβ−2
h PhQ‖Tr ≤ ‖Λ−αh ‖Tr‖Λβ−2+α

h PhΛ−(β−2+α)‖B(H)‖Λβ−2+αQ‖B(H)

≤ C‖Λ−α‖Tr‖Λβ−2+αQ‖B(H).

�

Finally, we comment on two of the cases of the previous theorem.

(i) A simple calculation using the asymptotics λj ∼ j2/d, j → ∞, shows that
‖Λβ−2‖Tr <∞ if β < 2− d

2 .
(iv) As mentioned in (i) above, we have ‖Λ−α‖Tr < ∞ if α > d

2 and hence it
is possible to choose β ∈ (0, 3 − d

2 ). In particular, we may have β = 1 for
d = 1, 2, 3 and thus for r = 2 the (almost) optimal order can be achieved
in this case.

5. Application to a hyperbolic equation

In this section we apply the general theory to the stochastic wave equation. As
for the heat equation in Subsection 4.1 we use the space L2(D) with norm ‖·‖ and
inner product 〈·, ·〉 and the Laplace operator Λ = −∆ with D(Λ) = H2(D)∩H1

0 (D).
We introduce, using the notation from Subsection 4.1,

Hα := Ḣα × Ḣα−1, |||v|||2α := |v1|2α + |v2|2α−1, α ∈ R,

and set H := H0 = Ḣ0 × Ḣ−1 with corresponding norm |||·|||= |||·|||0 and inner
product (·, ·). We define U := Ḣ0 = L2(D) and

A :=
[

0 −I
Λ 0

]
, B :=

[
0
I

]
, X :=

[
X1

X2

]
, X0 :=

[
X0,1

X0,2

]
,

with

D(A) =
{
x ∈ H : Ax =

[
x2

−Λx1

]
∈ H = Ḣ0 × Ḣ−1

}
= H1 = Ḣ1 × Ḣ0.

Here Λ is regarded as an operator Ḣ1 → Ḣ−1. The operator −A is the generator
of a strongly continuous semigroup E(t) = e−tA on H and

E(t) = e−tA =
[

C(t) Λ−1/2S(t)
−Λ1/2S(t) C(t)

]
,
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where C(t) = cos(tΛ1/2) and S(t) = sin(tΛ1/2) are the so-called cosine and sine
operators. For example, using {(λj , φj)}∞j=1, orthonormal eigenpairs of Λ, we have

Λ−1/2S(t)v = Λ−1/2 sin(tΛ1/2)v =
∞∑
j=1

λ
−1/2
j sin(tλ1/2

j )〈v, φj〉φj .

With the above definition, the stochastic wave equation (1.17) can be written in
the form of (1.1).

Let Sh ⊂ Ḣ1, Λh, Ph be as in Subsection 4.1 with the error estimate (4.2). The
semidiscrete approximation of (1.17) is

(5.1)
dXh,1 −Xh,2 dt = 0, t > 0;
dXh,2 + ΛhXh,1 dt = PhdW, t > 0;

Xh,1(0) = PhX0,1,

Xh,2(0) = PhX0,2,

We put this is the form (1.3) by defining Vh := Sh × Sh and

Ah :=
[

0 −I
Λh 0

]
, Bh :=

[
0
Ph

]
, Xh0 = PhX0.

It can be shown that −Ah generates a C0-semigroup Eh(t) given by

Eh(t) = e−tAh =

[
Ch(t) Λ−1/2

h Sh(t)
−Λ1/2

h Sh(t) Ch(t)

]

with Ch(t) = cos(tΛ1/2
h ), Sh(t) = sin(tΛ1/2

h ), which can be expressed in terms of
the eigenpairs {(λh,j , φh,j)}Nhj=1 of Λh.

Our weak convergence result follows.

Theorem 5.1. Let X and Xh be the solutions of (1.17) and (5.1), respectively. Let
g ∈ C2

b(Ḣ0,R) and assume that ‖Λβ− 1
2QΛ−

1
2 ‖Tr < ∞ and that X0 ∈ L1(Ω, H2β)

for some β ∈ [0, r+1
2 ]. Then, there are C > 0, h0 > 0, depending on g, X0, Q, and

T but not on h, such that for h ≤ h0,∣∣E(g(Xh,1(T ))− g(X1(T ))
)∣∣ ≤ Ch r

r+1 2β .

Proof. If ‖Λβ− 1
2QΛ−

1
2 ‖Tr <∞ for some β ∈ (0, r+1

2 ], then (3.5) holds by Theorem
2.1 and [10]. Let P1 denote the canonical projection H → Ḣ0. Define the function
G : H → R by G(x) := g(P1x) = g(x1), for x = [x1, x2]> ∈ H. Then, by (3.8), for
y, z ∈ H,

(5.2) (ux(Y (t), t), y) = E
(
〈g′(P1Z(Y (t), t, T )), P1y〉

∣∣Ft)
and

(5.3) (uxx(Y (t), t)y, z) = E
(
〈g′′(P1Z(Y (t), t, T ))P1y, P1z〉

∣∣Ft).
Let us introduce the error operators

Kh(t) := Λ−
1
2

h Sh(t)Ph − Λ−
1
2S(t),

Gh(t) := Ch(t)Ph − C(t).

From [10] we quote an error estimate for the finite element approximation of the
deterministic wave equation

ü+ Λu = 0, t > 0; u(0) = w1, u̇(0) = w2,
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with solution u(t) = C(t)w1 + Λ−
1
2S(t)w2. With w = [w1, w2]> we have

(5.4) ‖Gh(t)w1 +Kh(t)w2‖ ≤ C(T )h
r
r+1 s|||w|||s, t ∈ [0, T ], s ∈ [0, r + 1].

In particular, with w1 = 0,

‖Kh(t)w2‖ ≤ C(T )h
r
r+1 s|w2|s−1, w2 ∈ Ḣs−1,

or
‖Kh(t)Λ

1−s
2 v‖ ≤ C(T )h

r
r+1 s‖v‖, v ∈ Ḣ1−s.

The operator Kh(t)Λ
1−s
2 is bounded on Ḣ0 for s ≥ 1. For 0 ≤ s ≤ 1 the latter

estimate shows that Kh(t)Λ
1−s
2 extends uniquely to a bounded linear operator on

Ḣ0 and we use the same notation for the extended operator. Hence, we may write
with the operator norm and s = 2β,

(5.5) ‖Kh(t)Λ
1
2−β‖B(Ḣ0) ≤ C(T )h

r
r+1 2β , t ∈ [0, T ], 0 ≤ 2β ≤ r + 1.

We use Theorem 3.1 with G(·) = g(P1·). Since Xh,1(0) = PhX1(0) and Xh,2(0) =
PhX2(0), we have from (5.2) and (5.4) with s = 2β ≤ r + 1

|E (u(Yh(0), 0)− u(Y (0), 0)) |

=
∣∣∣E(∫ 1

0

(ux(Y (0) + s(Yh(0)− Y (0)), 0), Yh(0)− Y (0)) ds
)∣∣∣

=
∣∣∣ ∫ 1

0

E
(
〈g′(P1Z(Y (0) + s(Yh(0)− Y (0)))), P1(Yh(0)− Y (0))〉

∣∣F0

)
ds
∣∣∣

≤ sup
x∈Ḣ0

‖g′(x)‖E
(
‖P1(Yh(0)− Y (0))‖

)
= sup
x∈Ḣ0

‖g′(x)‖E
(
‖Gh(T )X1(0) +Kh(T )X2(0)‖

)
≤ sup
x∈Ḣ0

‖g′(x)‖C(T )h
r
r+1 2βE

(
|||X0|||2β

)
.

To bound the second term (3.6) in the error representation in Theorem 3.1 we can
simplify the integrand due to the special choice of G. With y = [y1, y2]> and the
abbreviation s = T − t we calculate, using (5.3),

[Eh(s)Bh − E(s)B]Q[Eh(s)Bh + E(s)B]∗uxx(Yh(t), t)∗y

= E
(
[Eh(s)Bh − E(s)B]Q[Eh(s)Bh + E(s)B]∗P ∗1 g

′′(P1Z(Y (t), t, T ))P1y
∣∣Ft).

We have, using selfadjointness, that

[Eh(s)Bh + E(s)B]∗P ∗1 g
′′(P1Z(Y (t), t, T ))∗P1y

= (P1[Eh(s)Bh + E(s)B])∗g′′(P1Z(Y (t), t, T ))y1

= [Λ−
1
2

h Sh(s)Ph + Λ−
1
2S(s)]g′′(P1Z(Y (t), t, T ))y1.

Therefore it follows that

[Eh(s)Bh − E(s)B]Q[Eh(s)Bh + E(s)B]∗uxx(Yh(t), t)∗y

=

[
Kh(s)Q[Λ−

1
2

h Sh(s)Ph + Λ−
1
2S(s)]g′′(P1Z(Y (t), t, T ))y1

Gh(s)Q[Λ−
1
2

h Sh(s)Ph + Λ−
1
2S(s)]g′′(P1Z(Y (t), t, T ))y1

]
.

Note that the above operator acts only on y1. Therefore, when we compute its trace
as in (2.4) by using an orthonormal basis for H of the form {(ek, 0), (0, fl)}∞k,l=1,
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where {ek} is an orthonormal basis of Ḣ0 and {fk} is an orthonormal basis of Ḣ−1,
only terms involving ek remain. Hence,∣∣∣E(Tr

(
uxx(Yh(t), t)[Eh(s)Bh + E(s)B]Q[Eh(s)Bh − E(s)B]∗

))∣∣∣
=
∣∣∣E(Tr

(
[Eh(s)Bh − E(s)B]Q[Eh(s)Bh + E(s)B]∗uxx(Yh(t), t)∗

))∣∣∣
=
∣∣∣E( ∞∑

k=1

E
(
〈Kh(s)Q[Λ−

1
2

h Sh(s)Ph + Λ−
1
2S(s)]g′′(P1Z(Y (t), t, T ))ek, ek〉

∣∣Ft))∣∣∣
=
∣∣∣E(Tr

(
Kh(s)Q[Λ−

1
2

h Sh(s)Ph + Λ−
1
2S(s)]g′′(P1Z(Y (t), t, T ))

))∣∣∣
≤ ‖Kh(s)Λ

1
2−β‖B(Ḣ0)‖Λ

β− 1
2QΛ−

1
2 ‖Tr

× ‖Λ 1
2 [Λ−

1
2

h Sh(s)Ph + Λ−
1
2S(s)]‖B(Ḣ0) sup

x∈Ḣ0

‖g′′(x)‖B(Ḣ0).

Noting that ‖Λ 1
2 vh‖ = ‖∇vh‖ = ‖Λ

1
2
h vh‖ for vh ∈ Sh, and using (5.5), we conclude∣∣∣E(Tr

(
uxx(Yh(t), t)[Eh(s)Bh + E(s)B]Q[Eh(s)Bh − E(s)B]∗

))∣∣∣
≤ C(T )h

r
r+1 2β‖Λβ− 1

2QΛ−
1
2 ‖Tr sup

x∈Ḣ0

‖g′′(x)‖B(Ḣ0).

Now, we may estimate the second term (3.6),∣∣∣E(∫ T

0

Tr
(
uxx(Yh(t), t)

× [Eh(T − t)Bh + E(T − t)B]Q[Eh(T − t)Bh − E(T − t)B]∗
)

dt
)∣∣∣

≤ C(T )h
r
r+1 2β‖Λβ− 1

2QΛ−
1
2 ‖Tr sup

x∈Ḣ0

‖g′′(x)‖B(Ḣ0).

�

In [10] the strong rate of convergence is found to be O(h
r
r+1β) for β ∈ [0, r + 1]

under the condition ‖Λ
β−1

2 Q
1
2 ‖HS <∞. Theorem 2.1 shows that ‖Λβ− 1

2QΛ−
1
2 ‖Tr <

∞ provides a sufficient condition for this and the conditions coincide if A and Q
commute, in particular, if Q = I.

As a special case, if Q = I, then d = 1 and we may take β < 1
2 . Hence the order

of weak convergence is almost O(h
r
r+1 ).
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