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1 Introduction

Aspect-oriented programming (AOP) aims at capturing crosscutting concerns. Many

crosscutting concerns are orthogonal to the mainline computation that they interacts

with. A few examples of such concerns are profiling, tracing, and memoization. By their

own nature, aspects that implement such orthogonal concerns do not alter the evalua-

tion result of the base program; their computations are manifested in side-effects. We

refer to such aspects as side-effecting aspects (also know as non-interfering aspects [2]

from a data-flow perspective). Side-effecting aspects are particularly useful because or-

thogonal concerns are more likely to be subject to deploying, updating, and removing

from a software system, a situation where AOP solutions are doubly attractive.

Most aspect-oriented programming languages are based on object-oriented lan-

guages, where uncontrolled side-effects are the norm. The recent surge of interests in

introducing aspect-oriented concepts in functional languages [3,16], in particular in

purely functional languages [1,21,18], poses fresh challenges. Although we can hide

the hairy details of state manipulation by using monads [19], it does require advance

planning, which is fundamentally at odds with the concept of obliviousness in AOP.

Adding monadic effects to a pure program entails a comprehensive rewriting; it is

therefore convenient to support side-effecting directly and automate the process via

source-to-source transformation. Such a technique has been pioneered by Lämmel [14]

and is referred to as monadification by Erwig and Ren [5]. In many situations, this

convenience comes at a cost: primitive support for side-effects compromises referential

transparency property and all the nice reasoning properties that derive from it. Our

proposal, on the other hand, eliminates the need for compromise between property

preservation and convenience. This is achieved through a carefully designed weaving

scheme, which preserves the non-interfering nature of side-effecting aspects.

In our previous work on AspectFun [1], an aspect-oriented lazy functional language

with a Haskell-like syntax, we have developed a state-based implementation for control-

flow related advice which uses a reader monad to maintain function execution states

(entry and exit) and employs a monadification step to convert the woven program. In

this paper, we generalize this approach to the language level by providing constructs for

writing side-effecting aspects directly and systematic monadification procedures for im-

plementing them. Specifically, we propose to equip AspectFun aspects with user-defined

mutable variables for performing side-effecting operations and extend its compiler with

a more powerful monadification module based on cached state monad transformers to

realize them.

The general vision is clear: a state monad is employed as the repository for mutable

variables and and all functions are lifted into monadic ones. But care must be taken in

implementing of such a scheme. First of all, monadification always imposes an evalua-

tion order, which may or may not be what is desired. Even when a preferred evaluation

order is known up front, it is not a simple task to instruct the monadification process

to faithfully follow in the context of lazy semantics of Haskell. Let’s illustrate this point

by considering a small example involving debugging Haskell programs through tracing

taken from [4].

f x = 3 ‘div‘ x

h = ... -- arbitrarily deep computation

g = h (f 0)
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The function div is partial because it may throw the divide-by-zero exception. When

this happens, the Glasgow Haskell compiler (GHC) only outputs the very unhelpful

message “*** Exception: divide by zero”. Since there can be arbitrarily many calls to

div, which can be arbitrarily deep in nesting, more informative tracing messages may

be appreciated. However, if we follow the lazy evaluation of Haskell, the trace includes

a call to g, followed by a call to f , and an arbitrarily complicated execution of h

before the offending call to div shows up. Any useful information may be overwhelmed

by the “noise” of h’s evaluation. What one really wants here is a short trace to the

exception, which skips h’s body following an eager evaluation order. Yet, this may not

be preferred when the presence of laziness is necessary, for example when dealing with

infinite values.

In this paper, we make the following contributions:

1. We extend the aspect-oriented functional language, AspectFun, with side-effecting

constructs that support direct state manipulation in aspects.

2. We present a general type-directed monadification scheme that transforms woven

code into monadic style purely functional code. The semantics and correctness of

the scheme are discussed in detail.

3. We devise a cached state monad in Haskell to support the lazy evaluation of monad-

ified expressions in side-effecting aspects.

4. We demonstrate with examples the effectiveness of our system in dealing with

tracing, profiling, and optimization of lazy functional programs.

5. We outline a uniform monadification scheme that can also handle monadic base

programs.

The rest of the paper is organized as follows. Section 2 first reviews our base

language, AspectFun, and describes the language constructs we design for writing side-

effecting aspects. Section 3 presents a general framework of monadification with respect

to an abstract monad, followed by the semantics and correctness of this framework.

Section 4 specializes the abstract monad to Haskell state monads for implementing

side-effecting aspects in AspectFun, and describes the issues of and solutions to pre-

serving laziness in our monadification scheme. Section 5 illustrates how we can use

monad transformers to handle monadic base programs and outlines a unified monadifi-

cation scheme that accommodates both cases. Section 6 describes related work. Finally,

Section 7 summarizes and discusses the future work.

2 Extending AspectFun with Side-Effecting Aspects

This section describes the language constructs we propose for developing side-effecting

aspects in AspectFun. After giving a brief overview of AspectFun, we shall present the

proposed extension for manipulating states in aspects along with some examples. To

ease the presentation of the examples, we shall use pattern matching and freely employ

functions available in the Haskell Prelude and a few Haskell constructs that are not

yet implemented in AspectFun.

2.1 AspectFun Overview

Figure 1 shows the syntax of AspectFun. We write ō as an abbreviation for a sequence of

objects o1, ..., on (e.g. declarations, variables etc). An AspectFun program is a sequence
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of top-level declarations followed by a main expression. Top-level definitions include

global variables and function definitions, as well as aspects. An aspect declaration pro-

vides two specifications: An advice, which is a function-like expression named via the

prefix n@; and a pointcut designator , around {pc}, designating when the advice will be

executed. In aspect-oriented programming [11], the specific program execution points

that triggers advice are called join points. Here, we focus on join points at function

invocations. Thus a pointcut basically specifies a function whose invocations may trig-

ger the execution of advice. The act of triggering advice during a function application

is called weaving. When an advice of the form “n@advice around {pc} (arg) = e” is

triggered by a call to a function, say f , the argument variable arg is bound to the

actual argument of the f -call.

Programs π ::= d in π | e
Declarations d ::= x = e | f x = e | f :: t → t |

n@advice around {pc} (arg) = e

Arguments arg ::= x | x :: t

Pointcuts pc ::= ppc | pc + cf | pc− cf

Primitive PC’s ppc ::= f x | any | any\[f ] | n
Cflows cf ::= cflow(f) | cflow(f( :: t)) |

cflowbelow(f) | cflowbelow(f( :: t))

Expressions e ::= c | x | proceed | λx.e | e e |
if e then e else e | let x = e in e

Types t ::= Int | Bool | a | t → t | [t]
Predicates p ::= (f : t)

Advised Types ρ ::= p.ρ | t
Type Schemes σ ::= ∀ā.ρ

Fig. 1 Syntax of the AspectFun Language

Advice may be executed before, after , or around a join point. Specifically, around

advice is executed in place of the indicated join point, allowing the call to the advised

function to be replaced. A special keyword proceed may be used inside the body of

around advice. It is bound to the function that represents “the rest of the computation”

at the advised join point. As both before advice and after advice can be simulated by

around advice that uses proceed, we only consider around advice in this paper.

Precisely, a pointcut, pc, may be either a primitive pointcut or a composite pointcut.

A primitive pointcut, ppc, specifies a function (f) or an advice name (n) the invocations

of which will be advised. A sequence of pointcuts, pc, indicates the union of all the sets

of join points selected by each. A primitive pointcut can also be a catch-all keyword any.

When used, the corresponding advice will be triggered whenever a function is invoked.

Name-based primitive pointcuts can be composed with control-flow based pointcuts

(cflow and cflowbelow) to form composite pointcuts, which inspect the run-time stack

of function execution.
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In Figure 1, the argument variable arg may contain a type scope, the t in x :: t.

When such a type scope is present, the applicability of a piece of advice is bounded by

its pointcut as well as its type scope. Specifically, when the function in the pointcut

is polymorphic, a type scoped argument only matches executions of the function with

arguments of types that are subsumed by their scope. This is particularly useful as

many functional languages are polymorphically typed.

Expressions in AspectFun are pretty standard and are evaluated with a lazy seman-

tics. As mentioned above, the special keyword proceed may be used inside the body

of around advice. When applied, proceed resumes the execution of advised functions

or other advice that also designates the same function as its join point, as in AspectJ.

AspectFun is polymorphically and statically typed. It introduces a concept of ad-

vised types [20] that extend types with predicates of the form (f : t). Advised types are

inspired by Haskell’s type classes and are used to capture the need of advice weaving

based on type context. As a result, AspectFun is able to statically resolve type scopes

in pointcut and statically weave aspects into base program. In previous work, we have

built a compiler that employs a type-directed static weaver to translate an AspectFun

program into executable Haskell code [1]. Moreover, our monadification procedure for

handling side-effecting aspects is largely independent of the static weaving step, as it

is performed after the weaving step during compilation. Therefore, we shall not discuss

the processing of pointcuts and advice in this paper.

2.2 Side-Effecting Aspects

We now describe how we extend AspectFun to support side-effecting aspects. The es-

sential construct we add to AspectFun is user-defined mutable variables declared within

the scope of an aspect. We use var as the keyword to begin such a declaration. The

syntax of an aspect declaration is also slightly extended to include both declarations

of advice and of variables. The precise syntax is as follows.

Declarations d ::= . . . | var id :: t [= e] | n@advice around {pc} (arg) = e

AspectDecl ad ::= aspect name where d̄

Such mutable variables are declared with a monomorphic and ground type, t, and an

optional initializing expression, e. Equipped with them, advices in the same aspect

are able to keep pertinent state information forming side-effecting aspects. For exam-

ple, the following declaration introduces a mutable variable profileMap whose type

is Map.Map String Int with initial value empty1. Later, we shall use it to develop a

profiling aspect.

var profileMap :: Map.Map String Int = Map.empty

Associated with each mutable variable declared, there is a pair of implicitly de-

clared getter and setter functions for interacting with the state. Their side-effects are

sequenced by sequencing expressions, (e1; e2). In particular, the variable declaration

above results in the following declarations of a setter and a getter function, respectively.

getProfileMap :: Map.Map String Int

setProfileMap :: Map.Map String Int -> ()

1 The Map is an alias of the Data.Map in Haskell’s standard hierarchical libraries.
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Let’s look into an example of Fibonacci function fib benefiting from a momoization

aspect to remove repeated computation and a profiling aspect.

Example 1

fib n = if n <= 1 then 1

else fib (n - 1) + fib (n - 2) in

--aspect 1

aspect profiler where

var profileMap :: Map.Map String Int

advice around {fib} (arg) =

let incProfile fname =

set! pMap = getProfileMap;

let newMap =

case of Map.lookup fname pMap of

Nothing -> Map.insert fname 1 pMap

Just v -> Map.insert fname (v+1) pMap

in setProfileMap newMap

in incProfile "fib"; proceed arg in

--aspect 2

aspect memoFib where

var memoMap :: Map.Map Int Int

advice around {fib} (arg) =

case lookupCache arg of

Just v -> v

Nothing -> set! v = proceed arg;

insertCache arg v; v in

fib 10

Caution has to be taken for operations involving state access since the order of

evaluation matters. We use the keyword set! for sequenced bindings. They effectively

force the evaluation of a binding prior to the evaluation of its body, simulating a kind of

eager semantics. In profiler, the auxiliary function incProfile makes sure the state is

fully evaluated before attempting to update it, removing the risk of a race condition. In

memoFib, the inputs of the state operation insertCache, are evaluated before the state

update. Though it is probably not the only way to correctly implement the momoization

aspect, we enforce the coding convention for the sake of program comprehension.

Besides mutable variables, IO is also an important element for side-effecting as-

pects such as tracing aspects. Hence we also provide a function, putMsg :: String

-> String -> (), for performing output in aspects. The first string parameter is the

name of aspect which puts the second parameter (the message) into an internal buffer.

Together with the getter and setter functions, they form the state API of an aspect.

The second example is a tracing aspect for the tail recursive factorial function,

adapted from Kishon’s thesis work on program monitoring [12].

Example 2

fac n acc = if n == 0 then acc

else fac (n - 1) (n * acc)
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aspect tracer where

var indent :: String = ""

advice around{fac, (*)} (arg) = \arg2 ->

set! ind = getIndent ;

setIndent ("| " ++ ind);

set! v1 = arg;

set! v2 = arg2;

putMsg "tracer" (ind++tjp++" receives ["++

show v1 ++ ", " ++ show v2 ++ "]");

set! result = proceed v1 v2 ;

setIndent ind;

putMsg "tracer" (ind++tjp++" returns " ++

show result);

result

Here the state to be maintained is the indentation string, stored in the variable, indent.

The tracer aspect traces the execution of the functions, fac and (*), respectively.

The tjp is a keyword for referring to the function currently being advised, namely the

current join point.2 The advice simply traces the arguments passed to and the results

returned from the advised functions via the show function. Note that we have used

sequenced bindings to enforce a call-by-value trace, which is printed below.

fac receives [3, 1]

| | times receives [3, 1]

| | times returns 3

| fac receives [2, 3]

| | | times receives [2, 3]

| | | times returns 6

| | fac receives [1, 6]

| | | | times receives [1, 6]

| | | | times returns 6

| | | fac receives [0, 6]

| | | fac returns 6

| | fac returns 6

| fac returns 6

fac returns 6

In Section 4, we look into how a lazy trace can be obtained, which turns out to be

non-trivial because the execution of any added IO operations easily interact with the

trace of the base program, causing changes in evaluation order.

3 Monadifying Aspect Programs

The first step of AspectFun compilation is to weave aspects into the base program,

thus producing an integrated program of expressions, which we call woven code. In the

presence of side-effecting aspects, it is necessary for the woven code to be transformed

2 AspectFun does not support the tjp facility yet. Nevertheless, we can write two almost
identical aspects to trace fac and (*), respectively.
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to a monadic style, in order to retain its functional purity. This and the following section

illustrate our monadification transformation for expressions, pure or side-effecting, in

a woven code.

First, we present a general framework for monadifying an expression using an ab-

stract monad, (M, return, >>=), in a non-strict evaluation context, and show that our

monadification scheme possesses good properties with respect to the static and dynamic

semantics of expressions in woven code. Next, in the following section, we specialize M

to a specific state monad in Haskell so that we can also define the monadified version

of those state-aware functions used by side-effecting aspects.

3.1 Monadifying Expressions

Like the pioneering work of Lämmel [14], our monadification transformation consists

of two major steps, namely A-normalization [7] and monad introduction.

3.1.1 A-Normalization

Given an expression, A-normalization converts it into a form in which every intermedi-

ate computation is assigned a name by a let-expression. Such normalized expressions,

called A-normal form, is a popular intermediate representation used in compilers [7]

and semantic specifications [15] for functional languages. Essentially, in A-normal form,

all applications are applications of an expression to a variable. The arguments of an

application and the condition part of an if-expression are all captured by the binding

parts of let-expressions wrapped around them.3

Let us take the profiling of the fib function presented before as an example. The

input to our A-normalization step is the following woven Haskell code generated by

the AspectFun compiler.

let profiler proceed arg = incProfile "fib";

proceed arg in

let fib n = if n <= 1 then 1

else profiler fib (n - 1) +

profiler fib (n - 2) in

profiler fib 10 --main

The aspect, profiler, becomes an ordinary function with an additional parameter,

proceed that captures the continuation to the advised function. Moreover, all invoca-

tions of the fib function are now left to the profiler function.

After A-normalization, the above profiler program is converted to the following

code.

let profiler proceed arg = incProfile "fib";

proceed arg in

let fib n = let nleq1 = n <= 1 in

if nleq1 then 1

else let nm2 = n - 2 in

3 Note that we conduct alpha renaming along with A-normalization to avoid any name
conflicts.
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let fibm2 = profiler fib nm2 in

let nm1 = n - 1 in

let fibm1 = profiler fib nm1 in

(+) fibm1 fibm2 in

profiler fib 10 --main

We note that A-normalization changes only the structure of a program, not the order

of argument evaluation, as let-expressions are evaluated lazily.

As a result of A-normalization, the syntax of the expressions to be monadified

can be summarized as the following three syntactic categories for ease of subsequent

discussion.

Atoms a ::= c | x
Pure Expressions e ::= a | p | λx.e | e a | let x = e in e |

if a then e else e

Effectual Expressions e! ::= · · · | e!; e! | set! x = e!; e!

Atoms include constants and variables. Besides atoms and primitives (p), pure expres-

sions are A-normalized standard expressions. The changes made by A-normalization

are manifested in applications and if-expressions. Effectual expressions extend pure ex-

pressions by including side-effecting constructs; they form the whole set of expressions

to be monadified. Note that those state-aware functions, such as getters and putMsg, are

considered primitives, but their monadification will not be specified until next section,

when the state monad is defined.

3.1.2 Monad Introduction

The second step of the monadification transformation is monad introduction. This aims

to lift computations in the input expressions to a designated monad, (M, return,À). Its

essence can be captured by the monadification operator M that converts an expression

type to a monadic type as follows.

M(t1 → t2) ⇒M(t1) → M(t2) (1)

M(t) ⇒ M t (2)

M(∀ā.t) ⇒ ∀ā.M(t) (3)

where rule (1) applies to functional types and rule (2) applies to non-functional (atomic)

types. For type schemes, we simply apply M to their type body. As type predicates

are required only for static weaving purpose, we can safely ignore them in the monad-

ification step.

We note that the monadification schemes proposed by Lämmel [14] and Erwig and

Ren [5] do not lift arguments of functions to monadic space. By contrast, we lift function

arguments to monadic space in order to capture the computation of arguments inside

the monad and thus support the non-strict evaluation semantics of AspectFun.

The concrete steps for lifting computations to monadic space are designed by fol-

lowing the above monadic type conversions. We formalize them as a set of type-directed

rewriting rules, [[·]]tΓ , that converts an expression in A-normalized form, e!, to a monad-

ified version, e, over the designated monad, M . The subscript Γ is a type environment

containing the types for the free identifiers occurring in e! and the superscript t is



10

the type of the expression to be monadified. Recall that we conduct the monadifica-

tion transformation after type-directed weaving. Thus the type of every expression is

available in this step. Figure 2 displays the complete set of type-directed rewriting

rules, implicitly parameterized over a monad (M, return,À), along with some auxiliary

functions.

Most of the rewriting rules are purely syntactic and quite simple; the only notable

exception is the (Var) rule for variables, which will be explained in detail later. We

summarize the other rules as follows. Constants and primitive functions are lifted to

the monadic space by the return operation and the liftM operation of the designated

monad, respectively. There are two rules for rewriting if-expressions, depending on their

condition part. We may need to apply a monad-binding to trigger the evaluation of

their monadified condition expression. The rewriting rules for side-effecting constructs,

(Seq) and (Set), are standard in using monads to handle states. The remaining cases

are simply syntactic composition of the monadified components.

[[·]]tΓ : e! −→ e

(Const) [[c]]tΓ = return c

(Prim) [[p]]tΓ = liftMn p where n is the arity of primitive function p

(If) [[if a then e1 else e2]]tΓ = [[a]]Bool
Γ >>= λa′.if a′ then [[e1]]tΓ else [[e2]]tΓ a′ is fresh

(Lam) [[λx.e]]t1→t2
Γ = λx.[[e]]t2Γ

(App) [[e a]]tΓ = [[e]]ta→t
Γ [[a]]ta

Γ

(Let) [[let x = e1 in e2]]tΓ = let x = [[e1]]tx
Γ in [[e2]]tΓ

(Seq) [[e1; e2]]tΓ = [[e1]]t1Γ >>= λ .[[e2]]tΓ
(Set) [[set! x = e1; e2]]tΓ = [[e1]]t1Γ >>= λx′.let x = return x′ in [[e2]]tΓ
(Var) [[x]]tΓ = posS

t′(x)

where ∀ā.t′ = Γ (x) and S is a substitution such that t = St′

posS
t1→t2

(e) = λx. posS
t2

(e negS
t1

(x)) x /∈ fv(e)

posS
a(e) = flatten[Sa] (e) if a ∈ dom(S)

posS
t (e) = e otherwise

negS
t1→t2

(e) = λx. negS
t2

(e posS
t1

(x)) x /∈ fv(e)

negS
a(e) = return (e) if a ∈ dom(S) and Sa is not an atomic type

negS
t (e) = e otherwise

flatten[t](e) = e if t is atomic

flatten[t1 → t2 · · · tn → t′](e) = (λx1 · · ·xn. e >>= λe′. e′ x1 · · ·xn) otherwise

Fig. 2 Type-Directed Monadification Rules and Auxiliary Functions

The rule for variables, (Var), is the most complicated one. Its complexity arises

due to the need to support polymorphic higher-order functions. Indeed, if it is not

the case, the rewriting rule for a variable simply leaves it intact: [[x]]tΓ = x. Before

proceeding to explain the details of how the (Var) rule works, let us see an example

of the monadification transformation that does not involve any higher-order functions.
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The following code shows the monadified version of the A-normalized fib function

presented earlier.

fibM :: M Int -> M Int

fibM n =

let leq_n_one = (liftM2 (<=)) n (return 1)

in leq_n_one >>= \nleq1 ->

if nleq1 then return 1

else let nm2 = (liftM2 (-)) n (return 2)

fibnm2 = profilerM fibM nm2

nm1 = (liftM2 (-)) n (return 1)

fibnm1 = profilerM fibM nm1

in (liftM2 (+)) fibnm1 fibnm2

In the following sections, we will often adopt the practice in Haskell community

that uses do-notation with a fold over the do-bindings to express monadic computation.

In particular, the following Haskell code is the sugared version for the above monadified

fib function.

fibM n =

do let leq_n_one = (liftM2 (<=)) n (return 1)

nleq1 <- leq_n_one

if nleq1 then return 1

else do let nm2 = (liftM2 (-)) n (return 2)

let fibnm2 = profilerM fibM nm2

let nm1 = (liftM2 (-)) n (return 1)

let fibnm1 = profilerM fibM nm1

(liftM2 (+)) fibnm1 fibnm2

Now, let us resume the discussion of the (Var) rule. As can be seen from its right-

hand side, the rewriting of this rule is driven by the type of the underlying variable in

the type environment and the type assigned to it in a context. The result of rewriting

may be the same variable or an expanded expression with some boilerplate code inserted

by the pos and the neg functions. Specifically, the neg function may insert calls to the

return of the underlying monad to add an additional level of monadic structure; and,

the pos function may insert invocations of the flatten combinators to remove one level

of monadic structure. The flatten combinators are synthesized according to the type

context. They act like the conventional monad join operator (join :: M (M a) → M a),

but work on higher-order functions with types such as M (M a → M b). Essentially,

the purpose of inserting such boilerplate code is to make the monadified expressions

that involve higher-order functions type check correctly. This is better illustrated by

an example.

Consider the expression, (id1 id2), which applies the identity function, id, to itself.

(The subscripts are employed for ease of references.) The monadic type scheme for id

is ∀a.M a → M a. Now, suppose that we specialize the type of id2 to Int → Int with

type substitution S = [a 7→ (Int → Int)]. Then, by (App),

[[(id1 id2)]]
Int→Int
Γ = [[id1]]

(Int→Int)→(Int→Int)
Γ [[id2]]

Int→Int
Γ

Now, as the monadic type of id2 is M Int → M Int, in order for [[(id1 id2)]]
Int→Int
Γ to

be type correct, the monadic type of id1 should be (M Int → M Int) → (M Int →
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M Int). Therefore, the result of monadifying id1 cannot simply be id1; otherwise, ac-

cording to the type scheme of id, the monadic type assigned to id1 would be M (M Int →
M Int) → M (M Int → M Int), which will lead to a type error. On the other hand,

applying (Var) to monadify id1 would reconcile the type mismatch and produce a

type-correct result:

[[id1]]
(Int→Int)→(Int→Int)
Γ

= posS
a→a(id1)

= λx. posS
a(id1 negS

a(x))

= λx. flatten[Sa] (id1 (return x))

= λx. flatten (id1 (return x))

where S = [a 7→ (Int → Int)]

flatten = λv.λx. v >>= λv′. v′ x

We shall give a formal account of the correctness of such enhancements in the following

section.

It is worth further discussing the need of inserting calls to return and flatten

combinators when monadifying higher-order functions. Essentially, the reason for doing

so can be traced back to the definition of our monadification operator, M(·). Recall

its first equation:

M(t1 → t2) ⇒M(t1) → M(t2)

This equation embodies the key features as well as the limitations of our monadification

scheme. In particular, as pointed out in [8], in this scheme, “the effect of monadification

on a function is to produce a function, rather than a computation of a function.”

Consequently, monadification of higher-order functions requires the insertion of some

boilerplate code to make the resulting expression type check.

An alternative equation for monadic types we had considered is the following one:

M(t1 → t2) ⇒ M (M(t1) → M(t2))

Although this alternative equation simplifies the monadification of higher-order func-

tions, it leads to more complicated monadic types and monadified expressions with

much more boilerplate code that simply acts to add or remove additional monadic

structure. Hence we decide to retain the original equation.

3.2 Semantics and Correctness

This section gives a formal account of the static and dynamic semantics of expressions

and presents the properties of our monadification scheme with respect to the semantics.

There are two major theorems. First, the type of a monadified expression is the same

as the monadic type assigned to the original expression. Second, the semantic value

of a pure expression is preserved by the monadification transformation. The technical

lemmas and their proofs can be found in the appendix.
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3.2.1 Static Semantics and Type Preservation

Let us begin with the static semantics of expressions, as specified by the typing rules

in Figure 3. Pure expressions, effectual expressions, and monadic expressions are all

included so that we can reason about their types in the same framework. Hence there

are three groups of rules. The first group follows the typical Hindley-Milner style to

type check pure expressions. In particular, the application, inst(σ) instantiates the

given type scheme, σ to a type t; and the application, gen(Γ, t), generalizes the type t

to a type scheme σ with respect to the type environment Γ .

The second group of rules declares and specifies the types of monadic primitives

in a standard manner. Finally, the third group prescribes how the components of an

effectual expression should be typed to get a type correct expression. The restriction

of the components to atomic types is a consequence of our monadification scheme and

the typing rules for monadic primitives.

1. Common expressions:

x : σ ∈ Γ t = inst(σ)

Γ ` x : t

Γ.x : t1 ` e : t2

Γ ` λx.e : t1 → t2

Γ ` e1 : t2 → t1 Γ ` a : t2

Γ ` e1 a : t1

Γ ` a : Bool Γ ` e1 : t Γ ` e2 : t

Γ ` if a then e1 else e2 : t

Γ ` e1 : t1 σ = gen(Γ, t1) Γ.x : σ ` e2 : t2

Γ ` let x = e1 in e2 : t2

2. Monadic expressions:

Γ ` e : t

Γ ` return e : M t

Γ ` e1 : M t1 Γ ` e2 : t1 → M t2

Γ ` e1 >>= e2 : M t2

3. Effectual expressions: (t1 and t2 below must be atomic types)

Γ ` e1 : t1 Γ ` e2 : t2

Γ ` e1; e2 : t2

Γ ` e1 : t1 Γ.x : t1 ` e2 : t2

Γ ` set! x = e1; e2 : t2

Fig. 3 Typing Rules for Expressions

As our monadification scheme lifts the computations in an expression to the desig-

nated monad, we have to ensure that the monadified expression has the proper monadic

type. Formally speaking, we require that the following statement hold for every expres-

sion.

if Γ ` e : t then M(Γ ) ` [[e]]tΓ : M(t)

We shall refer to the above statement as type preservation of our monadification

scheme. Before proceeding to establish it, we need the following definitions to specify

how the monadification operator works on type environments and type substitutions:

– For a type environment Γ , M(Γ ) is the pointwise application of M(·) to the type

part of all bindings in Γ , i.e., M(Γ )(x) = M(Γ (x)).
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t M(t)

M(S)M(t)

St M(St)

M(·)SM(S)M(·)posS
tnegS
t

Fig. 4 The Non-distributivity Between Substitution and Monadification Operator

– For a type substitution S from type variables to types, M(S) is also a type substi-

tution with dom(M(S)) = dom(S) and

M(S)(a) =

{
Sa if Sa is an atomic type

M(Sa) otherwise

The definition of M(Γ ) is straightforward, but the definition of M(S) needs some

extra attention. Specifically, as a type substitution may turn a type variable into a

functional type, the monadification operator has been pushed to monadify the resulting

functional type in such cases. However, although both M(·) and S are distributive over

the functional type operator (→), they do not distribute with each other when applying

to a functional type. In other words, M(t1 → t2) = M(t1) → M(t2), S(t1 → t2) =

(St1 → St2), but, in general, M(St) 6= M(S)M(t).

This can be illustrated by the (id1 id2) example presented above. As the type

scheme for id is ∀a.a → a, a valid type instance for id is t = b → b. Now, given

type substitution S = [b 7→ (Int → Int)], we get M(St) = (M Int → M Int) →
(M Int → M Int). But, on the other hand, M(S)M(t) = M (M Int → M Int) →
M (M Int → M Int). Due to this non-distributive result, we have to insert flatten and

return operators when monadifying a higher-order function in the (Var) rule via the

pos and neg functions. Figure 4 highlights the general idea. Basically, the neg function

maps an expression with type M(St) to one with type M(S)M(t); the pos function

works for the other direction of mapping.

Given the above formal definitions, we can derive the first key property of our

monadification scheme which ensures that the type of a monadified expression is the

same as the monadic type assigned to the original expression.

Theorem 1 (Type Preservation) Given an expression e and a type environment

Γ , if Γ ` e : t then M(Γ ) ` [[e]]tΓ : M(t),

3.2.2 Dynamic Semantics and Value Preservation

This section presents a small-step operational semantics for evaluating expressions in

a lazy way. Similar to the static semantics, pure expressions, effectual expressions, and

monadic expressions are all included so that we can reason about their evaluation in

the same framework. Hence we shall simply refer to them as expressions if the context

does not require distinguishing them.
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By the nature of our aspect programs, there are three kinds of observable entity in

our semantics, namely value, store, and output stream. A side-effecting aspect usually

works by altering the store or the output stream but leaves the value untouched.

Such aspects are considered semantically non-interfering or harmless [2]. Obviously,

our monadification transformation should not turn a non-interfering expression into an

interfering one. Thus we shall prove that the value of a pure expression is preserved by

our monadification transformation. This is another major result about the correctness

of our monadification scheme.

Figure 5 shows the semantic domains. There is a heap domain mapping variables

to their defining expressions. It is used for modeling sharing in lazy evaluation. The

expression deposited into a heap cell will be evaluated to a heap value when the associ-

ated variable is referenced. The store keeps the values of mutable variables in a record,

and the output stream is a list of pairs of strings generated by invocations of putMsg.

The set of values an expression evaluates to is standard, yet we need another set of

heap values, which comprises standard values as well as computation encapsulated in

the monad in the form of e >>= e′. Such encapsulated computations are considered a

form of functional (heap) values because their evaluation requires a monadic context

to be supplied.

Heap h ::= Var 7→ Expressions
Store S ::= {var1 = v1, · · · , varn = vn}
Output Stream O ::= [(String, String)]
Value v ::= c | λx.e | return v
Heap Value vh ::= c | λx.e | return vh | e >>= e′

Fig. 5 Semantics Domains for the Operational Semantics

The operational semantics specifies the evaluation of an expression in terms of the

following two kinds of transition relations over the configurations (h, S,O, e).

Global step (reduces to v): (h, S,O, e1) 7→ (h′, S′,O′, e2)

Heap cell step (reduces to vh): (h, S,O, e1) 7→
h

(h′, S′,O′, e2)

The reason to have an additional heap cell step is to accommodate the difference

between values and heap values, as mentioned above. Figure 6 and Figure 7 display

the axioms and rules for defining these two transition relations. Since the axioms and

rules for defining them are identical except for monadic expressions, we shall use 7→
?

to

stand for both 7→ and 7→
h

in those identical cases. Given an empty heap, an initial store,

S, of all user-defined mutable variables, an empty output stream, and an expression,

e, these rules specify the individual steps of the evaluation of e. Obviously, we are

interested in the case when e is reduced to a value, v, with output stream, O, and

store, S′, after a finite number of steps of evaluation as follows.

e
O7−→ v iff (∅, S, [ ], e) 7→∗ (h, S′,O, v)

Note that the above sequence is a sequence of global steps, but it may employ heap

cell steps to reduce expressions kept in the heap. We do not include the stores on the
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left-hand side because the contents of the store are not observable when the evaluation

is done.

Rules for common expressions (7→
?

stands for both 7→ and 7→
h

)

(OS:App1)(h, S,O, (λx.e) e1) 7→
?

(h[x 7→ e1], S,O, e)

(OS:App2)

(h, S,O, e1) 7→
?

(h′, S′,O′, e′1)

(h, S,O, e1 e2) 7→
?

(h′, S′,O′, e′1 e2)

(OS:If1)
b = True or b = False

(h, S,O, if b then eTrue else eFalse) 7→
?

(h, S,O, eb)

(OS:If2)

(h, S,O, a) 7→
?

(h′, S′,O′, a′)
(h, S,O, if a then e1 else e2) 7→

?
(h′, S′,O′, if a′ then e1 else e2)

(OS:Prim)
(h, S,O, e1) 7→ (h′, S′,O′, e2)

(h, S,O, p e1) 7→
?

(h′, S′,O′, p e2)
for primitive p

(OS:hval)
h(x) = vh

(h, S,O, x) 7→
?

(h, S,O, vh)
(OS:heval)

(h[x 7→⊥], S,O, h(x)) 7→
h

(h′, S′,O′, e)
(h, S,O, x) 7→

?
(h′[x 7→ e], S′,O′, x)

(OS:Let)(h, S,O, let x = e1 in e2) 7→
?

(h[x 7→ e1], S,O, e2)

Fig. 6 Semantic Rules for Common Expressions

The rules in Figure 6 for common expressions are pretty standard. The (OS: App1)

and (OS:App2) rules are the congruence rule and computation rule for reducing an ap-

plication, respectively. Similar rules exist for reducing an if-expression. For primitives,

we list only a template congruence rule. The remaining three rules are inter-related.

The (OS:Let) rule deposits the expression of a let-binding into a new cell in the

heap. Later, when the variable is referenced, if the expression associated with it is al-

ready a heap value, then (OS:hval) will simply return the heap value. Otherwise, the

(OS:heval) rule will employ the heap step transition rules to evaluate the expression

repeatedly until a heap value is reached, and then update the underlying heap cell using

the value, thus achieving the sharing required for future references to the variable.

There are two groups of rules in Figure 7. The first group provides the evaluation

rules for the source-level effectual constructs, including those of the state API. The

Cons operator in the (OS:Put) rule is the list constructor operator. The setter and

getter for accessing a user-defined mutable variable F are denoted by primitives setF

and getF , respectively. We write (S[F 7→ v]) for updating the variable F in the store,

and (projF S) for retrieving its value from the store. The second group specifies the

evaluation rules for monadic expressions produced by the monadification transforma-

tion, following the standard monadic semantics.
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Rules for effectual expressions, including the state API:

(OS:Seq1)(h, S,O, v; e) 7→
?

(h, S,O, e) (OS:Seq2)

(h, S,O, e1) 7→
?

(h′, S′,O′, e3)

(h, S,O, e1; e2) 7→
?

(h′, S′,O′, e3; e2)

(OS:Set1)(h, S,O, set! x = v; e) 7→
?

(h, S,O, [v/x]e)

(OS:Set2)
(h, S,O, e1) 7→ (h′, S′,O′, e3)

(h, S,O, set! x = e1; e2) 7→
?

(h′, S′,O′, set! x = e3; e2)

(OS:Put)(h, S,O, putMsg v1 v2) 7→
?

(h, S, Cons (v1, v2) O, ())

(OS:Setter)(h, S,O, setF v1) 7→
?

(h, S[F 7→ v1],O, ())

(OS:Getter)(h, S,O, getF ) 7→
?

(h, S,O, projF S)

Rules for monadic expressions (global step only):

(OS:Ret)(h, S,O, return v >>= e2) 7→ (h, S,O, e2 v)

(OS:Bind)
(h, S,O, e1) 7→ (h′, S′,O′, e3)

(h, S,O, e1 >>= e2) 7→ (h′, S′,O′, e3 >>= e2)

Fig. 7 Semantic Rules for State-related and Monadic Expressions

Let us use the following A-normalized expression and its monadified version to

illustrate the operational semantics. This expression is a miniature version of applying

the profiler aspect to the function, d, using a mutable variable c.

e ≡ let d = λx.(let v1 = getC + 1 in setC v1 ; x + x)

in let v2 = d 2

in let v3 = d 3

in set! v = v2 ∗ v3 ; let v4 = (show getC) in (putMsg “main” v4) ; v

As the complete evaluation of e is long and tedious, we take the following approach

to simplify its presentation. First, we specify in detail the evaluation of the expression,

let d = λx.(let v1 = getC + 1 in setC v1 ; x + x) in (d 2), which is a key part of the

expression e. Then we outline the major steps of the complete evaluation of e. Both

parts assume an initial store ⊥[c 7→ 0], which will be abbreviated as {c = 0}. The first

part is as follows.

(∅, {c = 0}, [ ], let d = λx.(let v1 = getC + 1 in setC v1 ; x + x) in d 2)

(OS:Let)

7→ (h, {c = 0}, [ ], d 2)

where h = [d 7→ λx.(let v1 = getC + 1 in setC v1 ; x + x)]

(OS:App2), (OS:hval)

7→ (h, {c = 0}, [ ], (λx.(let v1 = getC + 1 in setC v1 ; x + x)) 2)

(OS:App1)

7→ (h[x 7→ 2], {c = 0}, [ ], let v1 = getC + 1 in setC v1 ; x + x)
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(OS:let)

7→ (h[x 7→ 2][v1 7→ getC + 1], {c = 0}, [ ], setC v1 ; x + x)

(OS:Seq2), (OS:Prim), (OS:HEval), (OS:Getter)

7→ (h[x 7→ 2][v1 7→ 0 + 1], {c = 0}, [ ], setC v1 ; x + x)

(OS:Seq2), (OS:Prim), (OS:HEval)

7→ (h[x 7→ 2][v1 7→ 1], {c = 0}, [ ], setC v1 ; x + x)

(OS:Seq2), (OS:HVal)

7→ (h[x 7→ 2][v1 7→ 1], {c = 0}, [ ], setC 1 ; x + x)

(OS:Seq2), (OS:Setter),

7→ (h[x 7→ 2][v1 7→ 1], {c = 1}, [ ], (); x + x)

(OS:Seq1)

7→ (h[x 7→ 2][v1 7→ 1], {c = 1}, [ ], x + x)

(OS:Prim), (OS:HVal)

7→ (h[x 7→ 2][v1 7→ 1], {c = 1}, [ ], 2 + x)

(OS:Prim), (OS:HVal)

7→ (h[x 7→ 2][v1 7→ 1], {c = 1}, [ ], 2 + 2)

7→ (h[x 7→ 2][v1 7→ 1], {c = 1}, [ ], 4)

Next, we show the major steps for evaluating e. The sub-expression to be evaluated

at each major step is underlined to help the reader find the points quickly.

(∅, {c = 0}, [ ], e)
7→∗ (h, {c = 0}, [ ], set! v = v2 ∗ v3 ; let v4 = (show getC) in (putMsg “main” v4) ; v)

where h = [d 7→ λx.(let v1 = getC + 1 in setC v1 ; x + x), v2 7→ (d 2), v3 7→ (d 3)]

7→∗ (h[v1 7→ 1][v2 7→ 4], {c = 1}, [ ],
set! v = 4 ∗ v3 ; let v4 = (show getC) in (putMsg “main” v4) ; v)

7→∗ (h[v1 7→ 2][v2 7→ 4][v3 7→ 6], {c = 2}, [ ],
set! v = 4 ∗ 6; let v4 = (show getC) in (putMsg “main” v4) ; v)

7→∗ (h[v1 7→ 2][v2 7→ 4][v3 7→ 6], {c = 2}, [ ],
let v4 = (show getC) in (putMsg “main” v4); 24)

7→∗ (h[v1 7→ 2][v2 7→ 4][v3 7→ 6][v4 7→ “2”], {c = 2}, [ ], (putMsg “main” v4); 24)

7→∗ (h[v1 7→ 2][v2 7→ 4][v3 7→ 6][v4 7→ “2”], {c = 2}, [(“main”, “2”)], 24)

Hence, the value of e is 24, and the output stream is [(“main”, “2”)]:

e
[(“main”,“2”)]7−→ 24

Now, consider the monadified version of e:

[[e]]Int
Γ = let d = λx.let v1 = liftM2 (+) getC (return 1)

in (setC v1 >>= λ .(liftM2 (+) x x))

in let v2 = (d (return 2)) in let v3 = (d (return 3)) in (liftM2 (∗) v2 v3) >>= E

where E = λv′. let v = return v′

in let v4 = (liftM show getC)

in (liftM2 putMsg (return “main”) v4)

>>= λ .v
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The major evaluation steps of the monadified expression are as follows.

(∅, {c = 0}, [ ], [[e]]Int
Γ )

7→3 (h, {c = 0}, [ ], liftM2 (∗) v2 v3 >>= E)

where h = [d 7→ λx. let v1 = liftM2 (+) getC (return 1)

in setC v1 >>= λ .(liftM2 (+) x x),

v2 7→ d (return 2), v3 7→ d (return 3)]

7→∗ (h, {c = 0}, [ ], liftM2 (∗) ((λx. let v1 = liftM2 (+) getC (return 1)

in (setC v1 >>= λ .(liftM2 (+) x x))) (return 2)) v3

>>= E)

7→2 (h[v1 7→ liftM2 (+) getC (return 1)], {c = 0}, [ ],
liftM2 (∗) (setC v1 >>= λ .(liftM2 (+) (return 2) (return 2))) v3 >>= E)

7→∗ (h[v1 7→ (return 1)], {c = 1}, [ ], liftM2 (∗) (return 4) v3 >>= E)

7→∗ (h[v1 7→ (return 1)], {c = 2}, [ ],
liftM2 (∗) (return 4) (return 6) >>=

λv′. let v = return v′ in

let v4 = (liftM show getC) in liftM2 putMsg (return “main”) v4 >>= λ .v)

7→∗ (h′, {c = 2}, [ ], liftM2 putMsg (return “main”) v4) >>= λ .v)

where h′ = h[v1 7→ (return 1)][v 7→ (return 24)][v4 7→ (liftM show getC)]

7→∗ (h′[v4 7→ (return “2”)], {c = 2}, [ ], liftM2 putMsg (return “main”) v4) >>= λ .v)

7→∗ (h′[v4 7→ (return “2”)], {c = 2}, [(“main”, “2”)], v)

7→∗ (h′[v4 7→ (return “2”)], {c = 2}, [(“main”, “2”)], return 24)

Therefore, the value of [[e]]Int
Γ is return 24, and the output stream is [(“main”, “2”)]:

[[e]]Int
Γ

[(“main”,“2”)]7−→ return 24

The resulting value is the monadic version of the value of the original expression. In

other words, the miniature profiling aspect achieves its effects via the store and the

output stream without altering the value of its target expression. In general, for pure

expressions without any side-effecting components, their value will not be altered by

monadification transformation, as shown by the following theorem.

Theorem 2 (Value Preservation) Given a pure expression e and a type environ-

ment Γ , if Γ ` e : t and e
[]7−→ v then [[e]]tΓ

[]7−→ return v

4 State Monads for Side-Effecting Aspects

Given the monadification framework presented above, we now proceed to specialize it

by introducing state monads in Haskell to support side-effecting aspects. We shall first

present a basic state monad for illustrating our approach followed by a state monad

enhanced with caching facility for preserving laziness of expression evaluation. The full

Haskell code of our implementation is included in Appendix B.

4.1 Basic State Monad

The essence of our scheme is a state monad that encapsulates state information main-

tained by those state-aware functions assisting the user in developing side-effecting



20

aspects. Specifically, state information consists of two parts: a user variable record and

an output buffer. We refer to them as the aspect state and the state monad encapsu-

lating them as the aspect monad.

Since the specific content of the user variable record depends on the individual

program, we provide the following generic state monad, GM v, based on the standard

state monad of Haskell. The putMsgM function extracts its string arguments out of

the monad and appends them to the internal output buffer4. In addition, two utility

functions, getUserVar and modifyUserVar, are supplied to facilitate the generation of

the monadified versions of state accessor functions for user variables. Their Haskell

code is as follows.

type GM v = State (v, OutputBuf)

-- v is a program-specific type

OutputBuf = [(String, String)]--(advName,msg) pair

putMsgM :: GM v String -> GM v String -> GM v ()

putMsgM a m = do a’ <- a; m’ <- m

modify $ \(u, ms) -> (u, (a’, m’):ms)

getUserVar :: GM v v

getUserVar = do (uv,_) <- get

return uv

modifyUserVar :: (v -> v) -> GM v ()

modifyUserVar trans = modify $ \(u, s) -> (trans u, s)

The definition of the aspect monad for a specific program is derived from its decla-

rations of mutable variables. Take the profiler aspect as an example, the enhanced

AspectFun compiler will generate the following definition of a specialized aspect monad

and the associated accessor functions for its mutable variable, profileMap.

--one variable one field

data UserVar = U {profileMap::Map.Map String Int}

--aspect monad

type M = GM UserVar

--state accessor functions

getProfileMapM :: M (Map.Map String Int)

getProfileMapM = getUserVar >>= \u -> return $ profileMap u

setProfileMapM :: M (Map.Map String Int) -> ()

setProfileMapM var =

do var’ <- var

modifyUserVar $ \u -> u{ profileMap = var’ }

Functions such as getProfileMapM defined above, as well as those that invoke them

are state-aware; their invocations mostly require immediate access to the underlying

state monad. Yet, as mentioned before, AspectFun is a lazy language. Hence we provide

set!-expressions and sequencing expressions to enable the user to override the default

lazy evaluation semantics when applying such state-aware functions.

In the previous section, the monadification of set!-expressions and sequencing ex-

pressions was presented in terms of the monad’s >>= operation. From now on, we

4 The code uses “cons”, but we reverse the buffer when it is dumped at the end of program
execution.
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switch to Haskell’s do-notation to present them as follows.

[[set! x = e1 ; e2]]
t
Γ = do {x′ ← [[e1]]

t1
Γ ; let x = return x′; [[e2]]

t
Γ }

where x′ is a fresh identifier

[[e1; e2]]
t
Γ = do {[[e1]]

t1
Γ ; [[e2]]

t
Γ }

Take the profiler aspect defined previously as an example. After monadification, the

profiler aspect and its helper function incProfile are transformed into the following

Haskell code.

profilerM :: (M Int -> M Int) -> (M Int -> M Int)

profilerM proceed arg = do incProfileM (return "fib")

proceed arg

incProfileM fname =

do pMap’ <- getProfileMapM --set! for getting profileMap’s value

let pMap = return pMap’

let lookupResult’ = (liftM2 Map.lookup) fname pMap

lookupResult <- lookupResult’

let newMap = case lookupResult of

Nothing -> (liftM3 Map.insert) fname (return 1) pMap

(Just v’) -> do let v = return v’

let np1 = (liftM2 (+)) v (return 1)

(liftM3 Map.insert) fname np1 pMap

setProfileMap newMap

The body of profilerM employs a sequencing expression. Hence its body becomes a

do-expression after monadification. The incProfile uses a set!-expression on mutable

variable profileMap, so its monadified version has a do-binding with getProfileMapM.

Another example is the eager tracing of function fac. The program in Example 2

is monadified into the following Haskell code.5

tracerFacM :: (M Int -> M Int -> M Int) ->

(M Int -> M Int -> M Int)

tracerFacM proceed arg arg2 =

do getIndentResult <- getIndentM

let ind = return getIndentResult

let ind’ = (liftM2 (++)) (return "| ") ind

setIndentM ind’

v_1’ <- arg --set! v1 arg

let v_1 = return v_1’

v_2’ <- arg2 --set! v1 arg

let v_2 = return v_2’

let show_arg2 = (liftM show) v_2

let str_1 = (liftM2 (++)) show_arg2 (return "]")

let str_2 = (liftM2 (++)) (return ",") str_1

let show_arg = (liftM show) v_1

let str_3 = (liftM2 (++)) show_arg str_2

let str_4 = (liftM2 (++)) (return "fac receives [") str_3

let str_5 = (liftM2 (++)) ind str_4

5 tracerMulM is very similar to tracerFacM, and is thus omitted.
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putMsgM (return "tracerFacM") str_5

proceedResult <- proceed v_1 v_2

let result = return proceedResult

setIndentM ind

let s_result = (liftM show) result

let str_6 = (liftM2 (++)) (return "fac returns ") s_result

let str_7 = (liftM2 (++)) ind str_6

putMsgM (return "tracerFacM") str_7

result

facM :: M Int -> M Int -> M Int facM n acc =

do let eq_n_zero = (liftM2 (==)) n (return 0)

neq0 <- eq_n_zero

if neq0 then acc

else do let nmacc = (tracerMulM (liftM2 (*)) n acc

let nm1 = (liftM2 (-)) n (return 1)

(tracerFacM facM) nm1 nmacc

mainM = (tracerFacM facM) (return 3) (return 1)

The use of set!-expression allows explicit control of evaluation order.

4.2 Cached State Monad for Preserving Laziness

We have seen that in addition to sequencing the desired order of evaluation within side-

effecting aspects, explicit use of set!-expressions is able to influence the base program

by evaluating the arguments of proceed prior to the call. At the same time, we also want

the option of being able to write side-effecting aspects that do not interfere with the

lazy semantics of their base program. This preservation of laziness turns out to be non-

trivial to enforce because any reference to the arguments of an advice in a sequenced

expression may force the evaluation of them. Consider a variant of Example 2.

fac n acc = if n == 0 then acc

else fac (n - 1) (n * acc)

aspect tracer where

var indent :: String = ""

advice around{fac, (*)} (arg) = \arg2 ->

set! ind = getIndent ;

setIndent ("| " ++ ind);

putMsg "tracer" (ind++tjp++" receives ["++

show arg ++ ", " ++ show arg2 ++ "]");

set! result = proceed arg arg2 ;

setIndent ind;

putMsg "tracer" (ind++tjp++" returns " ++

show result);

result

We have removed the set!-expressions that evaluate the arguments eagerly, hoping to

obtain a trace reflecting the lazy evaluation of fac.
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As shown in [12], according to the lazy semantics, the tracing result of (fac 3 1)

should be6

fac receives [3, 1]

| fac receives [2, 3*1]

| | fac receives [1, 2*(3*1)]

| | | fac receives [0, 1*(2*(3*1))]

| | | | times receives [1, 2*(3*1)]

| | | | | times receives [2, 3*1]

| | | | | | times receives [3, 1]

| | | | | | times returns 3

| | | | | times returns 6

| | | | times returns 6

| | | fac returns 6

| | fac returns 6

| fac returns 6

fac returns 6

However, our monadified tracing aspect of fac does not yield the same result.

Consider the following code for the tracing example generated by our monadification

function.

tracerFacM :: (M Int -> M Int -> M Int) ->

(M Int -> M Int -> M Int)

tracerFacM proceed arg arg2 =

do getIndentResult <- getIndentM

let ind = return getIndentResult

let ind’ = (liftM2 (++)) (return "| ") ind

setIndentM ind’

let show_arg2 = (liftM show) arg2

let str_1 = (liftM2 (++)) show_arg2 (return "]")

let str_2 = (liftM2 (++)) (return ",") str_1

let show_arg = (liftM show) arg

let str_3 = (liftM2 (++)) show_arg str_2

let str_4 = (liftM2 (++)) (return "fac receives [") str_3

let str_5 = (liftM2 (++)) ind str_4

putMsgM (return "tracerFacM") str_5

proceedResult <- proceed arg arg2

let result = return proceedResult

setIndentM ind

let s_result = (liftM show) result

let str_6 = (liftM2 (++)) (return "fac returns ") s_result

let str_7 = (liftM2 (++)) ind str_6

putMsgM (return "tracerFacM") str_7

result

facM :: M Int -> M Int -> M Int

facM n acc =

6 To help the readers understand the lazy trace, we intentionally leave the accumulating
parameter of fac not fully evaluated.
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do let eq_n_zero = (liftM2 (==)) n (return 0)

neq0 <- eq_n_zero

if neq0 then acc

else do let nmacc = (tracerMulM (liftM2 (*)) n acc

let nm1 = (liftM2 (-)) n (return 1)

(tracerFacM facM) nm1 nmacc

mainM = (tracerFacM facM) (return 3) (return 1)

Running the above monadified tracing program with (facM (return 3) (return

1)) yields the following incorrect trace.

fac receives [3, 1]

| | times receives [3, 1]

| | times returns 3

| fac receives [2, 3]

| | | | times receives [3, 1]

| | | | times returns 3

| | | times receives [2, 3]

| | | | times receives [3, 1]

| | | | times returns 3

| | | times returns 6

| | fac receives [1, 6]

...

| | | | | | times receives [3, 1]

| | | | | | times returns 3

| | | | | times receives [2, 3]

| | | | | | times receives [3, 1]

| | | | | | times returns 3

| | | | | times returns 6

| | | | times returns 6

| | | fac returns 6

| | fac returns 6

| fac returns 6

fac returns 6

From the generated trace, we can see that some expressions, such as times 3 1,

are evaluated more than once and in the wrong order. In other words, the monadified

tracing program obtained not only changes the order of evaluation but also duplicates

the evaluation of some expressions, thus delivering the tracing messages in the wrong

order. This result is disturbing because the sole purpose of tracing is to track the

evaluation steps of the underlying program and record them in the output stream.

A closer look at the monadified aspect code reveals the source of the problem: Call-

ing the lifted show function, (liftM show), with the argument arg2 (the accumulating

parameter), which in turn invokes the show function to obtain string representations

of the arguments. This will lead to premature evaluation of the invocation of the mul-

tiplication, which is also being traced. Later, when the call to facM is resumed via

the proceed call, the multiplication call will be triggered and traced again. Hence the

problem is how to preserve the lazy evaluation of the base program while monadify-

ing aspects which are perceived to be non-interfering, such as tracing. Unfortunately,

existing monadification schemes such as [14,5,7,9] do not address these issues.
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There are indeed two issues involved. First, although the use of any strict function

in an aspect will result in evaluation of function arguments and thus change the order

of evaluation, the monadification process should at least ensure that no duplication

of evaluation occurs. Second, the show function aggravates the situation by explicitly

displaying this subtle change in the evaluation order to the trace user. As pointed out

by Kishon, we should find an alternative display function that does not evaluate its

argument and do a post lookup process to retrieve the value of its argument, a thunk

or an evaluated value, to be compliant with lazy semantics.

We employ two techniques to address this issue of aspect interference and the need

of the show function, respectively. The first one is to maintain a cache of function argu-

ments and wrap it around the original aspect monad to form a new aspect monad. The

cache stores the values of function arguments which are either a thunk or an evaluated

value, just like in any typical implementation of lazy evaluation. This is to ensure that

the arguments will not be evaluated more than once. The new aspect monad, its monad

operation code and other auxiliary definitions are sketched in Figure 8.

data Cell = forall s a. Cell Bool (CState s a) -- Cells: thunks or values
type Cache = Map.Map Int (Maybe Cell)

newtype CState s a = CState{
realrunCState :: (s, Cache) -> (Either a Int, (s, Cache))

}
type M a = CState (UserVar, OutputBuf) a

runCState :: CState s a -> (s, Cache) -> (a, (s, Cache)) --helper function for aspect monad
types runCState a (s, cs) = uncurry fromCacheEither $ realrunCState a (s, cs)

instance Monad (CState s) where -- Standard State monad impl.
return t = CState $ \(s, cs) -> (Left t, (s, cs))
ma >>= k = CState $ \(s, cs) -> let (a, (s’, cs’)) = runCState ma (s, cs)

in realrunCState (k a) (s’, cs’)

instance MonadState s (CState s) where
put s’ = CState $ \(s, cs) -> (Left (), (s’, cs))
get = CState $ \(s, cs) -> (Left s, (s, cs))

fromCacheEither :: Either a Int -> (s, Cache) -> (a, (s, Cache))
fromCacheEither (Left a) (s, cs) = (a, (s, cs))
fromCacheEither (Right n) (s, cs) =

... evaluate the thunk of this cell via fromCell and store its result
--shown in the Appendix B

fromCell :: Cell -> (s, Cache) -> (Either a Int, (s, Cache))
fromCell (Cell _ c) = realrunCState (unsafeCoerce# c)

--Functions for manipulating the cache
getNewCacheLoc :: CState s Int -- get a new cell loc from cache
setCache :: Int -> CState s a -> CState s a -- put thunk t into loc n of the cache

add2Cache:: CState s a -> CState s (CState s a)
add2Cache arg = do n <- getNewCacheLoc

return $ setCache n arg

Fig. 8 Cache-extended State Monad
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The cache is a map from integers (locations) to cells containing thunks or values.

The type (CState s a) is the key element of the new aspect monad. It can be viewed

as a state monad extended with a cache of cells. When feeding an extended state,

(s, cache), to run, the new aspect monad will produce an “either-object”: either a

real value, (Left a), or a cell location, (Right n), of the cache. Because of the cache

wrapper, we define a special “unpacker” function, runCState, to assist in realizing

state processing for the extended aspect monad. Specifically, it first activates the state

processing function via the field accessor, realrunCState, to obtain an either-object,

and then passes it to the fromCacheEither function, which may look up the cell in the

cache and trigger the monadic computation stored therein via the fromCell function.

The definition of the bind operator (À=) of the new aspect monad is almost identical

to the standard state monad except the call to realrunCState. Note that, due to the

use of the forall quantifier in the definition of Cell type, we have to use the GHC

extension of unsafeCoerce function in the fromCell function.

Also shown in Figure 8 are three functions for manipulating the cache. Function

getNewCacheLoc extends the cache and returns the new location. Function setCache

puts a monadic computation into the designated location of the cache. Finally, function

add2cache employs the two functions to put a monadified function argument compu-

tation into the cache.

With the introduction of (CState s a), the issue of duplicated evaluation of func-

tion arguments can be resolved. Recall that, after A-normalization, all non-atomic

function arguments will become let-bound expressions. Hence, we can enhance the

monadification rewriting rule for let-expressions by applying the add2Cache function

to fully applied function calls as follows.

[[let x = e1 in e2]]
t
Γ = if e1 is of functional type or a constant

then do {let x = [[e1]]
tx

Γ ; [[e2]]
t
Γ }

else do {x ← add2cache $ [[e1]]
tx

Γ ; [[e2]]
t
Γ }

Following this enhancement, the revised monadification of the tracing program is as

follows.

tracerFacM :: (M Int -> M Int -> M Int) ->

(M Int -> M Int -> M Int)

tracerFacM proceed arg arg2 =

do getIndentResult <- getIndentM

let ind = return getIndentResult

ind’ <- add2Cache $ (liftM2 (++)) (return "| ") ind

setIndentM ind’

s_arg2 <- add2Cache $ (liftM show) arg2

str_1 <- add2Cache $ (liftM2 (++)) s_arg2 (return "]")

str_2 <- add2Cache $ (liftM2 (++)) (return ",") str_1

s_arg <- add2Cache $ (liftM show) arg

str_3 <- add2Cache $ (liftM2 (++)) s_arg str_2

str_4 <- add2Cache $ (liftM2 (++)) (return "fac receives [") str_3

str_5 <- add2Cache $ (liftM2 (++)) ind str_4

putMsgM (return "tracerFac") str_5

proceedResult <- proceed arg arg2

let result = return proceedResult
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setIndentM ind

show_res <- add2Cache $ (liftM show) result

str_6 <- add2Cache $ (liftM2 (++)) (return "fac returns ") show_res

str_7 <- add2Cache $ (liftM2 (++)) ind str_6

putMsgM (return "tracerFac") str_7

result

facM :: M Int -> M Int -> M Int

facM n acc =

do eq_n_zero <- add2Cache $ (liftM2 (==)) n (return 0)

neq0 <- eq_n_zero

if neq0 then acc

else do nmacc <- add2Cache $ (tracerMulM (liftM2 (*)) n acc

nm1 <- add2Cache $ (liftM2 (-)) n (return 1)

(tracerFacM facM) nm1 nmacc

Running the above code with facM (return 3) (return 1) will produce the fol-

lowing result, exactly the same as the eager trace.

fac receives [3, 1]

| | times receives [3, 1]

| | times returns 3

| fac receives [2, 3]

| | | times receives [2, 3]

| | | times returns 6

| | fac receives [1, 6]

| | | | times receives [1, 6]

| | | | times returns 6

| | | fac receives [0, 6]

| | | fac returns 6

| | fac returns 6

| fac returns 6

fac returns 6

Now the duplicated evaluations are eliminated, but the lifted show function still

makes the tracing messages out of order. As mentioned above, we need to provide a

special version of show to preserve the desired message order. The following function,

showM, is the version we have designed for this purpose.

showM :: M Int -> M String

showM a = case fst $ realrunCState a (emptyM, emptyCacheSet) of

Left v -> return $ show v

Right n -> return $ "<M’M:" ++ show n ++ "|"

Specifically, the new showM function does a “dry run” of the monad computation

using an empty state, and if the result is a cell location, it returns a marker (“<M’M:”)

and a cell location, n to signal that its argument is kept in the cell. Afterwards, we

provide a post processing function deserialize to traverse the output buffer and

replace such marked locations with the value stored the specified cell of the cache.

Now we can adapt our monadification scheme by treating the show function as a

special primitive function and use this showM function as its monadified version. As
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a result, the monadified tracing program will produce the same result as described

in [12] when run with facM (return 3) (return 1). On the other hand, on certain

occasions, such as debugging as mentioned in the introduction, one may prefer an eager

tracing of the base programs. Thus, we could also offer both options of monadifying

show, namely (liftM show) and showM, and let the user decide which one to use.

5 Transforming Monadic Programs

Although AspectFun does not yet support monadic base programs, we can still de-

scribe how to extend our modification transformation when the base program is already

monadic. We illustrate this by refactoring the monadic version of the “display update”

example presented by Hofer and Ostermann [10].

The context of this “display update” example [11] is a simple figure editor that

manipulates typical shapes such as points and lines. Any update done on such shapes

will trigger an action for display refresh. It is a model example of crosscutting concerns

(i.e., display refresh) that can be nicely handled by aspect-oriented programming. In

their work, Hofer and Ostermann aim to show a simulation of aspect-oriented program-

ming with monads. To achieve this goal, besides introducing the IO monad for state

manipulation, they also introduced an additional monad, MonadIO, and an overloaded

withStateChange operator to implement the crosscutting concern of display refresh.

By contrast, we use side-effecting aspects to separate the concern of display refresh

from the base module of shape manipulation; thus the base module only needs to use

the IO monad to support shape updates. Example 3 displays the main fragments of

the refactored code.

Example 3

newtype Point = P (IORef (Int, Int))

newPoint :: Int -> Int -> IOPoint ...

setPointX, setPointY :: Point -> Int -> IO () ...

movePointBy::Point-> Int -> Int -> IO () ...

newtype Line = L (IORef (Point, Point))

newLine :: Point -> Point -> IO Line ...

getLineP1, getLineP2 :: Line -> IO Point ...

moveLineBy :: Line -> Int -> Int -> IO ()

...

sample :: Line->IO()--a test case

sample l = moveLineBy l 7 (-9)

data DisplayObject=forall a.Displayable a => DisplayObject a

aspect DisplayUpdate where

-- user variable

var displayObject ::DisplayObject = DisplayObject EmptyDisplay

-- advice 1:before advice

initDisplay@advice around{sample} (l) =

setDisplayObject (DisplayObject l); proceed l
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-- advice 2: after advice

moveUpdate@advice around{movePointBy,moveLineBy

-cflow(updateDisplay)} (arg) =

\dx -> \dy -> updateDisplay (proceed arg dx) dy

-- advice 3: after advice

setUpdate@advice around{setPointX,setPointY

-cflow(updateDisplay)} (arg) =

\newVal -> updateDisplay (proceed arg) newVal

-- helper functions

updateDisplay f n = let a = f n in refreshDisplay; a

refreshDisplay:: IO ()

refreshDisplay = let DisplayObject d=getDisplayObject

in display d; putStrLn ""

Here the mutable variable, displayObject, is the object to display, which is either a

line or a point. The function sample is a test case. There are three aspects. The first one,

initDisplay sets the object to display before running the test case, sample. The other

two aspects, moveUpdate and setUpdate, trigger the display refresh operation when a

point or a line is updated. They both have composite pointcuts: Besides the update

functions, they include a control-flow based pointcut, -cflow(updateDisplay), which

ensures that the advice code will not be triggered when the updateDisplay function

is still in execution, thus preventing repeated display refresh during a single update

operation.

5.1 Using Monad Transformers

In the presence of monadic base programs, we need to employ the state monad trans-

former mechanism to combine the monad of the base program with the aspect monad.

For example, the display update program in Example 3 uses the IO monad, hence the

aspect monad for it is defined as follows.

type S m a = StateT (UserVar, OutputBuf) m a

type M a = S IO a

In general, the monadification operator M should be extended as follows:

M(t1 → t2) ⇒M(t1) →M(t2) (4)

M(a) ⇒ MT N a (5)

M(N (t1 → t2)) ⇒ MT N (M(t1) →M(t2)) (6)

M(N a) ⇒ MT N a (7)

where N is the monad used in the base program (base monad), and MT is the monad

transformer being used. In Example 3, N is IO and MT is StateT (UserVar, OutputBuf).

Finally, some of the monadification rewriting rules also need to be adjusted. There

are three categories of changes. Firstly, we must apply proper lifting operations when

passing computed values between the base monad and the aspect monad. Essentially,
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we shall use the liftM operator to lift operations on the base monad before applying

them, and use the liftN operator to lift results of computations in the base monad, N.

The following enhanced versions of (Prim) and (App) illustrate the ideas.

(Prim) [[p]]tΓ = liftMn p

where n is the arity of the primitive function or

the base monad operation p

(App) [[e a]]tΓ =

if isFullAppBaseMonadOP (e1)

then do {x ← [[e]]ta→t
Γ [[a]]ta

Γ ; liftN x}
else [[e]]ta→t

Γ [[a]]ta

Γ

Secondly, the revised rule for let-expressions presented in Section 4.2 needs yet another

adjustment. Specifically, if the binding of a let-expression is a monadic expression,

then we should not apply the add2Cache function, as the computation encapsulated in

a monad should be evaluated whenever it is referenced.

Thirdly, we need to extend the rewriting rules to handle the bind (À=) and the

return operations of the base monad.

(Bind) [[do {x ← e1; e2}]]tΓ = do {x′ ← [[e1]]
t1
Γ ; let x = return x′; [[e2]]

t
Γ }

(Return) [[return e]]tΓ = [[e]]tΓ

In the case of (Bind), we need to use the return of the new monad to move the result

of do-binding action back to the new monad. As to the case of (Return), we simply

drop the returnof the base monad and return the monadified expression.

The following code snippets show the original version of the getLineP1 function

and its monadified version.

getLineP1 :: Line -> IO Point

getLineP1 (L l) =

do (p1,_) <- readIORef l

return p1

getLineP1M :: M Line -> M Point

getLineP1M ll =

do (L lBindout) <- ll --PatternMatching

let l = return lBindout --Bind

bmOP <- (liftM readIORef) l --Prim

(p1BindOut, _) <- liftIO bmOP --App

let p1 = return p1Bindout --Bind

p1 --Return

5.2 Unified Monadification Scheme

We started from a simple state monad of user variables and output buffer, and then

extended it with a cache facility. Now we generalize the state monad along another

direction using monad transformers. It would be nice to combine these different en-

hancements under a unified monadification framework. Specifically, we devise a cache-

extended state monad transformer that can accommodate the aspect monads presented
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so far as special cases. This monad transformer, CStateT, is defined in terms of another

monad transformer, CacheT as follows.

newtype CacheT m a = CacheT{ realrunCacheT :: Cache -> m (Either a Int, Cache)}

type CStateT s m a = CacheT (StateT s m) a

instance MonadTrans CacheT where

lift ma = CacheT $

\cs -> ma >>= \a -> return (Left a, cs)

instance Monad m => Monad (CacheT m) where

return t = CacheT $ \cs -> return (Left t, cs)

ca >>= k = CacheT $ \cs ->

do (ea, cs’) <- realrunCacheT ca cs --Either a

(ra, cs’’) <- fromCacheEither ea cs’

realrunCacheT (k ra) cs’’

instance MonadIO m => MonadIO (CacheT m) where

liftIO = lift . liftIO

...

Given the above definitions, we can easily derive the respective aspect monads defined

in the previous subsections.

1. The aspect monad of Section 4.1 can be replaced with the following one:

type M a = StateT (UserVar, OutputBuf) Identity a

-- identity monad

2. The aspect monad of Section 4.2 can be replaced with the following one:

type M a = CStateT (UserVar, OutputBuf) Identity a

3. The aspect monad of Section 5.1 can be replaced with the following one:

type M a = CStateT (UserVar, OutputBuf) IO a

Figure 9 shows a summary of the monads we developed along the way towards our

goal.

6 Related Work

Research about monadification can be traced back to work on continuation passing

style conversion [7,9], where compiler-based transformation rules were developed to

convert all functions and intermediate results in a program into monadic form. The

A-normalization technique was introduced in [7]. Although transformations rules for

both call-by-value and call-by-name were presented, no concerns about lazy semantics

(call-by-need) were discussed.

Our monadification scheme is inspired by the monad introduction transformation

of Lämmel [14], in which a set of type-directed transformation rules were devised to
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StateT s m a

CacheT (StateT s m) a 

CState s a 

State s a

Fig. 9 Summary of the Monad Transformations

convert A-normalized expressions into monadic computation. The rules are given in

natural semantics style and exhibit a degree of non-determinism to support the case of

monadifying only selected functions. In [5], Erwig and Ren developed a set of syntax-

directed rewriting rules that can convert a group of selected functions into a monadic

form and identified the correctness criteria for the conversion. Once again, neither of

these approaches addressed the issues related to lazy semantics.

In this work, the monadification transformation is performed after type inference

and after static weaving of the base program and its side-effecting aspects. Hence we

have full type information of the expression available for monadification. Moreover,

our monadification scheme differs from previous approaches by also lifting function

parameters to the monadic space. While this decision enables us to derive a simple

monadification function for transforming the woven code in a lazy context, it prohibits

us from being able to monadify only selected functions, as was done by the above two

approaches. In particular, any library functions for AspectFun must also be monadified

if they cannot be simply lifted to work with side-effecting aspects. However, none of

the approaches, including ours, can handle the case that the source code of external

functions invoked in the monadified function is unavailable.

Fischer et al. [6] presented an efficient implementation of non-strictness, sharing

and non-determinism embedded in a purely functional language, such as Haskell. They

devised some customized monadic data types to support non-determinism in non-strict

context. To enable explicit sharing, a combinator, share, is supplied to introduce vari-

ables for non-deterministic computations that represent values rather than computa-

tions. Not surprisingly, their share combinator plays the same role as our add2Cache

function, as manifested by their type signature, m a -> m (m a), where m is instanti-

ated to CState s in our case. Indeed, there is a close correspondence between their

monadic implementation of the sharing facility and our cache-extended state monad:

Both have an implementation of thunk stores with respect to a monad.

The Functional Programming Group at Kent University maintains a web page

titled, Monadification as Refactoring, which collects five different styles of monadifica-

tion and uses a simple interpreter to illustrate these styles. Our monadification scheme

presented in Section 3.1 is referred to as restricted call-by-name monadification, and

the other so-called full call-by-name monadification is the one that we had considered

but not adopted.

Kishon’s thesis work [12,13] developed a semantics-directed program monitoring

framework. The main tool his framework employed for collecting program execution

information is code instrumentation. His annotation labels for marking program points
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to monitor are just like pointcuts in aspect-oriented programming. But the instrumen-

tation is done at the interpreter (semantics) level, not at the source level. Hence it is

easier for his framework to utilize semantic entities such as the environment and store

to implement a thunk-based cache for performing lazy tracing.

The potential relation between aspects and monads was first suggested by De

Meuter [17]. The recent work of Hofer and Ostermann [10] explored this subject in

further depth and presented a detailed comparison between aspects and monads in

terms of two dimensions: their capabilities and effects on modularity. Our example of

“display update” is based on the code of their work.

7 Conclusions and Future Work

We have proposed a simple state manipulation construct for developing aspects that

can perform side-effecting operations in aspect-oriented lazy functional languages. Such

aspects are good for monitoring the execution state of the base program in a modu-

lar manner. We have also presented a systematic monadification scheme to realize the

implementation of monitoring by translating the woven code to monadic style purely

functional code. Along the way, we have identified the difficulties involved in monadify-

ing such side-effecting aspects in a lazy functional setting and proposed a solution that

employs a cached state monad transformer to reconcile the gap between side effects

and lazy semantics.

The AspectFun compiler has been extended accordingly to support the proposed

constructs for developing side-effecting aspects. The generated monadic code reveals

further opportunities for optimizations. For example, a closer examination of the monad-

ified code generated by our compiler for the tracing example reveals that most of the

calls to add2Cache function can be optimized away. Specifically, all such calls inside

tracerFacM can be eliminated since the variables receiving the call results, such as

s arg and str 1, are used only once therein. At the moment, since arg and arg2 are

used more than once in the tracer aspect, the two calls to add2cache for binding nmacc

and nm1 inside facM cannot be eliminated. Hence we plan to investigate optimizations of

the monadic code via some static analysis techniques. In particular, we speculate that

the type-based usage analysis developed in [22] can be adapted to serve our purpose.

At the moment, all mutable variables are strictly private to aspects, which spare

us from checking non-interference between aspects accessing the same state at the cost

of compromised modularity. We plan to relax this restriction in a controlled manner.

One plausible direction is to allow explicit inheritance of states between aspects. In

this case, non-interference can be reasoned about with the framework in [18].
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A Proofs of Monadification Properties

In this appendix, we give in detail the proofs of type preservation and value preservation for
our monadification scheme, respectively.

First, a key step towards proving the type preservation of our monadification scheme is to
prove the type preservation of the monadified expression produced by the (Var) rule. We begin
with the following lemma which shows that application of the type-specific flatten combinator
inserted by the pos function can reconcile the type mismatch described in the main text for
the base case of type substitution on a type variable.
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Lemma 1 Given an expression e, a type environment Γ , a type substitution S, and a type
variable a ∈ dom(S), if M(Γ ) ` e : M(S)M(a), then M(Γ ) ` flatten[Sa](e) : M(Sa).

Proof If Sa is an atomic type, then the result follows trivially since M(S)M(a) = M (Sa) =
M(Sa). Otherwise, assume that Sa = t1 → t2 · · · tn → t. Then it follows from

M(Γ ), x1 : M(t1), · · · , xn : M(tn) ` e >>= λe′. e′ x1 · · ·xn : M(t).

ut

By replacing Sa in Lemma 1 with type t, we obtain the following corollary which shows
that, when necessary, the type-specific combinator flatten can remove one level of monadic
structure from the monadic type of the given expression.

Corollary 1 (Type of flatten[t]) If t is an atomic type, then M(Γ ) ` e : M t im-
plies M(Γ ) ` flatten[t](e) : M t; otherwise, M(Γ ) ` e : M (M(t)) implies M(Γ ) `
flatten[t](e) : M(t).

The second lemma shows the type preservation of our rule for monadifying variables.

Lemma 2 (Type preservation for (Var)) Given a variable x, a type environment Γ , and
a type t, if x ∈ dom(Γ ) and t is an instance of Γ (x), then

M(Γ ) ` [[x]]tΓ : M(t)

Proof We prove the following two properties of posS
t and negS

t simultaneously by a structural
induction on t. The lemma is a consequence of (a).

Given any type environment Γ , expression e, type t, and type substitution S,

(a) if M(Γ ) ` e : M(S)M(t) then M(Γ ) ` posS
t (e) : M(St), and

(b) if M(Γ ) ` e : M(St) then M(Γ ) ` negS
t (e) : M(S)M(t).

1. t is a type variable a in the domain of S:
(a) As posS

a(e) = flatten[Sa] (e), by lemma 1, M(Γ ) ` posS
a(e) : M(Sa).

(b) If Sa is an atomic type, then negS
a(e) = e, M(S)a = Sa, M(S)M(a) = M Sa =

M(Sa). Hence (b) is true. Otherwise, negS
a(e) = return e, M(S)a = M(Sa), and

M(Γ ) ` return e : M (M(Sa)) = M(S)M(a) also holds.
2. t is an atomic type and St = t: then M(S)M(t) = M(t), and both (a) and (b) follow

trivially.
3. t = t1 → t2:

(a) posS
t1→t2

(e) = λx. posS
t2

(e negS
t1

(x)):

M(Γ ) ` λx. posS
t2

(e negS
t1

(x)) : M(St1) →M(St2)

⇐ M(Γ ).x : M(St1) ` posS
t2

(e negS
t1

(x)) : M(St2)

⇐ M(Γ ).x : M(St1) ` e negS
t1

(x) : M(S)M(t2) by I.H.(a) on t2
⇐ (M(Γ ).x : M(St1) ` e : M(S)M(t1) →M(S)M(t2)
∧ M(Γ ).x : M(St1) ` negS

t1
(x) : M(S)M(t1)) by I.H.(b) on t1

(b) negS
t1→t2

(e) = λx. negS
t2

(e posS
t1

(x)):

M(Γ ) ` λx. negS
t2

(e posS
t1

(x)) : M(S)M(t1) →M(S)M(t2)

⇐ M(Γ ).x : M(S)M(t1) ` negS
t2

(e posS
t1

(x)) : M(S)M(t2)

⇐ M(Γ ).x : M(S)M(t1) ` e posS
t1

(x) : M(St2) by I.H.(b) on t2
⇐ (M(Γ ).x : M(S)M(t1) ` e : M(St1) →M(St2)
∧ M(Γ ).x : M(St1) ` posS

t1
(x) : M(St1)) by I.H.(a) on t1

ut

Given the two lemmas above, we can prove the first theorem, which ensures that the type
of a monadified expression is the same as the monadic type assigned to the original expression.
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Theorem 1 (Type Preservation of Monadification) Given an expression e and a type
environment Γ , if Γ ` e : t then M(Γ ) ` [[e]]tΓ : M(t),

Proof By induction on the derivation of Γ ` e : t.

(Var) Lemma 2

(Lam) By induction, M(Γ ).x : M(t1) ` [[e]]t2Γ : M(t2). Hence, M(Γ ) ` λx.[[e]]t2Γ : M(t1) →
M(t2). The case follows since λx.[[e]]t2Γ = [[λx.e]]t1→t2

Γ .
(App) Trivial.

(If) Trivial if the rule (If-C) is applied. Otherwise, by induction hypothesis, M(Γ ) ` [[a]]tΓ :
M(Bool). Applying the rule (Bind) withM(Γ ) ` λa′.if a′ thenM(e1) elseM(e2) : Bool →
M(t), we get M(Γ ) ` [[if a then e1 else e2]]tΓ : M(t).

(Let) Trivial since M(gen(Γ, t1)) = gen(M(Γ ),M(t1)).
(Seq) Trivial since M(Γ ) ` λ .[[e2]]tΓ : t1 →M(t2) = t1 → M t2.
(Set) Similar to (Seq).

ut

Next, we proceed to develop the technical machinery for proving the value preservation
property of our monadification scheme. We first extend the monadification function [[·]]Γ to
work on heap h such that [[h]]Γ (x) = [[h(x)]]tΓ for x ∈ dom(h) and t is Γ (x) with quantified
type variables instantiated to fresh variables. Then, as the heap is essential to the evaluation
of an expression, monadic or not, we define the notions of respect and preservation by a heap
for an expression with respect to monadification. First, a monadified expression eM of type
M(t) is said to respect a non-monadic expression e of type t under a heap h according to the
structure of t and the semantic evaluation of eM as follows.

– if t is atomic, then (h, S, ε, e) 7→∗ (h′, S′, ε, v) implies ([[h]]Γ , S, ε, eM ) 7→∗ (h′′, S′′, ε, return v).
– if t = M(t1) → M(t2), then, for every eN of type M(t1) respecting e1, application

(eM eN ) respects (e e1) under h.

Second, an expression e of type t is said to be preserved by a heap h if and only if [[e]]tΓ respects
e under h. Since the functional case of expression preservation will be used very often, for ease
of discussion, we shall adopt the following alternative yet equivalent definition.

– if t = t1 → t2, then, for every e1 of type t1 preserved by h, application (e x) is preserved
by h[x 7→ e1] where x is a fresh variable.

Besides, a heap should be consistent with the type environment such that Γ ` h if and
only if Γ ` h(x) : Γ (x) for every x ∈ dom(h). Finally, if h(x) is preserved by h[x 7→⊥] for every
x ∈ dom(h), we simply say that h is preserved.

The first lemma shows that the respect relation between expressions is invariant under the
application of the pos function.

Lemma 3 Given a monadified expression eM of type M(t), if it respects another expression
e of type t under a heap h, then for any type substitution S, posS

t (eM ) has type M(St) and
respects the same expression e of type St under h.

Proof We prove it with a similar property of neg simultaneously by a structural induction on
t.

– For an expression eM of type M(St), if it respects another expression e of type St under a
heap h, then negS

t (eM ) can be seen as if having typeM(t) and respects the same expression
e of type t under h.

The typing parts in both propositions follows directly from the proof of Lemma 2 by adding
or removing the monadic type substitution M(S).

To prove the respect part, we assume that e evaluates to some value v under h. Consider
the following cases.

1. t is a type variable a in the domain of S:
– If Sa is not a functional type, posS

t (eM ) = flatten[Sa](eM ) = eM ≡ return v, which
respects e of type St.
Otherwise, Sa = t1 → t2 · · · → ta, flatten[Sa](eM ) = λx1 · · ·xn. eM >>= λy. y x1 · · ·xn

where each xi has type ti. Suppose each of eM
1 · · · eM

n respects one of e1 · · · en, re-
spectively, by applying them to the result of flatten and replacing eM by return v,
eM >>= λy. y xM

1 · · ·xM
n evaluates to v eM

1 · · · eM
n , which respects v e1 · · · en.
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– If Sa is not a functional type, negS
t (eM ) = eM , which respects e. Otherwise, negS

t (eM ) =
return eM . Since St is a functional type, e is some expression that, after some reduc-
tions, can form a lambda expression. Since eM respects it, eM cannot evaluate to the
form of return vM . The only possibility is something identical to v. Hence return eM

evaluates to return v, which shows that it respects e.
2. t is an atomic type and St = t, then both pos and neg act like the identity function. The

case is trivial.
3. t = t1 → t2.

– posS
t1→t2

(eM ) = λx. posS
t2

(eM negS
t1

(x)). We can apply it to an expression eN of

type M(St1) that respects e1 of type St1, and prove the resulting expression respects
e e1. By induction on neg, negS

t1
(eN ) respects e1. Since eM , with a functional type,

respects e, eM negS
t1

(eN ) has type M(t2) and respects e e1. Finally by induction on

pos, posS
t2

(eM negS
t1

(eN )) has type M(St2) and respects e e1.

– negS
t1→t2

(eM ) = λx. negS
t2

(eM posS
t1

(x)). Similar to the previous case, by induction on

both pos and neg, and the assumption that eM respects e, for eN of type M(t1) which
respects e1 of type t1, negS

t2
(eM posS

t1
(eN )) has type M(t2) and respects e1 eN .

The second lemma concerns the base case for proving value preservation by a heap for an
expression.

Lemma 4 If Γ ` x : t, then for all preserved h such that Γ ` h, x is preserved by h.

Proof By a case analysis on the structure of t:

– t is atomic: Given the evaluation sequence (h, S, ε, x) 7→∗ (h′, S′, ε, v), we need to show
([[h]]Γ , S, ε, x) 7→∗ (h′′, S′′, ε, return v), as [[x]]tΓ = x.
According to (OS:hval) and (OS:heval), there must be some point in the given evaluation
sequence at which x is replaced with a heap value vh:

(h, S, ε, x) 7→∗ (h′′, S′′, ε, x) 7→ (h′′, S′′, ε, vh) 7→∗ (h′, S′, ε, v)

where h′′(x) = vh.
By (OS:heval), the above sequence is entailed by another evaluation sequence:

(h[x 7→⊥], S, ε, h(x)) 7→
h

∗ (h′′[x 7→⊥], S, ε, vh).

Since 7→
h

is a subset of 7→, we can combine the two sequences together to get (h, S, ε, h(x)) 7→∗

(h′, S′, ε, v). Now, as h is preserved, h(x) is preserved, too. Hence

([[h]]Γ , S, ε, [[h(x)]]tΓ ) 7→∗ (hM , SM , ε, return v).

In this sequence, let (h′M , S′M , ε, v′h) be the first configuration in which the expression
part is a heap value. Obviously, all of the 7→ before this configuration can be replaced
by 7→

h
. Otherwise the left hand side is of the form e1 >>= e2, which is also a heap value,

contradicting the assumption of this being the first such configuration.
So, by (OS:hval) and (OS:heval), we can compose the following evaluation sequence

([[h]]Γ , S, ε, x) 7→∗ (h′M , S′M , ε, x) 7→ (h′M , S′M , ε, v′h) 7→∗ (hM , SM , ε, return v),

which shows that x is preserved by h.
– t = t1 → t2: Given the evaluation sequence (h[y 7→ e1], S, ε, x y) 7→∗ (h′, S′, ε, v) for a fresh

y and some preserved e1 with type t1, we need to show ([[h[y 7→ e1]]]Γ , S, ε, [[x y]]t2Γ ) 7→∗
(h′′, S′′, ε, return v), as Γ.y : t1 ` h[y 7→ e1].
By a reasoning similar to the above case, we can divide the given sequence to

(h[y 7→ e1], S, ε, x y) 7→∗ (h′′, S′′, ε, x y) 7→ (h′′, S′′, ε, vh y) 7→∗ (h′′′, S′′′, ε, vx y) 7→∗ (h′, S′, ε, v)

where h′′(x) = vh.
We can construct the monadified evaluation sequence as for the above case; the main

difference is that [[x]]tΓ = pos
Sx
tx

(x), where Γ (x) = ∀ā.tx and Sxtx = t1 → t2, may not be
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equal to x. However, the monadification of y, pos
Sy
ty

(y) where Syty = t1, is also the result

of applying the pos function.

By Lemma 3, posSx
tx

(x) is an expression of type Sxtx which respects vh, and pos
Sy
ty

(y) has

type Syty = t1 and respects h(y). Then [[x y]]t2Γ = pos
Sx
tx

(x) pos
Sy
ty

(y) respects vh h(y), and

will evaluate to some vM that respects v. Hence this case is proved.
ut

The third lemma shows value preservation by a heap for a well-typed expression.

Lemma 5 If Γ ` e : t, then for all preserved h such that Γ ` h, e is preserved by h.

Proof By structural induction on e.

– e ≡ x. By Lemma 4.
– e ≡ λx. e2. Let t = t1 → t2. Given the evaluation sequence (h[y 7→ e1], S, ε, (λx. e2) y) 7→∗

(h′, S′, ε, v) for a fresh y and some preserved e1 with type t1, we need to show

([[h[y 7→ e1]]]Γ , S, ε, [[(λx. e2) y]]t2Γ ) 7→∗ (h′′, S′′, ε, return v).

Moreover, we have

(h[y 7→ e1], S, ε, (λx. e2) y) 7→ (h[y 7→ e1][x 7→ y], S, ε, e2).

and

([[h]]Γ [y 7→ [[e1]]tΓ ], S, ε, (λx. [[e2]]tΓ ) [[y]]t1Γ ) 7→ ([[h]]Γ [y 7→ [[e1]]t2Γ ][x 7→ [[y]]t1Γ ], S, ε, [[e2]]t2Γ )

Now, as Γ.x : t1.y : t1 ` e2 : t2, we have Γ.x : t1.y : t1 ` h[y 7→ e1][x 7→ y], by induction

on e2 and [[h]]Γ [y 7→ [[e1]]tΓ ][x 7→ [[y]]t1Γ ] = [[h[y 7→ e1][x 7→ y]]]Γ , we get

([[h[y 7→ e1]]]Γ , S, ε, [[(λx. e2) y]]t2Γ ) 7→ ([[h[y 7→ e1][x 7→ y]]]Γ , S, ε, [[e2]]t2Γ ) 7→∗ (h′′, S′′, ε, return v).

Hence e is preserved by h.
– e ≡ e1 e2. Trivial.
– e ≡ if a then e1 else e2. By induction on a:

[[e]]tΓ = [[a]]Bool
Γ >>= λx. if x then [[e1]]tΓ else [[e2]]tΓ 7→∗ return b >>= λx. if x then [[e1]]tΓ else [[e2]]tΓ

Then e is preserved by h following from induction on e1 and e2.
– e ≡ let x = e1 in e2. Similar to the case of λx. e2.

ut

As a consequence of Lemma 5, we obtain the main theorem of value preservation.

Theorem 2 (Value Preservation) Given a pure expression e and an atomic type t, if

∅ ` e : t and e
ε7−→ v then [[e]]tΓ

ε7−→ return v

Proof A special case of Lemma 5 by letting Γ an empty set and h an empty heap. ut

B Full implementation of the aspect monad and state accessors

Code for State Accessors

{-# LANGUAGE ScopedTypeVariables #-}
module SideEffects where
import CState
import qualified Data.Map as Map
import Data.Char
import Data.Maybe
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type OutputBuf = [(String,String)] emptyOutputBuf = []
type M a = CState (UserVar, OutputBuf) a

putMsg :: M String -> M String -> M () putMsg a m =
do a’ <- a; m’ <- m

modify $ \(u, ms) -> (u, (a’, m’):ms)

getUserVar :: M UserVar getUserVar = do (uv,_) <- get
return uv

modifyUserVar :: (UserVar -> UserVar) -> M () modifyUserVar trans =
modify $ \(u, s) -> (trans u, s)

deserialize :: (UserVar, OutputBuf) -> Cache -> String -> String
deserialize emptyState cs str = find 0 str

where find 0 (’<’:x) = find 1 x -- DFA
find 1 (’M’:x) = find 2 x
find 2 (’\’’:x) = find 3 x
find 3 (’M’:x) = find 4 x
find 4 (’:’:x) = replace 0 x -- Matched
find 0 (x:xs) = x : find 0 xs -- Unmatched
find n a@(x:xs) = (take n "<M’M:") ++ find 0 a
find n [] = take n "<M’M:"
replace n (x:xs) | isDigit x = replace (n * 10 + digitToInt x) xs

| x == ’|’ = getStr n (fromJust $ Map.lookup n cs) ++ find 0 xs
| otherwise = "<M’M:" ++ show n ++ find 0 (x:xs)

getStr _ Nothing = "<thunk>"
getStr n (Just (Cell False _)) = "<thunk " ++ show n ++ ">"
getStr _ (Just c@(Cell True _)) =

let (Left (v :: Int),_) = fromCell c (emptyState, emptyCache)
in show v

deserializeMsgs:: (UserVar, OutputBuf) -> Cache -> [(String,String)]
-> [(String,String)] deserializeMsgs emptyState cs msgs =

map (\(a,m) -> (a, deserialize emptyState cs m)) msgs

Code for Cache-extended State Monad

{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, ScopedTypeVariables,
ExistentialQuantification, MagicHash #-}

module CState (module Control.Monad.State,
CState(..), Cell(..), Cache,
evalCState, runCState, emptyCache,
getNewCacheLoc, setCache, fromCell, add2Cache) where

import Control.Arrow
import Control.Monad.State
import qualified Data.Map as M
import GHC.Prim( unsafeCoerce# )
fromJust’ s Nothing = error s
fromJust’ _ (Just a) = a

data Cell = forall s a. Cell Bool (CState s a) -- Cell Ever_used Thunk
type Cache = M.Map Int (Maybe Cell)

emptyCache = M.empty

newtype CState s a = CState{ realrunCState :: (s, Cache) -> (Either a Int, (s, Cache)) }
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runCState :: CState s a -> (s, Cache) -> (a, (s, Cache))--Helper function for aspect monad

runCState a (s, cs) = uncurry fromCacheEither $ realrunCState a (s, cs)

evalCState :: CState s a -> s -> (a, s)
evalCState a s = second fst $ uncurry fromCacheEither $ realrunCState a (s, emptyCache)

instance Monad (CState s) where -- Standard State monad impl.
return t = CState $ \(s, cs) -> (Left t, (s, cs))
ma >>= k = CState $ \(s, cs) -> let (a, (s’, cs’)) = runCState ma (s, cs)

in realrunCState (k a) (s’, cs’)

instance MonadState s (CState s) where
put s’ = CState $ \(s, cs) -> (Left (), (s’, cs))
get = CState $ \(s, cs) -> (Left s, (s, cs))

putCache cs’ = CState $ \(s, cs) -> (Left (), (s, cs’))
getCache = CState $ \(s, cs) -> (Left cs, (s, cs))

getNewCacheLoc :: CState s Int
getNewCacheLoc = CState $ \(s, cs) -> let n = M.size cs

cs’ = M.insert n Nothing cs
in (Left n, (s, cs’))

cached :: Int -> CState s a
cached n = CState $ \(s, cs) -> (Right n, (s, cs))

setCache :: Int -> CState s a -> CState s a
setCache n t = do cs <- getCache

case M.lookup n cs of
Nothing -> cached n -- for showM, shouldn’t happen otherwise
Just Nothing -> let cs’ = M.insert n (Just $ Cell False t) cs

in putCache cs’ >> cached n
Just (Just _) -> cached n

fromCacheEither :: forall s a. Either a Int -> (s, Cache) -> (a, (s, Cache))
fromCacheEither (Left a) (s, cs) = (a, (s, cs))
fromCacheEither (Right n) (s, cs) =

let (t, (s’, cs’)) = fromCell (fromJust’ "a" $
fromJust’ (show n ++ show (M.keys cs)) $
M.lookup n cs) (s, cs)

(a, (s’’, cs’’)) = fromCacheEither t (s’, cs’)
in (a, (s’’, M.insert n (Just $ Cell True ((return a) :: CState s a)) cs’’))

fromCell :: Cell -> (s, Cache) -> (Either a Int, (s, Cache))
fromCell (Cell _ c) = realrunCState (unsafeCoerce# c)

add2Cache :: CState s a -> CState s (CState s a)
add2Cache v = do n <- getNewCacheLoc; return $ setCache n v


