
Combining Syntactic and Semantic Bidirectionalization

Janis Voigtländer ∗

University of Bonn
Römerstraße 164

53117 Bonn, Germany
jv@iai.uni-bonn.de

Zhenjiang Hu
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
hu@nii.ac.jp

Kazutaka Matsuda
Tohoku University

6-3-09 Aramaki aza Aoba, Aoba-ku
Sendai 980-8579, Japan

kztk@kb.ecei.tohoku.ac.jp

Meng Wang
University of Oxford

Wolfson Building, Parks Road
Oxford OX1 3QD, United Kingdom

meng.wang@comlab.ox.ac.uk

Abstract
Matsuda et al. [2007, ICFP] and Voigtländer [2009, POPL] intro-
duced two techniques that given a source-to-view function provide
an update propagation function mapping an original source and an
updated view back to an updated source, subject to standard consis-
tency conditions. Being fundamentally different in approach, both
techniques have their respective strengths and weaknesses. Here we
develop a synthesis of the two techniques to good effect. On the in-
tersection of their applicability domains we achieve more than what
a simple union of applying the techniques side by side delivers.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Data types
and structures, Polymorphism; H.2.3 [Database Management]:
Languages—Data manipulation languages, Query languages

General Terms Design, Languages

Keywords program transformation, view-update problem

1. Introduction
Bidirectionalization is the task to given some function get :: τ1 →
τ2 produce a function put :: τ1 → τ2 → τ1 such that if get
maps an original source s to an original view v, and v is somehow
changed into an updated view v′, then put applied to s and v′

produces an updated source s′ in a meaningful way. Such get /put-
pairs, called bidirectional transformations, play an important role
in various application areas such as databases, file synchronization,
structured editing, and model transformation. A survey of relevant
techniques and open problems has recently appeared [Czarnecki
et al. 2009], and functional programming approaches have had
an important impact, with several ideas and solutions springing
from this part of the programming languages field in particular
[Bohannon et al. 2006, 2008; Foster et al. 2007, 2008; Hu et al.
2004; Matsuda et al. 2007, 2009; Voigtländer 2009].

Automatic bidirectionalization is one approach to obtaining
suitable get /put-pairs, others are domain-specific languages or
more ad-hoc programming techniques. Two different flavors of
bidirectionalization have been proposed: syntactic and semantic.

∗ The research reported here was performed while this author visited the
National Institute of Informatics, Tokyo, under a fellowship by the Japan
Society for the Promotion of Science, ID No. PE09076.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

Syntactic bidirectionalization [Matsuda et al. 2007] works on a
syntactic representation of (somehow restricted) get-functions and
synthesizes appropriate definitions for put-functions algorithmi-
cally. Semantic bidirectionalization [Voigtländer 2009] does not
inspect the syntactic definitions of get-functions at all, but instead
provides a single definition of put , parameterized over get as a
semantic object, that does the job by invoking get in a kind of
“simulation mode”. (We will briefly introduce both techniques in
Section 2.)

Both syntactic and semantic bidirectionalization have their
strengths and weaknesses. Syntactic bidirectionalization heavily
depends on syntactic restraints exercised when implementing the
get-function. Basically, the technique of Matsuda et al. [2007] can
only deal with programs in a custom first-order language subject to
linearity restrictions and absence of intermediate results between
function calls. Semantic bidirectionalization, in contrast, provides
very easy access to bidirectionality within a general-purpose lan-
guage, liberated from the syntactic corset as to how to write func-
tions of interest. The price to pay for this in the case of the approach
of Voigtländer [2009] is that it works for polymorphic functions
only, and at present is unable to deal with view updates that change
the shape of a data structure (more on this critical issue below).
The syntactic approach, on the other hand, is successful for many
such shape-changing updates, and can deal with non-polymorphic
functions.

In this paper we develop an approach for combining syntactic
and semantic bidirectionalization. The resulting technique inherits
the limitations in program coverage from both techniques. That is,
except for some extensions we will consider later on, only functions
that are written in the first-order language, are linear, and treeless
in the sense of Wadler [1990], and moreover are polymorphic, can
be dealt with. What we gain by the combination is improved up-
datability. Not only do we bring the possibility of shape-changing
updates to semantic bidirectionalization, but also will the combined
technique be superior to syntactic bidirectionalization on its own in
many cases.

To explain what we mean by improved updatability, we have to
elaborate on the phrase “in a meaningful way” in the first sentence
of this introduction, and on “suitable” at the start of the second
paragraph. So, when is a get /put-pair “good”? How should s, v,
v′, and s′ in get s ≡ v and put s v′ ≡ s′ be related? One natural
requirement is that if v ≡ v′, then s ≡ s′, or, put differently,

put s (get s) ≡ s . (1)

Another requirement to expect is that s′ and v′ should be related
in the same way as s and v are, or, again expressed as a round-trip
property,

get (put s v′) ≡ v′ . (2)
These are the standard consistency conditions [Bancilhon and
Spyratos 1981] known as GetPut and PutGet [Foster et al. 2007].

But the latter of the two is often too hard to satisfy in practice. For
fixed get , it can be impossible to provide a put-function fulfilling
equation (2) for every choice of s and v′, simply because v′ may
not even be in the range of get . One solution is to make the put-
function partial and to only expect the PutGet law to hold in case
put s v′ is actually defined. Of course, a trivially consistent put-
function we could then always come up with is the one for which
put s v′ is only defined if get s ≡ v′ and which simply returns s
then. Clearly, this choice would satisfy both equations (1) and (2),
but would be utterly useless in terms of updatability. The very idea
that v and v′ can be different in the original scenario would be
countermanded.

So our evaluation criteria for “goodness” are that get /put
should satisfy equation (1), that they should satisfy equation (2)
whenever put s v′ is defined, and that put s v′ should be actually
defined on a big part of its potential domain, indeed preferably for
all s and v′ of appropriate type. With this measure in hand, one can
compare different bidirectionalization methods. Semantic bidirec-
tionalization as proposed by Voigtländer [2009] has the problem
that put s v′ can only be defined when get s and v′ have the same
shape (length of a list, structure of a tree, . . . , and in some situa-
tions even with constraints on the equivalence and relative ordering
of elements in data structures). Syntactic bidirectionalization as
proposed by Matsuda et al. [2007] does not suffer from such a cen-
tral and common (to all invocations) updatability weakness, but in
many cases also rejects updates that one would really like to see
accepted. The benefit of our combined technique now is that on
the intersection of the classes of programs to which the original
syntactic and semantic techniques apply, we can do strictly better
in terms of updatability than either technique in isolation. We are
never worse than the better of the two in a specific case.

The combination strategy we pursue is essentially motivated by
combining the specialties of the two approaches. Semantic bidirec-
tionalization’s specialty is to employ polymorphism to deal with
the content elements of data structures in a very lightweight way.
In fact, in the original technique, the shape and content aspects of a
data structure are completely separated, updates affecting the shape
are completely outlawed, arbitrary updates to content elements can
be simply absorbed, and by recombining original shape with up-
dated content consistency is guaranteed. Syntactic bidirectionaliza-
tion’s specialty is to have a more refined, and case-by-case, notion
of what updates, including updates on the shape aspect, can be per-
mitted. But it turns out that content elements often get in the way.
In fact, by having to deal with both shape and content, at the same
time, in the key step of syntactic bidirectionalization (namely “view
complement derivation”), updatability is hampered. In our com-
bined approach we divide the labor: semantic bidirectionalization
deals with content only, syntactic bidirectionalization deals with
shape only. As a result, the reach of semantic bidirectionalization
is expanded beyond shape-preserving updates, and syntactic bidi-
rectionalization is invoked on a more specialized kind of programs,
on which it can yield better results, benefitting both.

Technically, we treat syntactic bidirectionalization as a black
box. Or rather, our eventual combined technique does so; for the
sake of analyzing examples, we look into the box; but for actually
executing the combined technique the syntactic technique could be
a completely external component. Semantic bidirectionalization is
treated as a glass box; we do look into it, and we refactor it to enable
a plugging in of the syntactic technique. Indeed, our dissection of
the semantic bidirectionalization technique is an independent con-
tribution of this paper, beyond the specific use case of combining
the techniques of Matsuda et al. [2007] and Voigtländer [2009]. In
principle, our refactoring allows also other approaches (than that
of Matsuda et al.) for obtaining bidirectional transformations on
shapes to be plugged into the semantic technique.

Since our purpose here is to focus on the combination of tech-
niques, we concentrate on one specific kind of functions, namely
on functions from lists to lists. The original techniques we com-
bine apply to algebraic data types more generally. In particular,
Voigtländer [2009, Section 6] employs generic programming tech-
niques to deal with trees and the like. Something similar should
be possible here, but we have not worked out the details. Our key
ideas can all be explained, and hopefully appreciated, in the setting
of lists only, and that explanation is what we seek to do. For the
same reason, we do not consider type classes as Voigtländer [2009,
Sections 4 and 5] does; again, we think our ideas here could be
transferred to those settings, but we refrain from doing so for the
sake of focus.

Our presentation will be partly example-driven, partly program-
driven as we proceed through the refactoring and discovery process
regarding generalization opportunities. We do state lemmas and
theorems, but do not give formal proofs. These proofs can all
be done similarly to those by Voigtländer [2009], employing free
theorems [Wadler 1989]. We will comment in a bit more detail
where appropriate.

As a final preparation before diving right in, we slightly revise
the consistency conditions (1) and (2). Since our emphasis is on
the updatability inherent in a get /put-pair, we make the partiality
of put explicit in the type via optionality of the return value. The
following definition formulates the consistency conditions for this
setting.

Definition 1. Let τ1 and τ2 be types. Let functions get :: τ1 → τ2
and put :: τ1 → τ2 → Maybe τ1 be given. We say that put is
consistent for get if:

• For every s :: τ1,

put s (get s) ≡ Just s .

• For every s, s′ :: τ1 and v′ :: τ2, if put s v′ ≡ Just s′, then

get s′ ≡ v′ .

2. The Original Techniques
We briefly introduce the two techniques we want to combine. Read-
ers content with considering syntactic bidirectionalization as a
black box can safely skip the next subsection and directly jump
to Section 2.2. The combination approach can still be understood
then, but it will be more difficult to appreciate some of the analysis
of examples later on.

2.1 Syntactic Bidirectionalization
The technique of Matsuda et al. [2007] builds on the constant-
complement approach of Bancilhon and Spyratos [1981]. The basic
idea is that for a function

get :: τ1 → τ2

one finds a function

compl :: τ1 → τ3

such that the pairing of the two,

paired :: τ1 → (τ2, τ3)
paired s = (get s, compl s)

is an injective function. Given an inverse inv :: (τ2, τ3) → τ1 of
paired , one obtains that

put :: τ1 → τ2 → τ1
put s v ′ = inv (v ′, compl s)

makes equations (1) and (2) true.

In reality, asking for a full inverse inv of paired is too much.
The function paired may not even be surjective. So one relaxes inv
to be a partial function, either implicitly as Matsuda et al. [2007]
do, or explicitly in the type. With

inv :: (τ2, τ3)→ Maybe τ1

and the requirements that

• for every s :: τ1,

inv (paired s) ≡ Just s ,

and
• for every s′ :: τ1, v′ :: τ2, and c :: τ3, if inv (v′, c) ≡ Just s′,

then
paired s′ ≡ (v′, c) ,

we obtain that

put :: τ1 → τ2 → Maybe τ1
put s v ′ = inv (v ′, compl s)

is consistent for get in the sense of Definition 1.
The approach of Matsuda et al. [2007] is to perform all the

above by syntactic program transformations. For a certain class of
programs, they give an algorithm that automatically derives compl
from get in such a way that paired is indeed injective. Then in-
stead of the definition for paired above they produce one using a
tupling transformation [Pettorossi 1977] that avoids the two inde-
pendent traversals of s with get and compl . They syntactically in-
vert paired to obtain inv , and subsequently fuse the computations
of inv and compl in the definition of put , again using a syntactic
transformation [Wadler 1990].

We illustrate the syntactic approach based on two examples. A
generalization over the above picture is that instead of Maybe we
will use an arbitrary monad. This allows for more flexible use of the
resulting put-function, and also enables us to provide informative
error messages if desired.

Example 1. Assume our get-function is as follows, sieving a list
to keep only every second element:

get1 :: [α]→ [α]
get1 [] = []
get1 [x] = []
get1 (x : y : zs) = y : (get1 zs)

This function fulfills the syntactic prerequisites imposed by Mat-
suda et al. [2007]. They are (necessary1 and sufficient): that func-
tions must be first-order, must be linear (no variable occurs more
than once in a single right-hand side), and that there must be no
function call with anything else than variables in its arguments.

Given the above, the following complement function is auto-
matically derived:

data Compl α = C1 | C2 α | C3 α (Compl α)

compl :: [α]→ Compl α
compl [] = C1

compl [x] = C2 x
compl (x : y : zs) = C3 x (compl zs)

(Matsuda et al. work in an untyped language, so they have no need
to explicitly introduce the data type Compl, but as we formulate our
ideas in Haskell, we will be careful to introduce appropriate types
as we go along.)

The basic ideas for the derivation of compl are that variables
dropped when going from left to right in a defining equation of get

1 At least for the original method of Matsuda et al. [2007]. Later work
[Matsuda et al. 2009, in Japanese] relaxes the restrictions somewhat.

are collected by compl , and that, where necessary, different data
constructors (of same arity/type) are used on the right-hand sides
of compl to disambiguate between overlapping ranges of right-
hand sides of get . (In this specific example, this is not what causes
different data constructors to be used. Instead, the simple fact that
different arities are required, due to different numbers of dropped
variables and recursive calls, leads to different data constructors.)

Tupling gives the following definition for the paired function:

paired :: [α]→ ([α],Compl α)
paired [] = ([] ,C1)
paired [x] = ([] ,C2 x)
paired (x : y : zs) = (y : v ,C3 x c)

where (v , c) = paired zs

Syntactic inversion, basically just exchanging left- and right-hand
sides, plus introduction of monadic error propagation, gives:

inv ::Monad µ⇒ ([α],Compl α)→ µ [α]
inv ([] ,C1) = return []
inv ([] ,C2 x) = return [x]
inv (y : v ,C3 x c) = do zs ← inv (v , c)

return (x : y : zs)
inv = fail "Update violates complement."

Finally,

put ::Monad µ⇒ [α]→ [α]→ µ [α]
put s v ′ = inv (v ′, compl s)

can be fused to:

put ::Monad µ⇒ [α]→ [α]→ µ [α]
put [] [] = return []
put [x] [] = return [x]
put (x : y : zs) (y ′ : v ′) = do zs ′ ← put zs v ′

return (x : y ′ : zs ′)
put = fail "Update violates complement."

Note that for this function, put s v ′ fails if and only if length v ′ 6=
length (get1 s). If it succeeds, it mixes the elements of s and v ′ as
in, e.g., fromJust (put [1 . . 6] [7 . . 9]) = [1, 7, 3, 8, 5, 9].

An implementation of the syntactic bidirectionalization method
is available at http://www.kb.ecei.tohoku.ac.jp/~kztk/
bidirectionalization/. It automatically performs the steps
from get to compl and paired . It also performs the syntactic in-
version from paired to inv , though without the explicit monadic
error propagation we have used here. It is not always the case
as in the above example that inv can directly be interpreted as a
deterministic program. Instead, it can happen that the non-failing
equations have overlapping left-hand sides, leading to a nondeter-
ministic program, in which case a backtracking search becomes
necessary. Such a backtracking search is what the implementation
then does, though in practice it would of course be preferable to
directly obtain a deterministic program.2 Also, the implementation
does not at present realize the final fusion step, but instead works
with the definition of put in terms of inv and compl . Clearly, these
“deficiencies” of the implementation only affect the efficiency of
the bidirectional transformation, not its correctness/consistency.
For the above and the following example, we continue to per-
form (“by hand”) the determinization and fusion steps, because
the put-function thus obtained typically gives a better picture of
the achieved updatability.

2 An alternative would be to run the syntactically inverted program in a
functional logic language [Antoy and Hanus 2010].

http://www.kb.ecei.tohoku.ac.jp/~kztk/bidirectionalization/
http://www.kb.ecei.tohoku.ac.jp/~kztk/bidirectionalization/

Example 2. Assume our get-function is as follows, keeping every
element of a list except for the last one:3

get2 :: [α]→ [α]
get2 [] = []
get2 [x] = []
get2 (x : y : zs) = x : (get ′ y zs)

get ′ :: α→ [α]→ [α]
get ′ x [] = []
get ′ x (y : zs) = x : (get ′ y zs)

Then the syntactic approach produces the following complement
function:

data Compl α = C1 | C2 α | C3 α

compl :: [α]→ Compl α
compl [] = C1

compl [x] = C2 x
compl (x : y : zs) = compl ′ y zs

compl ′ :: α→ [α]→ Compl α
compl ′ x [] = C3 x
compl ′ x (y : zs) = compl ′ y zs

Note that there are no data constructors around recursive calls.
This omission is possible, because no variables are dropped in
the respective equations and because automatic range analysis can
tell the right-hand sides of those equations never overlap, for any
instantiation of variables, with any other right-hand sides of the
same function.

Tupling, inversion, and fusion (not spelled out here in detail)
ultimately give:

put ::Monad µ⇒ [α]→ [α]→ µ [α]
put [] [] = return []
put [x] [] = return [x]
put (x : y : zs) (x ′ : v ′) = do (y ′, zs ′)← put ′ y zs v ′

return (x ′ : y ′ : zs ′)
put = fail "Update violates complement."

put ′ ::Monad µ⇒ α→ [α]→ [α]→ µ (α, [α])
put ′ y [] [] = return (y , [])
put ′ y (z : zs) [] = put ′ z zs []
put ′ y zs (x ′ : v ′) = do (y ′, zs ′)← put ′ y zs v ′

return (x ′, y ′ : zs ′)

The updatability of these functions is that put s v ′ succeeds if and
only if length v ′ and length (get2 s) are equal or both greater than
zero. For the latter case, the behavior of put is best understood
by observing that the definition of put ′ is semantically equivalent
(depending on one of the monad laws) to:

put ′ ::Monad µ⇒ α→ [α]→ [α]→ µ (α, [α])
put ′ y zs [] = return (last (y : zs), [])
put ′ y zs (x ′ : v ′) = return (x ′, v ′ ++ [last (y : zs)])

and thus the third defining equation of put is equivalent (again
depending on the same monad law) to the following two:

put (x : y : zs) (x ′ : []) = return (x ′ : [last (y : zs)])
put (x : y : zs) (x ′ : y ′ : v ′) = return (x ′ : y ′ :

v ′ ++ [last (y : zs)])

and thus to:

put (x : y : zs) (x ′ : v ′) = return (x ′ : v ′ ++ [last (y : zs)])

3 A helper function get ′ is used to prevent a function call with an argument
that is not a variable.

2.2 Semantic Bidirectionalization
As already mentioned, we will develop our combined bidirection-
alization technique only for lists, and only for fully polymorphic
functions to bidirectionalize. So from now on, let

get :: [α]→ [α]

be fixed but arbitrary (except when discussing concrete examples,
of course).

The intuition underlying the method of Voigtländer [2009] is
that put can gain information about the get-function by applying
it to suitable input. The key is that get is polymorphic over the
element type α. This entails that its behavior does not depend on
any concrete list elements, but only on positional information. And
this positional information can be observed explicitly by applying
get to ascending lists over integer values. Say get is tail , then every
list [0 . .n] is mapped to [1 . .n], which allows put to see that the
head element of the original source is absent from the view, hence
cannot be affected by an update on the view, and hence should
remain unchanged when propagating an updated view back into the
source. And this observation can be transferred to other source lists
than [0 . .n] just as well, even to lists over non-integer types, thanks
to parametric polymorphism [Reynolds 1983; Strachey 1967].

Let us further consider the tail example as in the previous para-
graph. First, put should find out to what element in an original
source s each element in an updated view v′ corresponds. Assume
s has length n + 1. Then by applying tail to the same-length list
[0 . .n], put learns that the original view from which v′ was ob-
tained by updating had length n, and also to what element in s each
element in that original view corresponded. Being conservative, the
current semantic bidirectionalization method will only accept v′ if
it has retained that length n. For then, we also know directly the
associations between elements in v′ and positions in the original
source. Now, to produce the updated source, we can go over all po-
sitions in [0 . .n] and fill them with the associated values from v′.
For positions for which there is no corresponding value in v′, be-
cause these positions were omitted when applying tail to [0 . .n],
we can look up the correct value in s rather than in v′. For the
concrete example, this will only concern position 0, for which we
naturally take over the head element from s.

The same strategy works also for general get . In short, given s,
produce a kind of template t = [0 . .n] of the same length, together
with an association g between integer values in that template and
the corresponding values in s. Then apply get to t and produce
a further association h by matching this template view versus the
updated proper value view v′. Combine the two associations into a
single one h′, giving precedence to h whenever an integer template
index is found in both h and g. Thus, it is guaranteed that we
will only resort to values from the original source s when the
corresponding position did not make it into the view, and thus
there is no way it could have been affected by the update. Finally,
produce an updated source by filling all positions in [0 . .n] with
their associated values according to h′.

The above strategy is exactly what Voigtländer [2009] imple-
ments for the special case get :: [α] → [α]. We recall the corre-
sponding Haskell definitions, reformulating just a bit:

• Instead of presenting a higher-order bff -function that turns get
into put , we directly give a definition of put that refers to a
top-level-defined get .
• We write put in monadic style to provide for more convenient

error handling.

We define put as follows, using some functions from module
Data.IntMap. Their type signatures, which should provide suffi-
cient documentation, are given in Figure 1. One detail in behavior
to mention additionally is that IntMap.union is left-biased for in-

fromList :: [(Int, α)]→ IntMap α
fromDistinctAscList :: [(Int, α)]→ IntMap α
empty :: IntMap α
insert :: Int→ α→ IntMap α→ IntMap α
union :: IntMap α→ IntMap α→ IntMap α
lookup :: Int→ IntMap α→ Maybe α

Figure 1. Functions from module Data.IntMap.

tegers occurring as keys in both input maps. This realizes exactly
the “precedence of h over g” alluded to in the informal exposition
above.
put :: (Monad µ,Eq α)⇒ [α]→ [α]→ µ [α]
put s v′ =
do let t = [0 . . length s − 1]

let g = IntMap.fromDistinctAscList (zip t s)
h← assoc (get t) v′

let h′ = IntMap.union h g
return (map (fromJust ◦ flip IntMap.lookup h′) t)

assoc :: (Monad µ,Eq α)⇒ [Int]→ [α]→ µ (IntMap α)
assoc [] [] = return IntMap.empty
assoc (i : is) (b : bs) =
dom← assoc is bs

case IntMap.lookup i m of
Nothing→ return (IntMap.insert i b m)
Just c → if b == c

then return m
else fail "Update violates equality."

assoc = fail "Update changes the length."

The following theorem is essentially (up to the different way of
expressing partiality of put) what is proved by Voigtländer [2009]
in Theorems 1 and 2.

Theorem 1. Let τ be a type that is an instance of Eq in such a
way that the definition given for == makes it reflexive, symmet-
ric, and transitive.

• For every s :: [τ],

put s (get s) :: Maybe [τ] ≡ Just s .

• For every s, v′, s′ :: [τ], if put s v′ :: Maybe [τ] ≡ Just s′,
then

get s′ == v′ .

Corollary 1. Let τ be a type that is an instance of Eq in a way that
the definition given for == agrees with semantic equality. Then
put :: [τ]→ [τ]→ Maybe [τ] is consistent for get :: [τ]→ [τ].

The somewhat complicated definition of assoc and the refer-
ences to Eq and == in the function definitions and in Theorem and
Corollary 1 are due to the fact that get could duplicate some of its
input list elements, which requires special handling. As we are any-
way going to outlaw such copying (driven by the utilized syntactic
bidirectionalization method’s inability to deal with non-linear func-
tions), we do not elaborate on this further here. It is discussed in de-
tail by Voigtländer [2009, end of Section 2 and start of Section 3].

Applying semantic bidirectionalization is very easy. We simply
put the function definitions of put and assoc side by side with the
get-function we want to bidirectionalize.

Example 1 (continued). Just as was the case for syntactic bidi-
rectionalization here, put s v ′ fails if and only if length v ′ 6=

length (get1 s). Indeed, the two versions of put are semantically
equivalent (at type [τ]→ [τ]→ Maybe [τ], for τ that is an instance
of Eq). Here are a few representative calls and their results:

syntactic semantic
s v′ put s v ′ put s v ′

"abcd" "x" Nothing Nothing
"abcd" "xy" Just "axcy" Just "axcy"
"abcd" "xyz" Nothing Nothing
"abcde" "x" Nothing Nothing
"abcde" "xy" Just "axcye" Just "axcye"
"abcde" "xyz" Nothing Nothing

Example 2 (continued). While, as we have seen, the put-function
obtained via syntactic bidirectionalization succeeds whenever
length v ′ and length (get2 s) are equal or both greater than zero,
for the put-function obtained via the semantic technique put s v ′

will only be successful if length v ′ = length (get2 s). Again, a
few representative calls and their results:

syntactic semantic
s v′ put s v ′ put s v ′

"" "" Just "" Just ""
"" "x" Nothing Nothing
"a" "" Just "a" Just "a"
"a" "x" Nothing Nothing
"ab" "" Nothing Nothing
"ab" "x" Just "xb" Just "xb"
"ab" "xy" Just "xyb" Nothing
"abc" "" Nothing Nothing
"abc" "x" Just "xc" Nothing
"abc" "xy" Just "xyc" Just "xyc"
"abc" "xyz" Just "xyzc" Nothing

We see that syntactic and semantic bidirectionalization can agree or
disagree in terms of updatability. Our aim is to combine the two into
a technique that will represent a significant improvement over both.
A reviewer suggested that on the intersection of their applicability
domains, the syntactic technique on its own is never worse than
the semantic technique on its own. We believe this to be true. So
in a sense, we “only” try to improve over the syntactic method.
Interestingly, the way forward is to defer that method to the role of
a plug-in, with the technique of Voigtländer [2009] in the master
role. As preparation, we refactor that latter technique.

3. Refactoring Semantic Bidirectionalization
From now on, assume that for every n :: Int, get [0 . .n] con-
tains no duplicates. We call this property semantic linearity. It will
clearly be fulfilled if get’s syntactic definition is linear.

3.1 Specialization to Semantically Linear get-Functions
We define

put linear :: Monad µ⇒ [α]→ [α]→ µ [α]

like put (but note the different type), except that the call to assoc
is replaced by a call, with the same arguments, to the following
function:
assoc′ :: Monad µ⇒ [Int]→ [α]→ µ (IntMap α)
assoc′ [] [] = return IntMap.empty
assoc′ (i : is) (b : bs) = dom← assoc′ is bs

return (IntMap.insert i b m)
assoc′ = fail "Update changes the length."

The proof of the following theorem is very similar to that of Theo-
rem 1, additionally using semantic linearity of get in a straightfor-
ward way.

Theorem 2. For every type τ ,

put linear :: [τ]→ [τ]→ Maybe [τ]

is consistent for
get :: [τ]→ [τ] .

But semantic linearity gives us more. It rules out one important
cause for a potential failure of view-update. As a consequence, we
can now formulate a sufficient condition for a successful update.

Definition 2. We say that a function

put :: [τ]→ [τ]→ Maybe [τ]

(for some type τ) is fixed-shape-friendly for get if for every s, v′ ::
[τ], if length v′ = length (get s), then put s v′ ≡ Just s′ for
some s′ :: [τ].

Note that the original put :: [τ]→ [τ]→ Maybe [τ] from Sec-
tion 2.2 is not in general fixed-shape-friendly for get-functions that
are not semantically linear. On the other hand, put linear :: [τ] →
[τ]→ Maybe [τ] is not even generally consistent for get-functions
that are not semantically linear. But since we have now restricted
get-functions to be semantically linear, we have consistency by the
above theorem, and can moreover prove the following one.

Theorem 3. For every type τ ,

put linear :: [τ]→ [τ]→ Maybe [τ]

is fixed-shape-friendly for get .

For the proof, we basically just observe that the last defining
equation of assoc′ will never be reached if the argument lists are of
the same length.

We can also give a negative statement about updatability (which
also holds for the put from Section 2.2, of course).

Theorem 4. For every type τ and s, v′ :: [τ], if length v′ 6=
length (get s), then put linear s v

′ :: Maybe [τ] ≡ Nothing.

For the proof, we observe that the last defining equation of
assoc′ (or assoc) is reached if the argument lists are of different
lengths.

3.2 Decomposition to Expose the Shape Aspect
We refactor put linear to make the treatment of shapes (list lengths)
explicit. To that end, we first define sputnaive as follows:

sputnaive :: Monad µ⇒ Int→ Int→ µ Int
sputnaive ls lv′ = if lv′ == length (get [0 . . ls − 1])

then return ls
else fail "Update changes the length."

Using that function, we then define putrefac as follows:

putrefac :: Monad µ⇒ [α]→ [α]→ µ [α]
putrefac s v

′ =
do let ls = length s

let g = IntMap.fromDistinctAscList (zip [0 . . ls − 1] s)
l′ ← sputnaive ls (length v′)
let t = [0 . . l ′ − 1]
let h = fromDistinctList (zip (get t) v′)
let h′ = IntMap.union h g
return (map (fromJust ◦ flip IntMap.lookup h′) t)

fromDistinctList = IntMap.fromList

The refactoring consists of:

• making the check for equal length of get [0 . . length s−1] and
v′, otherwise performed inside assoc′, explicit, and outsourcing
it to sputnaive, and
• realizing that once this check was successful, the role of assoc′

can be taken over by zip and IntMap.fromList .

The following lemma establishes that the refactoring is indeed cor-
rect, and thus transports the (good and bad) properties of put linear,
namely Theorems 2–4, to putrefac.

Lemma 1. For every type τ and s, v′ :: [τ], we have

put linear s v
′ :: Maybe [τ] ≡ putrefac s v

′ :: Maybe [τ] .

The motivation for our refactoring above is that we make ex-
plicit, in sputnaive, what happens on the shape level, namely that
only updated views with the same length as the original view can be
accepted, and that the length of the source will never be changed.
By “playing” with sputnaive, we can change that behavior. For ex-
ample, it is tempting to change the last line of the above definition
of sputnaive to:

else return (head [ls′ | ls′ ← [0 . .],
lv′ == length (get [0 . . ls′ − 1])])

That would correspond to a “brute force” search for an appropriate
new source shape. A reviewer pointed out that, thanks to semantic
linearity of get , it would be sufficient to start the search for ls′
at lv′ , i.e., that one could replace [0 . .] by [lv′ . .] above, and
that further optimizations like memoization might be possible to
speed up the search. However, our motivation for discarding the
“brute force” approach is not primarily efficiency. We are looking
for a more effective approach in the sense that updates should be
meaningful to the user. The kind of perfect updatability that could
be achieved using pure search (possibly with some limited guidance
by the user via heuristics, expressed as reorderings of the candidate
list [lv′ . .]) could produce quite unintuitive results. As reckoned
by the same reviewer, we expect that by replacing sputnaive with
a more “intelligent” or “intuition-guided” shape-bidirectionalizer,
such as one based on the constant-complement approach, we will
get more useful results overall.

4. Combining Syntactic and Semantic
Bidirectionalization

Our key idea is abstraction: from lists to list lengths (generally,
from data structures to their shapes). Since we prefer to work with
a more symbolic representation than built-in integers provide, we
first define a new data type and conversion functions as follows:

data Nat = Z | S Nat

toNat :: Int→ Nat
toNat 0 = Z
toNat n | n > 0 = S (toNat (n− 1))

fromNat :: Nat→ Int
fromNat Z = 0
fromNat (S n) = 1 + fromNat n

and then a function sget as follows:

sget :: Nat→ Nat
sget ls = toNat (length (get [0 . . fromNat ls − 1]))

The point, later, will be that one can also directly derive a simplified
syntactic definition for sget from a given definition for get . But for
the moment, we simply take the above definition.

Next, we assume that some function sput is given, with the
following type:

sput :: Nat→ Nat→ Maybe Nat ,

and that sput is consistent for sget . Of course,

sput ls lv′ = case sputnaive (fromNat ls) (fromNat lv′)
of Nothing→ Nothing

Just l → Just (toNat l)

is always a valid choice, with any of the versions of sputnaive
discussed in Section 3.2, but for many get-functions there will be
better alternatives!

We now define putcomb as below. There are three differences
from putrefac: we use Nat instead of Int to call out to sput instead
of sputnaive, we generate an error message in case sput fails
(previously this was done directly in sputnaive), and we drop the
fromJust from the last (return-) line. The latter change introduces
an extra Maybe type constructor in the output list type, and is done
to deal with list positions for which no data is known, neither from
the original source nor from the updated view.

putcomb :: Monad µ⇒ [α]→ [α]→ µ [Maybe α]
putcomb s v

′ =
do let ls = length s

let g = IntMap.fromDistinctAscList (zip [0 . . ls − 1] s)
l′ ← maybe (fail "Could not handle shape change.")

return
(sput (toNat ls) (toNat (length v′)))

let t = [0 . . fromNat l′ − 1]
let h = fromDistinctList (zip (get t) v′)
let h′ = IntMap.union h g
return (map (flip IntMap.lookup h′) t)

The proof of the following theorem is very similar to that by
Voigtländer [2009] for his Theorems 1 and 2, but of course ad-
ditionally uses the assumption that sput is consistent for sget .

Theorem 5. Let τ be a type.

• For every s :: [τ],

putcomb s (get s) :: Maybe [Maybe τ] ≡ Just (map Just s) .

• For every s, v′ :: [τ] and s′ :: [Maybe τ], if putcomb s v
′ ::

Maybe [Maybe τ] ≡ Just s′, then

get s′ ≡ map Just v′ .

The following theorem can also be shown to hold, basically by
observing that if length v′ = length (get s), then

sget (toNat (length s)) ≡ toNat (length v′) ,

and thus, by consistency of sput for sget , inside the putcomb-
definition l′ will be successfully assigned the value toNat ls, and
subsequently every index position from t will lead to a successful
lookup in h′, because at least g will contain a matching entry.

Theorem 6. For every type τ and s, v′ :: [τ], if length v′ =
length (get s), then putcomb s v′ :: Maybe [Maybe τ] ≡
Just (map Just s′) for some s′ :: [τ].

As mentioned above, putcomb uses an extra Maybe type con-
structor to deal with positions in the output list for which no data is
known, neither from the original source nor from the updated view.
It is usually more convenient to instead use a default value for such
positions, so we define a function dput as follows:4

dput :: Monad µ⇒ α→ [α]→ [α]→ µ [α]
dput d s v′ = do s′ ← putcomb s v

′

return (map (maybe d id) s′)

4 Concrete examples of using default values appear in the next section.

The following two statements are then relatively direct conse-
quences of Theorems 5 and 6.

Corollary 2. For every type τ and d :: τ ,

dput d :: [τ]→ [τ]→ Maybe [τ]

is consistent for
get :: [τ]→ [τ] .

Corollary 3. For every type τ and d :: τ ,

dput d :: [τ]→ [τ]→ Maybe [τ]

is fixed-shape-friendly for get . (Moreover, the default value d is
not actually used in dput d s v′ if length v′ = length (get s).)

It is important to note that no general negative statement like
Theorem 4 holds for dput (or for putcomb). It all depends on the
definition of sput!

Namely, if from a given get , we make an sget , and find a good
sput for it, then dput will also be good for get . This is where we
can now plug in the work of Matsuda et al. [2007] as a black box.
For functions get that are polymorphic and at the same time satisfy
the syntactic restrictions imposed by Matsuda et al.’s technique, we
can use that technique for deriving sput from sget . Voila, done.

5. Analysis of Examples
We detail the execution of the just introduced combination idea
on the two examples considered in Section 2. This leads to some
general observations about ways in which, and why, the combined
approach improves over both its constituent techniques, and also
provides motivation for further extensions we will consider in the
two subsequent sections.

Example 1 (continued). We have seen in Sections 2.1 and 2.2 that
for get1 both syntactic and semantic bidirectionalization on their
own lead to quite limited updatability. Namely, put s v ′ only suc-
ceeds if length v ′ = length (get1 s). The same holds for put linear
and putrefac, of course, as they are only refactorings of the put-
function obtained by semantic bidirectionalization.

On the other hand, for the combination of the two techniques,
we can proceed as follows. The sget corresponding to get1, as ob-
tained via a pretty straightforward syntactic transformation, looks
as follows:

sget :: Nat→ Nat
sget Z = Z
sget (S Z) = Z
sget (S (S zs)) = S (sget zs)

For it, the syntactic bidirectionalization method of Matsuda et al.
[2007] produces the following complement function:

data SCompl = SC1 | SC2

scompl :: Nat→ SCompl
scompl Z = SC1

scompl (S Z) = SC2

scompl (S (S zs)) = scompl zs

Note that the move from [α] to Nat in get1 7→ sget has obviated
the need to collect any dropped variables in the complement func-
tion. As a consequence, with the help of range analysis, no data
constructor is necessary around the recursive call. (That is a crucial
optimization embedded in Matsuda et al.’s transformation.) For the
two non-recursive equations, different data constructors are needed,
because the ranges of the original right-hand sides overlap.

Tupling of sget and scompl leads to:

spaired :: Nat→ (Nat,SCompl)
spaired Z = (Z , SC1)
spaired (S Z) = (Z , SC2)
spaired (S (S zs)) = (S v , c)

where (v , c) = spaired zs

Inversion gives:5

sinv ::Monad µ⇒ (Nat,SCompl)→ µ Nat
sinv (Z ,SC1) = return Z
sinv (Z ,SC2) = return (S Z)
sinv (S v , c) = do zs ← sinv (v , c)

return (S (S zs))

and finally,

sput :: Nat→ Nat→ Maybe Nat
sput s v ′ = sinv (v ′, scompl s)

can be fused to:

sput :: Nat→ Nat→ Maybe Nat
sput Z Z = return Z
sput (S Z) Z = return (S Z)
sput (S (S zs)) Z = sput zs Z
sput s (S v ′) = do zs ← sput s v ′

return (S (S zs))

The benefit of the combination of syntactic and semantic bidirec-
tionalization can be observed by comparing dput as obtained from
the above sput-function to the function put from Example 1 in
Section 2.1 (which we have seen is equivalent to put , put linear,
and putrefac as obtained via semantic bidirectionalization). Here
are a few representative calls and their results:

s v′ put s v ′ dput ’ ’ s v ′

"abcd" "x" Nothing Just "ax"
"abcd" "xy" Just "axcy" Just "axcy"
"abcd" "xyz" Nothing Just "axcy z"
"abcd" "xyzv" Nothing Just "axcy z v"
"abcde" "x" Nothing Just "axc"
"abcde" "xy" Just "axcye" Just "axcye"
"abcde" "xyz" Nothing Just "axcyez "
"abcde" "xyzv" Nothing Just "axcyez v "

Note that when length v ′ 6= length (get1 s), dput ’ ’ s v ′ ex-
tends, making use of the default value, or shrinks the source list
by a number of elements that is a multiple of two (to preserve the
remainder modulo two, as fixed via scompl). All updates can be
successfully handled, in contrast to all the versions of put we have
considered for this example before!

As a “lesson” from the above example, we could formulate:

The move from [α] to Nat can make the get-function con-
siderably simpler. In particular, no data values have to be
kept. Here, this has even led (thanks to range analysis) to
one constructor in the complement creation becoming su-
perfluous completely, which resulted in perfect updatability.

Example 2 (continued). We have seen in Sections 2.1 and 2.2
that for get2/get ′ the updatability achieved by syntactic bidirec-
tionalization is that put s v ′ succeeds whenever length v ′ and

5 Note that there is no need for a fall-back function equation sinv =
fail "Update violates complement.", because in fact the pattern-
match is exhaustive. This eventually means that all updates/cases can be
dealt with!

length (get2 s) are equal or both greater than zero, while the se-
mantic technique is only successful if length v ′ = length (get2 s).
Let us analyze how the combined technique fares.

The move from [α] to Nat yields:

sget :: Nat→ Nat
sget Z = Z
sget (S Z) = Z
sget (S (S zs)) = S (sget ′ zs)

sget ′ :: Nat→ Nat
sget ′ Z = Z
sget ′ (S zs) = S (sget ′ zs)

Note that regarding the helper function get ′ one argument becomes
superfluous. Indeed, when moving from [α] to Nat, there is no role
to play anymore for content elements of type α.

The automatic view complement generation of Matsuda et al.
[2007] yields either of two functions scompl1/scompl2 for sget
(with data SCompl = SC1 | SC2 | SC3) which differ only in
their last defining equation:

scompl? :: Nat→ SCompl
scompl? Z = SC1

scompl? (S Z) = SC2

scompl? (S (S zs)) = SC?

while for sget ′, one obtains the following complement function:

scompl ′ :: Nat→ SCompl
scompl ′ Z = SC3

scompl ′ (S zs) = SC3

Note that injectivity analysis (of sget ′) has enabled the omission of
recursive calls, and the use of a constant function for scompl ′. Due
to range analysis, we have a choice between SC1 and SC2 in the
equation scompl? (S (S zs)) =

Tupling, inversion, and fusion (again not spelled out here in
detail) ultimately give:

sput1 :: Nat→ Nat→ Maybe Nat
sput1 Z Z = return Z
sput1 (S Z) Z = return (S Z)
sput1 (S (S zs)) Z = return Z
sput1 Z (S v ′) = return (S (S v ′))
sput1 (S (S zs)) (S v ′) = return (S (S v ′))
sput1 = fail "..."

for scompl1, and a variant in which the third and fourth equation
become:

sput2 (S (S zs)) Z = return (S Z)
sput2 (S Z) (S v ′) = return (S (S v ′))

for scompl2.
Let us compare the results of combining syntactic and seman-

tic bidirectionalization, i.e. the now two possible dput-functions,
to the results of either only syntactic or only semantic bidirec-
tionalization, i.e. to put from Example 2 in Section 2.1 and to
put linear ≡ putrefac from Section 3. We call the dput-function
obtained from sput1 above, dput1, the other one, obtained from
sput2, we call dput2. Figure 2 shows a few representative calls
and their results.

As a lesson from this example, we could formulate:

The move from [α] to Nat can lead to injectivity, and
hence to considerably simpler (even constant) complement
functions. This clearly benefits updatability.

syntactic semantic combined
s v′ put s v ′ put linear s v ′ dput1 ’ ’ s v ′ dput2 ’ ’ s v ′

"" "" Just "" Just "" Just "" Just ""
"" "x" Nothing Nothing Just "x " Nothing
"" "xy" Nothing Nothing Just "xy " Nothing
"a" "" Just "a" Just "a" Just "a" Just "a"
"a" "x" Nothing Nothing Nothing Just "x "
"ab" "" Nothing Nothing Just "" Just "a"
"ab" "x" Just "xb" Just "xb" Just "xb" Just "xb"
"ab" "xy" Just "xyb" Nothing Just "xy " Just "xy "
"abc" "" Nothing Nothing Just "" Just "a"
"abc" "x" Just "xc" Nothing Just "xb" Just "xb"
"abc" "xy" Just "xyc" Just "xyc" Just "xyc" Just "xyc"
"abc" "xyz" Just "xyzc" Nothing Just "xyz " Just "xyz "

Figure 2. Comparing different bidirectionalization methods for the get-function from Example 2.

6. Explicit Bias
Through the numbering scheme of our “template sources” via
[0 . . l − 1] for a concrete source of length l , there is a certain
bias that manifests itself when an update changes the length of the
view. For example, while it is nice that for Example 2, as just seen,
we have

dput1 ’ ’ "" "x" ≡ Just "x "

and

dput1 ’ ’ "" "xy" ≡ Just "xy "

(in contrast to the completely syntactically obtained put and
the completely semantically obtained put linear, which both give
Nothing in both cases), it is maybe a bit disappointing that

dput1 ’ ’ "ab" "xy" ≡ Just "xy "

(instead of Just "xyb"). The reason for this is simple: the use
of [0 . . ls − 1] and [0 . . fromNat l ′ − 1] in the definition of
putcomb means that when the updated source becomes shorter
than the original source, then it’s the elements towards the rear
of the original source that become discarded; while if the updated
source becomes longer, then again positions towards the rear of the
new source will be considered to be “additional” and thus will be
filled with the default value. So there is an implicit assumption that
shape-changing updates will always happen in such a way that the
corresponding insertions or deletions affect the end of the source
list, rather than its front or other elements.

There is an easy remedy for the observed phenomenon. If we
simply replace the lines

let g = IntMap.fromDistinctAscList (zip [0 . . ls − 1] s)

and

let t = [0 . . fromNat l ′ − 1]

in the definition of putcomb by

let g = fromDistinctList (zip (reverse [0 . . ls − 1]) s)

and

let t = reverse [0 . . fromNat l ′ − 1]

respectively, then Theorems 5 and 6, and thus Corollaries 2 and 3,
continue to hold, but instead of a rear update (insertion/deletion)
bias, there is now a front update bias.

For example, Figure 2 (the interesting subset thereof; all other
entries remain unchanged) now becomes:

s v′ put s v ′ dput1 ’ ’ s v ′ dput2 ’ ’ s v ′

"" "x" Nothing Just "x " Nothing
"" "xy" Nothing Just "xy " Nothing
"a" "x" Nothing Nothing Just "xa"
"ab" "" Nothing Just "" Just "b"
"ab" "xy" Just "xyb" Just "xyb" Just "xyb"
"abc" "" Nothing Just "" Just "c"
"abc" "x" Just "xc" Just "xc" Just "xc"
"abc" "xyz" Just "xyzc" Just "xyzc" Just "xyzc"

The entries that have changed are shaded above. One could argue
that in this specific case all the changes are for the better, but in
general it is desirable to be able to influence what bias is used.

Making the bias explicit, and thus putting it under the potential
control of the user, is easily possible by defining a further variation
of putcomb:6

type Bias = Int→ [Int]

putbias ::Monad µ⇒ Bias→ [α]→ [α]→ µ [Maybe α]
putbias bias s v ′ =

do let ls = length s
let g = fromDistinctList (zip (bias ls) s)
l ′ ← maybe (fail "...")

return
(sput (toNat ls) (toNat (length v ′)))

let t = bias (fromNat l ′)
let h = fromDistinctList (zip (get t) v ′)
let h ′ = IntMap.union h g
return (map (flip IntMap.lookup h ′) t)

as well as:

bdput ::Monad µ⇒ Bias→ α→ [α]→ [α]→ µ [α]
bdput bias d s v ′ = do s ′ ← putbias bias s v ′

return (map (maybe d id) s ′)

The only formal requirement imposed on a proper bias :: Bias, to
ensure that analogues of Theorems 5 and 6 and of Corollaries 2
and 3 continue to hold, is that for every n > 0, bias n should
return a list of length exactly n and with no duplicate elements.
Then, we in particular obtain the following two corollaries.

6 No change whatsoever is necessary to sput!

Corollary 4. Let bias :: Bias be proper (in the way just de-
scribed). For every type τ and d :: τ ,

bdput bias d :: [τ]→ [τ]→ Maybe [τ]

is consistent for
get :: [τ]→ [τ] .

Corollary 5. Let bias :: Bias be proper. For every type τ and
d :: τ ,

bdput bias d :: [τ]→ [τ]→ Maybe [τ]

is fixed-shape-friendly for get . (Moreover, the default value
d is not actually used in bdput bias d s v′ if length v′ =
length (get s).)

For bdput to behave well in practice, it makes sense to (at least)
additionally impose that whenever n < m, the elements of the list
bias n should form a subset of the elements of bias m . Some good
examples are:

rear :: Bias
rear l = [0 . . l − 1]

front :: Bias
front l = reverse [0 . . l − 1]

middle :: Bias
middle l = [1, 3 . . l] ++ (reverse [2, 4 . . l])

borders :: Bias
borders l = (reverse [1, 3 . . l]) ++ [2, 4 . . l]

Some examples for the get-function from Example 1 (with sput
as given for this example in Section 5), illustrating the effects of
different bias strategies, are given in Figure 3 (on the next page).

The beneficial effects, still for the case of the get-function from
Example 1, might become even more apparent when also looking
at cases where the data values in the source and view lists are
not disjoint, as in Figure 4. (When interpreting the results, note
that both get1 "abcd" and get1 "abcde" equal "bd".) The simple
hints about which bias to apply when reflecting specific updated
views back to the source level are quite effective. In practice,
which bias to choose could be determined on a case-by-case basis,
with decisions being made based on a form of diff between the
original view and the updated view, or based on information about
performed editing operations, or even something more clever. The
possibilities are open, since we have exposed the bias strategy
explicitly.

7. Extending Applicability
It turns out that the separation of shape and content, through the
resultant move from [α] to Nat in the task posed to the syntactic
bidirectionalization subsystem, and with the help of some known
syntactic program transformations, leads to applicability (and good
results) of the combined technique in new situations otherwise out
of reach. We illustrate this with two examples.

Example 3. Assume our get-function is as follows, reversing a list:

get3 :: [α]→ [α]
get3 [] = []
get3 (x : xs) = get ′ xs [x]

get ′ :: [α]→ [α]→ [α]
get ′ [] ys = ys
get ′ (x : xs) ys = get ′ xs (x : ys)

bias s v′ bdput bias ’ ’ s v ′

rear "abcd" "x" Just "ax"
rear "abcde" "x" Just "axc"
front "abcd" "x" Just "cx"
front "abcde" "x" Just "cxe"

middle "abcd" "x" Just "ax"
middle "abcde" "x" Just "axe"
borders "abcd" "x" Just "bx"
borders "abcde" "x" Just "bxd"

rear "abcd" "bdx" Just "abcd x"
rear "abcd" "bdxy" Just "abcd x y"
rear "abcde" "bdx" Just "abcdex "
rear "abcde" "bdxy" Just "abcdex y "
front "abcd" "xbd" Just " xabcd"
front "abcd" "xybd" Just " x yabcd"
front "abcde" "xbd" Just " xabcde"
front "abcde" "xybd" Just " x yabcde"

middle "abcd" "bxd" Just "ab xcd"
middle "abcd" "bxyd" Just "ab x ycd"
middle "abcde" "bxd" Just "abcx de"
middle "abcde" "bxyd" Just "abcx y de"
borders "abcd" "xbdy" Just " xabcd y"
borders "abcde" "xbdy" Just " xabcdey "
borders "abcde" "xybdzv" Just " x yabcdez v "

Figure 4. More update bias examples for get1 from Example 1.

Due to the accumulating parameter of get ′, the technique of Mat-
suda et al. [2007] cannot be applied. The technique of Voigtländer
[2009] can be applied, but fails to permit any shape-changing up-
dates:

s v′ put s v ′

"abc" "x" Nothing
"abc" "xy" Nothing
"abc" "xyz" Just "zyx"
"abc" "xyzv" Nothing

Let us try the combined technique. The move from [α] to Nat
yields:

sget :: Nat→ Nat
sget Z = Z
sget (S xs) = sget ′ xs (S Z)

sget ′ :: Nat→ Nat→ Nat
sget ′ Z ys = ys
sget ′ (S xs) ys = sget ′ xs (S ys)

Still, an accumulating parameter is used, preventing direct appli-
cation of the technique of Matsuda et al. to this new subproblem.
However, it is now possible to apply a semantics-preserving pro-
gram transformation of Giesl [2000] to transform sget ′ as follows:

sget ′ :: Nat→ Nat→ Nat
sget ′ Z ys = ys
sget ′ (S xs) ys = S (sget ′ xs ys)

and to subsequently propagate the constant element (S Z) from
sget to the now never-changed second parameter of sget ′, finally
yielding:

sget :: Nat→ Nat
sget Z = Z
sget (S xs) = sget ′ xs

sget ′ :: Nat→ Nat
sget ′ Z = S Z
sget ′ (S xs) = S (sget ′ xs)

s v′ bdput rear ’ ’ s v ′ bdput front ’ ’ s v ′ bdput middle ’ ’ s v ′ bdput borders ’ ’ s v ′

"abcd" "x" Just "ax" Just "cx" Just "ax" Just "bx"
"abcd" "xyz" Just "axcy z" Just " xaycz" Just "ax ycz" Just " xbydz"
"abcd" "xyzv" Just "axcy z v" Just " x yazcv" Just "ax y zcv" Just " xaycz v"
"abcde" "x" Just "axc" Just "cxe" Just "axe" Just "bxd"
"abcde" "xyz" Just "axcyez " Just " xaycze" Just "axcy ze" Just " xbydz "
"abcde" "xyzv" Just "axcyez v " Just " x yazcve" Just "axcy z ve" Just " xayczev "
"abcde" "xyzvw" Just "axcyez v w " Just " x y zavcwe" Just "axcy z v we" Just " x ybzdv w "

Figure 3. Comparing different bias strategies for our combined technique on the get-function from Example 1.

Now not only has the technique of Matsuda et al. [2007] become
applicable, but their injectivity analysis even detects both the above
functions to be injective, which leads to the use of constant func-
tions for scompl and scompl ′. Tupling, inversion, and fusion then
give an sput-function that is equivalent to:

sput :: Nat→ Nat→ Maybe Nat
sput s v ′ = return v ′

which leads to perfect updatability for the combined technique (no
matter what kind of bias from the previous section is used):

s v′ dput ’ ’ s v ′

"abc" "x" Just "x"
"abc" "xy" Just "yx"
"abc" "xyz" Just "zyx"
"abc" "xyzv" Just "vzyx"

While reversing a list may appear a bit toy, in particular as it does
not omit any information when going from the source to the view,
so that the bidirectionalization task essentially becomes one of
“only” inversion, the important point here is that through the move
from [α] to Nat the get-function becomes simpler, in general, so
that additional benefit can be gained by exploiting readily available
syntactic techniques.7 We further demonstrate this with another
example (and another syntactic phenomenon).

Example 4. Assume our get-function is as follows, returning the
first half of a list:

get4 :: [α]→ [α]
get4 [] = []
get4 (x : xs) = x : (get ′ xs xs)

get ′ :: [α]→ [α]→ [α]
get ′ xs [] = []
get ′ xs [y] = []
get ′ (x : xs) (y : z : zs) = x : (get ′ xs zs)

Since the function definition of get4 is not syntactically linear, the
technique of Matsuda et al. [2007] is not applicable. The technique
of Voigtländer [2009] can be applied, and since get4 is indeed se-
mantically linear, even with the strong guarantees from Section 3.1.
Of course, shape-changing updates will fail:

s v′ put linear s v ′

"abc" "x" Nothing
"abc" "xyz" Nothing

For the combined technique, we again first move from [α] to
Nat:

7 It is also possible to remove the accumulating parameter from the original,
list-based get ′-function in Example 3 using techniques of Giesl [2000] and
Giesl et al. [2007], but the resulting program will still not be amenable to
the method of Matsuda et al. [2007]. The move from [α] to Nat is really
essential to be successful here.

sget :: Nat→ Nat
sget Z = Z
sget (S xs) = S (sget ′ xs xs)

sget ′ :: Nat→ Nat→ Nat
sget ′ xs Z = Z
sget ′ xs (S Z) = Z
sget ′ (S xs) (S (S zs)) = S (sget ′ xs zs)

Some straightforward syntactic analysis now shows that, in particu-
lar when called with two equal arguments, sget ′ never really needs
its first argument (in contrast to the situation with get ′, where the
first argument plays a crucial role for supplying the output list ele-
ments). So we can simplify to:

sget :: Nat→ Nat
sget Z = Z
sget (S xs) = S (sget ′ xs)

sget ′ :: Nat→ Nat
sget ′ Z = Z
sget ′ (S Z) = Z
sget ′ (S (S zs)) = S (sget ′ zs)

Now this is a program to which the technique of Matsuda et al.
[2007] can be applied. Doing so, and combining the result with the
semantic technique of Voigtländer as described at the end of Sec-
tion 4, gives very good updatability. An update only fails if either
the source or the updated view is empty while the other is not. Of
the different kinds of update bias available from Section 6, middle
and borders are particularly appropriate (not surprisingly, on re-
flection, given the nature of the get-function under consideration
here):

s v′ bdput middle . . . bdput borders . . .
"" "" Just "" Just ""

"abc" "x" Just "x" Just "x"
"abc" "xy" Just "xyc" Just "xyc"
"abc" "xyz" Just "xyz c" Just "xyzc "
"abcd" "xy" Just "xycd" Just "xycd"
"abcd" "xyzv" Just "xyzv cd" Just "xyzvcd "

"abcdefgh" "xy" Just "xygh" Just "xyef"

8. Conclusion
We have developed an approach for combining the bidirectionaliza-
tion methods of Matsuda et al. [2007] and Voigtländer [2009]. By
separating shape from content, we exploit the respective strengths
of the two previous methods maximally. The key insight is that
when we simplify the problem of explicit bidirectionalization by
posing it only on the shape level (going from get to sget), the ex-
isting syntactic technique can give far better results than for the
general problem. The existing semantic technique does the rest.

The improvements achieved on the syntactic level (all caused
by the fact that no data values have to be kept) can be classified
as 1) making the complement smaller, 2) introducing injectivity,

3) enabling additional transformations that may bring programs
into the required form in the first place, and 4) permitting non-linear
programs to be made linear. We have seen representative examples
for all four phenomena (Examples 1–4, in this order), all in the
case of lists. We expect to observe the same, even amplified, when
considering functions on other data types.

The move from [α] to Nat might appear somewhat ad-hoc, and
very specific to lists. However, actually a very general principle is
at work here. We could have equivalently replaced [α] by [()], for
the unit type ().8 That is indeed a generic way to characterize the
shape data type corresponding to a polymorphic data type: replace
the polymorphic component α by (). It is also a good way to
think about implementing the get 7→ sget step. A prototype of
such an implementation (for the special case of lists) exists and
has been packaged with the earlier implementation of the syntactic
bidirectionalization method as well as with the relevant functions
from Sections 4 and 6 of this paper, so that it is really possible
to apply our combined bidirectionalization method automatically.
The system is available at http://www.kb.ecei.tohoku.ac.
jp/~kztk/b18n-combined/.

Using the observation about the general principle above, it
should be clear that the abstraction/combination ideas in this paper
can be applied similarly to other data types than lists. Dealing with
type class polymorphism as Voigtländer [2009] does would be a
bit more challenging, because a more refined notion of “shape”
is needed then. Also, finding good pragmatic bias strategies as in
Section 6 would be more complicated (but also interesting) in the
case of non-lists.

Finally, a few more words about formal properties of get /put-
pairs are in order. We have taken laws GetPut (1) and PutGet (2), in
the form of Definition 1, as consistency conditions. The literature
also knows PutPut:

put (put s v′) v′′ ≡ put s v′′ ,

which as one interesting consequence together with GetPut implies
undoability:

put (put s v′) (get s) ≡ s .

Or, for partial put , the latter is required to hold whenever put s v′

is defined, and the former if additionally put (put s v′) v′′ is in-
deed defined. The technique of Matsuda et al. [2007] satisfies these
two laws, by virtue of being based on the constant-complement ap-
proach of Bancilhon and Spyratos [1981]. Although not explicitly
proved by Voigtländer [2009], his technique also satisfies these two
additional laws. In fact, it can be reformulated via the constant-
complement approach as well.9 So the question is natural whether
our combined technique can also be so based, and satisfies PutPut
and undoability as well. The answer is No, as invocations like
dput ’ ’ "abcd" "x" ≡ Just "ax" ≡ dput ’ ’ "abyd" "x" for
Example 1 show. Clearly, there is no way that dput ’ ’ "ax" "bd"
is both Just "abcd" and Just "abyd" as undoability would de-
mand; instead: dput ’ ’ "ax" "bd" ≡ Just "ab d". (PutPut fails
for a similar reason.) Is that bad news? We would argue that not:
any method that successfully deals with insertion and deletion up-
dates for a function like the get1 under consideration here will have
to give up PutPut and undoability. Indeed, these two properties are
often considered undesirable, precisely because they significantly
limit the transformations one can hope to deal with [Foster et al.
2007; Gottlob et al. 1988; Keller 1987].

8 Clearly, disregarding partial values like ⊥, Nat and [()] are isomorphic.
9 No formal reference is available for this observation, but slides of a re-
cent talk at the Workshop on Bidirectional Transformation in Architecture-
Based Component Composition (http://www.iai.uni-bonn.de/~jv/
bt_in_abc2010-slides.pdf).

Acknowledgments
We thank the anonymous reviewers for their insightful comments
and suggestions.

References
S. Antoy and M. Hanus. Functional logic programming. Communications

of the ACM, 53(4):74–85, 2010.
F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM

Transactions on Database Systems, 6(3):557–575, 1981.
A. Bohannon, B.C. Pierce, and J.A. Vaughan. Relational lenses: A language

for updatable views. In Principles of Database Systems, Proceedings,
pages 338–347. ACM Press, 2006.

A. Bohannon, J.N. Foster, B.C. Pierce, A. Pilkiewicz, and A. Schmitt.
Boomerang: Resourceful lenses for string data. In Principles of Pro-
gramming Languages, Proceedings, pages 407–419. ACM Press, 2008.

K. Czarnecki, J.N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J.F. Terwilliger.
Bidirectional transformations: A cross-discipline perspective. In Inter-
national Conference on Model Transformation, Proceedings, volume
5563 of LNCS, pages 260–283. Springer-Verlag, 2009.

J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt.
Combinators for bidirectional tree transformations: A linguistic ap-
proach to the view-update problem. ACM Transactions on Programming
Languages and Systems, 29(3):17, 2007.

J.N. Foster, A. Pilkiewicz, and B.C. Pierce. Quotient lenses. In Inter-
national Conference on Functional Programming, Proceedings, pages
383–395. ACM Press, 2008.

J. Giesl. Context-moving transformations for function verification. In
Logic-Based Program Synthesis and Transformation 1999, Selected Pa-
pers, volume 1817 of LNCS, pages 293–312. Springer-Verlag, 2000.

J. Giesl, A. Kühnemann, and J. Voigtländer. Deaccumulation techniques for
improving provability. Journal of Logic and Algebraic Programming, 71
(2):79–113, 2007.

G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of
consistent views. ACM Transactions on Database Systems, 13(4):486–
524, 1988.

Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing
structured documents based on bidirectional transformations. In Partial
Evaluation and Semantics-Based Program Manipulation, Proceedings,
pages 178–189. ACM Press, 2004.

A.M. Keller. Comments on Bancilhon and Spyratos’ “Update semantics
and relational views”. ACM Transactions on Database Systems, 12(3):
521–523, 1987.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirection-
alization transformation based on automatic derivation of view comple-
ment functions. In International Conference on Functional Program-
ming, Proceedings, pages 47–58. ACM Press, 2007.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirec-
tionalizing programs with duplication through complementary function
derivation. Computer Software, 26(2):56–75, 2009.

A. Pettorossi. Transformation of programs and use of tupling strategy. In
Informatica, Proceedings, pages 1–6, 1977.

J.C. Reynolds. Types, abstraction and parametric polymorphism. In Infor-
mation Processing, Proceedings, pages 513–523. Elsevier, 1983.

C. Strachey. Fundamental concepts in programming languages. Lecture
notes for a course at the International Summer School in Computer
Programming, 1967. Reprint appeared in Higher-Order and Symbolic
Computation, 13(1–2):11–49, 2000.

J. Voigtländer. Bidirectionalization for free! In Principles of Programming
Languages, Proceedings, pages 165–176. ACM Press, 2009.

P. Wadler. Theorems for free! In Functional Programming Languages and
Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.

P. Wadler. Deforestation: Transforming programs to eliminate trees. Theo-
retical Computer Science, 73(2):231–248, 1990.

http://www.kb.ecei.tohoku.ac.jp/~kztk/b18n-combined/
http://www.kb.ecei.tohoku.ac.jp/~kztk/b18n-combined/
http://www.iai.uni-bonn.de/~jv/bt_in_abc2010-slides.pdf
http://www.iai.uni-bonn.de/~jv/bt_in_abc2010-slides.pdf

	1 Introduction
	2 The Original Techniques
	2.1 Syntactic Bidirectionalization
	2.2 Semantic Bidirectionalization

	3 Refactoring Semantic Bidirectionalization
	3.1 Specialization to Semantically Linear get-Functions
	3.2 Decomposition to Expose the Shape Aspect

	4 Combining Syntactic and Semantic Bidirectionalization
	5 Analysis of Examples
	6 Explicit Bias
	7 Extending Applicability
	8 Conclusion
	Acknowledgments

