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Abstract
Aspect-Oriented Programming (AOP) aims at modularising cross-
cutting concerns that show up in software. The success of AOP
has been almost viral and nearly all areas in Software Engineer-
ing and Programming Languages have become “infected” by the
AOP bug in one way or another. Interestingly the functional pro-
gramming community (and, in particular, the pure functional pro-
gramming community) seems to be resistant to the pandemic. The
goal of this paper is to debate the possible causes of the functional
programming community’s resistance and to raise awareness and
interest by showcasing the benefits that could be gained from hav-
ing a functional AOP language. At the same time, we identify the
main challenges and explore the possible design-space.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages, Multiparadigm languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures

General Terms Languages, Design

Keywords Functional Programming, Aspect-Oriented Program-
ming, Program Extensibility and Adaptability, Separation of Con-
cerns

1. Introduction
Aspect-Oriented Programming (AOP) [30] aims at improving mod-
ularity through the separation of orthogonal (also know as crosscut-
ting) concerns that show up in software. The success of AOP has
been almost viral and nearly all areas in Software Engineering and
Programming Languages (SE&PLs) have become “infected” by the
AOP bug in one way or another. In fact, the article describing the
original concept is currently rated the second most influential work
in all of the SE&PLs areas [36], lagging only behind the seminal
‘Gang of Four’ (GoF) design patterns book [18].

As observed by Steimann [47], a possible explanation for the
success of AOP is the conception that AOP improves both the mod-
ularity and the structure of code, an ultimate appeal to program-
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mers and software engineers. However, interestingly enough, the
functional programming community (and, in particular, the pure
functional programming community) seems to be resistant to the
pandemic, with only some sporadic outbreaks happening once in
a while. Notably, Aspectual Caml [39] makes a good attempt by
centring its design around a classic problem, namely the expres-
sion problem. The evaluator developed there allows open exten-
sion of new language expressions and new operations at the same
time. This two-dimensional extensibility is known to be hard to
achieve either in object-oriented languages or functional languages.
In another work, Washburn and Weirich demonstrated functional
type-directed programming in AspectML [14], and showed that the
extensibility of AOP is important for extensible generic program-
ming [54]. AspectFun [52, 7] is another proposal for a functional
AOP language, where static resolution of types and advice invoca-
tions are emphasised.

It appears that one of the reasons for the lack of interest in func-
tional AOP is the perceived lack of application domains. Indeed, the
majority of developments of AOP are based on an Object-Oriented
(OO) environment; directly borrowing the results there, usually fea-
turing heavy use of run-time reflection and mutable state, has a
counter-effect when promoting AOP in functional programming.

Another notable reason for this lack of interest is the great scep-
ticism that many researchers have towards AOP. As argued by
Steimann [47], the (fairly well accepted) defining characteristics
of AOP, namely obliviousness and quantification [16], seem to be
fundamentally at odds with the stated goals of improving modu-
larity and structure of code. When it comes to functional program-
ming, fuelled by the first reason above, many (including the authors
themselves) very often deem AOP approaches as too invasive and
uncontrolled.

In particular, we identify the following main issues:

• Obliviousness - AOP languages typically weave additional code
into existing programs, potentially modifying the behaviour
of the original base programs without warning, which hinders
reasoning.

• Parametricity - Most AOP languages support implicit type-
directed programming using either dictionary translation or run-
time type representations. This is known to break parametricity,
a highly regarded feature of pure functional languages.

• Explicit effects - There is a close (perhaps even over-represented)
relationship between the concept of AOP and the use of ef-
fects as orthogonal concerns, which are challenging in pure
languages such as Haskell.

Given all these issues, is it possible to find an AOP-like model
that is useful for purely functional languages, without giving up
many of the cherished properties of functional programming? Per-



haps more importantly and pressingly, will the effort of finding a
solution provide a payoff by bringing attractive benefits to func-
tional languages?

The goal of this paper is to start the ball rolling by showcas-
ing the ability of AOP to improve many idiomatic applications of
functional programming that were previously thought to be diffi-
cult, while preserving the functional flavour of the solutions. The
hope is that we can raise awareness and interest in the functional
programming community in exploring the design space of AOP
languages. We choose the language AspectFun, which will be in-
troduced shortly, as the carrier of discussion in this paper, with the
understanding that none of the examples involved is dependent on
this choice.

We shall state upfront that this paper is not intended to offer any
definitive solution to the issues listed above. However, we do dis-
cuss the possibilities and trade-offs that one may face and warmly
invite fellow functional programming researchers to venture into
this great unknown!

Despite targeting the functional community generally, this pa-
per is particularly relevant to generic programming, which “is about
making programs more adaptable by making them more general”
[21], in two dimensions: (i) One of the main contributions (Sec-
tion 3) of AOP in functional programming is the improved exten-
sibility and adaptability (Section 3) (ii) Specific generic program-
ming techniques in functional languages can directly benefit from
the additional power that AOP brings in (Section 3.3).

In the sequel of the paper, we firstly give a brief introduction of
AspectFun (Section 2), followed by presenting in details the two
major strengths of functional AOP namely extensibility (Section 3)
and separation of concerns (Section 4). We then discuss the unique
characteristics of functional AOP and the design challenges come
with them (Section 5) before concluding.

2. An Overview of AspectFun
In this section, we introduce the functional AO language, Aspect-
Fun [52, 7] , which is the carrier of our discussion. We focus on the
Haskell-like syntax of the language and only present the semantics
informally with examples. We also choose to omit some of the lan-
guage features that are language-specific or that we consider less
acceptable to functional programming, such as run-time reflection.

Programs π ::=d
Declarations d ::=data T α = K τ

n@advice around{pc}(arg) = e |
f :: τ→ τ

f x = e
Arguments arg ::=pat | pat :: τ

Pointcuts pc ::=ppc | pc+pc | pc−pc
Primitive PCs ppc ::= f x | any | n | within (f )
Expressions e ::= c | x | proceed | λx.e | e e | K e
Patterns pat ::= x | T pat | x@pat
Types τ ::=α | τ→ τ | T τ | Int | Bool | [α]
Predicates p ::=(f : t)
Advised Types ρ ::=p.ρ | t
Type Schemes σ ::=∀α.ρ

Figure 1. Syntax of the AspectFun Language

Figure 1 presents the language syntax. We write o as an abbre-
viation for a sequence of metavariables o1, ...,on.

In AspectFun, top-level definitions include datatype and func-
tion definitions, as well as aspects. An aspect is an advice decla-
ration which includes a piece of advice and its target pointcuts. A

piece of advice is a function-like expression that executes when any
of the functions designated at the pointcut are about to execute. The
act of triggering a piece of advice during a function application is
called weaving.

Pointcuts are denoted by {pc}(arg), where pc stands for either
a primitive pointcut, represented by ppc, or a composite pointcut.
Pointcuts specify certain join points in the program at which advice
is woven when program execution reaches there. Here, we focus on
join points at function invocations. Thus a primitive pointcut, ppc,
specifies a function f or advice name n for the invocations that will
be advised. It is worth mentioning that a function pointcut may be
curried (this is represented by the pattern of function application
to variables), which captures executions of partially applied func-
tions. A primitive pointcut can also be a catch-all keyword any.
When used, the corresponding advice will be triggered whenever a
function is invoked. The pointcut within (f ) syntactically inspects
whether a call occurs within the definition of the function f .

Name-based primitive pointcuts can be composed to form com-
posite pointcuts by either adding to or subtracting from the set of
names that are captured. As one may well expect, + is commutative
and associative, whereas − is neither.

The argument variable arg is bound to the actual argument of
the named function call, if the pattern matching is successful, and
it may contain a type scope. A type scope introduces bounded scope
to the aspect. Specifically, when the function in the pointcut is
polymorphic, it only matches executions with inputs of types that
subsume the scope. As a result, it is safe to type check the body of
the advice under the strengthened assumption that arg is of type τ.

Advice may be executed before, after, or around a join point.
An around advice is executed in place of the indicated join point,
allowing the advised pointcut to be replaced. A special keyword
proceed may be used inside the body of around advice. It is bound
to the function that represents “the rest of the computation” at
the advised pointcut. When there are multiple pieces of advice
applicable to a join point, their execution follows the reversed
textual order: the one declared or imported later gets executed first.
As both before advice and after advice can be straightforwardly
simulated by around advice that uses proceed, AspectFun only
considers around advice.

AspectFun is a polymorphic and statically typed language, with
full type inference. It introduces the concept of advised types that
are augmented with type predicates of the form (f : t). Advised
types are inspired by the type system of Haskell’s type classes,
and are used to capture the need of advice weaving based on type
context. As a result, AspectFun is able to statically resolve type
scopes on pointcut and weave aspects into the base program. In
contrast to from type classes, the type predicates are only for the
purpose of semantics-preserving weaving and are not reflected in
the base program, a direct result of the obliviousness property.
Like the host language Haskell that AspectFun is compiled into,
AspectFun is a lazy language.

As a first example, consider the function quicksort :: [Int ] →
[Int ]. As the name suggests, quicksort is one of the fastest sorting
algorithms in practice. Perhaps ironically, many implementations
of quicksort perform badly when the input list is (nearly) sorted.
Therefore, in some applications with predominantly nearly sorted
lists, we may want to supplement the standard definition with a case
that deals with already sorted inputs. We can achieve this using the
following advice.

sort@advice around{quicksort}(x) =
if sorted x then x else proceed x

Advice sort checks ‘sortedness’ of inputs before execution of
quicksort (specified by the pointcut here) and resumes the exe-
cution if the check fails. Every call to quicksort is intercepted,



including recursive ones, which extends its applicability to nearly
sorted lists. Note that the use of proceed is important here, since a
naive call to quicksort will trigger the same advice again and result
in non-termination.

3. Extensibility and Adaptability
One distinctive strength that AOP may bring into functional pro-
gramming is modular overriding of existing definitions. In this sec-
tion we demonstrate how it can help to improve the adaptability and
extensibility of functional programs in several different application
domains.

3.1 Aspects Yield Open Functions
In most functional languages, functions are usually defined by
case analysis on the inputs. Once declared, there is no way of
introducing new cases without modifying the original definition.
Programming language extensions for open functions [38, 43] have
been proposed in the past to allow such extensions.

In the OO programming paradigm, this problem manifests it-
self as the TEMPLATE METHOD [18] design pattern, which typi-
cally involves defining an abstract class with implementations for
most of its methods but leaving some methods abstract. The inten-
tion is to defer some application specific steps to the subclasses.
Adapting it to the functional setting, instead of defining an abstract
class, we define a function by cases while leaving the application
specific ones out. Despite being difficult with traditional functional
programming, AOP yields open functions naturally. With around
advice we can intercept the execution of partially defined functions
and direct the control to new cases defined in the advice body.

Consider the example of implementing an evaluator for a small
arithmetic language.

data Val = N Int
| B Bool
| Wrong

data Term = Add Term Term
| Minus Term Term
| IsZ Term
| If Term Term Term

The evaluation strategy of most constructs in this language is stan-
dard, with the exception of If . We can choose either to evaluate
eagerly both arms or only evaluate the one that will be picked by
the boolean condition. A conventional implementation usually has
to make the choice upfront and commit to it. With open functions,
we can leave the option open and fill in the context specific missing
cases for the specific application domain later.

add :: Val→ Val→M Val
add (N i) (N j) = return (N (i+ j))
substr :: Val→ Val→M Val
substr (N i) (N j) = return (N (i− j))
eval :: Term→M Val
eval (Add n1 n2) = eval n1>>=(λa→

eval n2>>=(λb→
add a b))

eval (Minus n1 n2) = eval n1>>=(λa→
eval n2>>=(λb→
substr a b))

eval (IsZ n) = eval n>>=(λN a→
return (B (a≡ 0)))

eval = error "Unknown Expression!"

We leave out the case for If in the definition of the open function
above. Later, in different modules, we may easily switch between
the two evaluation strategies by plugging in one of the aspects.

module A where
both@advice around{eval}(If c e1 e2) =

eval c >>=(λb →
eval e1>>=(λv1→
eval e2>>=(λv2→
applyIf b v1 v2)))

applyIf :: Val→ Val→ Val→M Val
applyIf (B True) v1 v2 = return v1
applyIf (B False) v1 v2 = return v2
applyIf = return Wrong

module B where
one@advice around{eval}(If c e1 e2) =

eval c>>=(λb→ applyIf b e1 e2)
applyIf :: Val→ Term→ Term→M Val
applyIf (B True) e1 e2 = eval e1
applyIf (B False) e1 e2 = eval e2
applyIf = return Wrong

Without the aspects, we can still achieve a similar behaviour by pa-
rameterising eval with the functionality that would handle the case
for application. However, this is obviously heavy-weight and in-
volves upfront preparation to account for the additional flexibility.

In a typical OO setting, template methods are usually imple-
mented as abstract; and it is statically enforced that only objects
with instantiated template methods can be constructed. This facil-
ity does not exist in functional languages: as usual programmers
are responsible for making pattern matching exhaustive.

3.2 Type-directed Programming
In Haskell, an idiomatic way of achieving modular extensibility is
through type classes. Consider the evaluation of the small arith-
metic language we had before (we leave out the orthogonal er-
ror handling for a simplified presentation). All syntactic constructs
must be lifted to the type level so that the different cases can be
defined as instances of a class.

data Add a b = Add a b
data Minus a b = Minus a b
data IsZ a = IsZ a
data If a b c = If a b c
data Val = Num Int

| B Bool

The function eval now can be defined as an overloaded class
method.

class Eval a where
eval :: a→ Val

instance (Eval a,Eval b)⇒ Eval (Add a b) where
eval (Add n1 n2) = let Num v1 = eval n1

Num v2 = eval n2
in Num (v1+ v2)

instance (Eval a)⇒ Eval (IsZ a) where
eval (IsZ n1) = let Num v1 = eval n1

in if v1≡ 0 then B True else B False
...

This solution is much more involved than the one with open func-
tions: a new operation on the language necessarily introduces a new
class; and the types of terms become very complicated, for example



Add (Minus 2 3) 2 :: Add (Minus Int Int) Int. Given terms of differ-
ent types, it becomes very tricky to manipulate them, for example,
putting them into an environment.

This kind of type-directed programming is also supported by
most AOP languages. For example, in AspectFun we can start with
a default case for the evaluation function and gradually enrich the
definition by introducing advice for different types of argument,
overriding the default behaviour.

eval :: a→ Val
eval = error "Unknown expression!"

add@advice around{eval}(Add e1 e2 :: Add a b) =
let Num v1 = eval n1

Num v2 = eval n2
in Num (v1+ v2)

...

Given that AspectFun performs static weaving in a similar man-
ner to the dictionary translation of type classes, the two approaches
have similar run-time performance. The advantage of the AOP so-
lution is the elimination of the complex class hierarchy, which al-
lows new operations to be more easily defined. This flexibility costs
us some static safety: without a type class context, there is no way
to guarantee that the recursive calls to eval, probably on different
input types, are actually defined.

Another benefit of type classes is the explicit qualification of
types of overloaded functions, which distinguish them from para-
metric polymorphism. As a result, the properties of parametricity
are preserved and more precise typing can be achieved. We will
discuss this in more detail in Section 5.

Other than typing, the more operational difference between
aspects and class instances is the possibility of multiple triggering,
as we will see next.

3.3 Extensible Generic Programming
Generic programming [27, 24, 31, 32, 23, 26] is another functional
idiom where the extensibility of aspects plays a central role.

Looking back to the eval function above, type-directed pro-
gramming allows us to specify a case for every datatype. This is
fine-grained, but not very general: structurally similar but nomi-
nally different types have unrelated implementations, which results
in large amount of “boiler-plate” code. Consider function strings
that extracts all the strings from a structure. With a nominal ap-
proach, we are required to define a case for every datatype, which
are mostly non-productive inductive traversals.

In contrast, generic programming exploits structure informa-
tion of datatypes, and dispatches based on structure representa-
tions. Given that overloading is necessary for supporting generic
programming [26], type classes have been a popular choice for re-
alising the idea in Haskell [31, 32, 23]. For example, the Spine rep-
resentation of datatypes is defined as follows:

data Spine a = Con (Constr a)
| ∀b.ToSpine b⇒ App (Spine (b→ a)) b

data Constr a = Descr a

If a constructor does not take any argument, it is encoded by
Con together with information about the constructor. Otherwise,
a constructor taking arguments is encoded by applying App to the
representation of the constructor and to its arguments. The function
toSpine, which converts a datatype to its spine representation, is
type-directed, and defined as a type class method below.

class ToSpine a where
toSpine :: a→ Spine a

instance ToSpine Int where
toSpine x = Con (Descr 0)

instance ToSpine Char where
toSpine x = Con (Descr ’a’)

instance ToSpine a⇒ ToSpine [a] where
toSpine [ ] = Con (Descr [ ])
toSpine (x : xs) = (App (App (Con (Descr (:))) x) xs)

All datatypes are now mapped to a single one, Spine. We can easily
define functions that work on this representation.

strings :: a→ String
strings x = strings (toSpine x)

strings :: Spine a→ [String]
strings (Con c) = [ ]
strings (App f x) = strings f ++ strings x

This version of strings behaves uniformly on all datatypes by
traversing the structures, but not producing any strings! What we
need is a small exception to this generic behaviour that returns
a string when the input is a string. Since this is a type-directed
operation, we could try to use type classes again.

class Strings a where
strings :: ToSpine a⇒ a→ [String]

instance Strings String where
strings x = [x ]

instance Strings a where
strings x = strings (toSpine x)

The two instances above are overlapping. The intention is to match
on the more specific one when the input is a string and the general
one otherwise. However, this behaviour is not expressible statically:
there is no way of knowing the type of the existential component
of constructor App during compilation, which makes it impossible
to decide the call to strings inside strings ’s body.

Since AspectFun performs aspect weaving statically, it also
suffers from the difficulty above. Thus, directly encoding with type-
scoped advice as follows does not work.

n@advice around{strings}(x :: String) = [x ]

Because the exact type is not available statically, the resolution of
overloading can only be made at run-time by dynamic type cast-
ing [31] or special dictionaries [32]. The use of dynamic type cast-
ing with type classes is counterproductive here since it precludes
extensibility by forcing all relevant cases to be defined in a single
instance. The use of special dictionaries could reuse the existing
type class mechanism. But a working solution is necessarily com-
plicated and involves not-so-common language extensions.

We believe the fundamental difficulty here is that type classes
are designed for overloading, and provide complete functionality
for each type case. On the other hand, what is needed in extensible
generic programming is the ability to refine or supplement the
generic behaviour and AOP seems more suitable for this purpose.

Instead of overloading the generic function, we can simply
define the generic behaviour and incrementally include special
cases by introducing individual aspects. For example, the String
case can be defined as the following.

n@advice around{strings}(x) =
case cast x :: Maybe String of Just s→ [x ]

→ proceed x



This advice intercepts all executions of strings. When the input
is dynamically verified to be a string, we return that string in the
result; otherwise, control is passed back to strings (or to some other
intercepting advice). As we can see, the proceed mechanism plays
a central role here: if it is replaced by a call to strings, advice n will
be triggered again, which results in an infinite loop.

In addition to the ability to proceed, AOP offers extensibility.
Suppose we later implemented a datatype of ASCII-coded of char-
acters and would like to consider a list of ASCII as a string as well.
Function strings can be easily extended with another special case
using advice.

n1@advice around{strings}(x) =
case cast x :: Maybe [Ascii] of Just s→ [x ]

→ proceed x

3.4 Inheritance and Overriding
Recursion is the predominant technique in functional program-
ming. For most problems, the recursive pattern is highly structural.
This regularity has been well understood and exploited by many
to reduce the task of programming into filling in a few blanks. In
functional languages, the idiomatic way of achieving such reuse
is through higher-order functions that compose behaviours. How-
ever, if one chooses to define structural recursion explicitly, reusing
the definitions reduces to merely “cut-and-paste”. This problem has
been discussed in [33], which compared this kind of code reuse to
the typical reuse in object-oriented languages and the visitor pat-
tern. Let’s consider an example on trees.

data Tree a = Leaf a
| Branch (Tree a) (Tree a)

sum (Leaf a) = a
sum (Branch t1 t2) = sum t1+ sum t2

Function sum sums all the leaf values of a tree. Now suppose that
we want to define a slight variant of sum by summing only the even
leaf values. Since this new function is very similar to sum, we may
consider reusing the original definition. A possible attempt is the
following:

sumEven (Leaf a) = if isEven a then a else 0
sumEven t = sum t

Function sumEven works as desired for leaves but fails for more
complicated trees, since the recursive calls are still bound to sum.
There is no easy solution to this problem in existing functional
languages such as Haskell.

With the introduction of aspects, reuse of sum becomes straight-
forward.

even@advice around{sum}(Leaf x) = if isEven x then x else 0

Advice even intercepts every execution of sum with leaf input
and checks whether the value is even. Additional advice can be
subsequently introduced to further change the original function. For
example,

positive@advice around{sum}(Leaf x) = if x>0 then x else 0

the advice positive ensures that only positive leaves are added
up. Now, programmers can liberally choose different combinations
of sum behaviours by bringing different aspects into scope either
statically or dynamically, depending on the language’s weaving
strategy.

The adaptations of sum above are “in-place”: we lose the origi-
nal definition of sum in the same scope. A solution to this problem
is to have another function pointing to sum, such as

sumEven = sum

and then we can specify in the pointcuts that only invocations of
sum before sumEven returns will be advised. Through standard in
AOP, this kind of control-flow based pointcut requires run-time re-
flection, which does not fit well with (pure) functional program-
ming. We choose to leave this feature out in this paper.

Many definitions share similar cases. We could try to extract the
common elements into aspects. Let’s consider optimising recursive
functions by using accumulator parameters. It is well-known [3]
that by using an extra argument (the accumulator parameter) to a
function, we can sometimes improve the run-time performance. For
example, consider the reverse function on lists.

reverse :: [a]→ [a]
reverse [ ] = [ ]
reverse (x : xs) = (reverse xs)++ x

This straightforward recursive definition has a quadratic run-time
performance, due to the expensive operation ++ that is invoked on
every step of the recursion.

reverse′ :: [a]→ [a]→ [a]
reverse′ [ ] acc = acc
reverse′ (x : xs) acc = reverse′ xs (x : acc)

By using an accumulator parameter, we can replace the ++ opera-
tion by constant time list construction, which achieves linear time
performance.

Another example of using accumulator parameter is flattening
a binary tree. The straightforward definition has asymptotic perfor-
mance of O(n2) whereas the accumulator version

flatten′ :: Btree a→ [a]→ [a]
flatten′ Empty acc = acc
flatten′ (Leaf x) acc = x : acc
flatten′ (Fork xt yt) acc = flatten′ xt (flatten′ yt xs)

has linear time performance.
A very similar story applies for the flattening of rose trees, for

which we only show the accumulator definition here.

flatternRose :: Rose a→ [a]
flatternRose xt = dfcat [xt ] [ ]
dfcat [ ] acc = acc
dfcat (Node x xts : yts) xs = x : dfcat xts (dfcat yts xs)

The list goes on to the showsPrec :: Int → a → String → String
function in Haskell’s class Show, where the third parameter is an
accumulator parameter.

All the definitions in accumulator style have a common pattern:
the accumulator parameter is returned when the input is empty. We
could try to capture this common base case with an aspect.

base@advice around{reverse′+flatten′+
dfcat + showsPrec i}(x) =

if isEmpty x then id else proceed x

The testing function isEmpty has to be a type-directed function that
works on multiple types. The way to define this function has been
discussed in Section 3.2.

There is another correctness crosscutting concern on accumu-
lator style definitions: the accumulator parameter must be empty
when initially called.

empty@advice around
{(reverse′ x−within (reverse′))+
(flattern′ x−within (flattern′))+
(dfcat x−within (dfcat))+
(showsPrec i x−within (showsPrec))}(acc) =



if isEmpty acc then proceed acc
else error "NonEmpty accm"

The negative within pointcuts ensure that only the initial calls of
the functions are checked. Unfortunately in AspectFun, there is no
smarter way of defining lengthy pointcuts like the above, nor any
way to extend them easily. However, languages such as AspectML
or Aspectual Caml, where pointcuts are defined separately from
advices, offers better support for pointcut ‘programming’.

This last aspect empty encodes an orthogonal concern other than
the core functionality of the respective programs, by offering an ad-
ditional correctness check. This modular separation of concerns is
another major feature that AOP may bring to functional program-
ming, as discussed next.

4. Separation of Concerns
In this section we will see some classic applications of AOP to

the problem of separation of concerns in functional programming.

4.1 Contract Enforcement
Very often programmers want to insert assertions at various points
in the program to check the validity of values. As a result, such
checks are scattered and tangled with other code, which hinders
comprehension and complicates maintenance. To solve this prob-
lem, a concept of contract (a set of pre- and post-conditions) was
developed, the value of which in building robust systems has long
been recognised [42]. Most contract systems [4, 17, 25] introduce a
separate contract specification language into the host language, and
compilers are extended to allow interpretation of the specifications
either statically or dynamically so that the target program can be
checked.

In this section, we show how aspects can be used conveniently
and effectively to specify contracts. The modularity of the approach
makes it straightforward to introduce contracts and remove them
when run-time performance is more critical.

Consider the popular RGB colour model for colour rendering
where three parameters representing red, green, blue are added to-
gether in various ways to produce a wide spectrum of colours. Sup-
pose we encode the RGB colour in 24 bits per pixel, using three
8-bit unsigned integers (0 through 255) representing the intensities
of red, green and blue. Any number beyond this interval is consid-
ered an error and cannot be displayed. The following function takes
in a triple specifying a colour and displays it. We omit the actual
definition of the function.

display :: (Int, Int, Int)→ Colour

As discussed, display can only handle inputs that fall into the
interval of [0..255]. We can enforce this precondition by advice.

inrange x = x > 0 ∧ x 6 255
rgb@around advice{display}((r,g,b)) =

if (inrange r) ∧ (inrange g) ∧ (inrange b)
then proceed (r,g,b)
else error "Non-displayable Colour"

The advice rgb makes use of an auxiliary function inrange and only
proceeds when the input is valid.

The RGB model can be refined by introducing additional pa-
rameters to more accurately specify colours. One such system is
HSV, which stands for hue, saturation and value. The HSV values
are derived from the RGB values. For example, the saturation value
is computed by the following formula:

s =
max(r,g,b)−min(r,g,b)

max(r,g,b)
(1)

data Expr where
Lit :: Int→ Expr
Var :: String→ Expr
Plus :: Expr→ Expr→ Expr
Minus :: Expr→ Expr→ Expr
Assign :: Expr→ Expr→ Expr
Sequence :: [Expr ]→ Expr
While :: Expr→ Expr→ Expr

type Env = [(String, Int)]

type EvalM a = WriterT String (State Env) a

Figure 2. Datatype and environment type for expressions.

This operation involves division, which gives rise to the divide-by-
zero exception. Again, we can use an advice to rule it out.

divzero@around advice{div x}(y) =
if y≡ 0 then error "Division by Zero"

else proceed y

Since function div :: Float→ Float→ Float takes in two inputs in
curried form and has the second as the divisor, the above advice has
a curried pointcut, which intercepts partial application of function
div and captures its second input. This pointcut even matches when
the partially applied function is not immediately applied.

Postconditions can be specified by advice too. Consider the
square root function sqrt :: Float → Float. Given a non-negative
input, the output must be non-negative too.

sqr@around advice{sqrt}(x) =
if x > 0 then let y = proceed x

in if y > 0 then y
else error "Wrong result for sqrt"

else error "Invalid sqrt input"

Advice sqr checks both the precondition and postcondition of sqrt.
Postconditions can be dependent on the input values. For example,

sqr1@around advice{sqrt}(x) =
let y = proceed x
in if abs (x− y∗ y)<0.01 then y

else error "Wrong result for sqrt"

This advice, in addition to sqr, checks the accuracy of the result by
comparing the square of it with the input.

Dynamic contract checking necessarily incurs run-time over-
head. If the functions above are part of a colour representation in
the palette of painting software, it is vitally important to display the
correct colour perceived by the user.

On the other hand, in some applications, preventing colour dis-
tortion caused by having an invalid representation is less important.
For example, if we are rendering the display of a LCD panel, hav-
ing the colour of one pixel out of millions wrong is very unlikely
to be observable. In this case, speed becomes more crucial and we
may choose to ignore the exceptions; contracts in the form of ad-
vice can be easily removed from the system since it is not tangled
with the core functionality. Note that this removal does not make
the programs less correct; it only eliminates the dynamic contract
checking.

4.2 Monadic Interpreters
When it comes to orthogonal concerns in the form of side-effects,
the conventional approach with pure functional languages is through
monads. In Figure 2 we present a datatype representing a sim-
ple imperative language that can be used to compute numeric



eval :: Expr→ EvalM Int
eval exp = case exp of

Lit x → return x
Var s → do e← get

case lookup s e of
Just x→ return x

→ error msg
Plus l r → do x← eval l

y← eval r
return (x+ y)

Minus l r → do x← eval l
y← eval r
return (x− y)

Assign (Var x) r → do e← get
y← eval r
put ((x,y) : e)
return y

Sequence [ ] → return 0
Sequence [x ] → eval x
Sequence (x : xs)→ eval x>> eval (Sequence xs)
While c b → do x← eval c

if (x≡ 0) then return 0
else (eval b>> eval exp)

where msg = "Variable not found!"

Figure 3. A classic monadic evaluator.

expressions—this example is based on an interpreter presented in
[11], which in turn is a Haskell translation of an interpreter imple-
mented in ML [33]. Integer literals and variables can be built using,
respectively, the Lit and Var constructors. Simple primitive oper-
ations for addition and subtraction are available through the Plus
and Minus constructors. Mutable assignments to variables can be
defined using Assign and sequential composition and while loops
can be constructed with Sequence and While. A simple environ-
ment type for expressions is given by Env. We also define a monad
EvalM, which is the combination of a writer and a state monad, for
use with the evaluator.

In Figure 3 we show a classic monadic evaluator for the expres-
sions presented in Figure 2. The state monad transformer is used
to pass the environment around and it is also used in the assign-
ment clause to update the value of the variable being assigned. The
evaluator is quite standard. Evaluating integer literals returns the
integer denoted by the literal. The evaluation of variables looks up
the variable from the environment and returns its value; if no value
is found, an error is raised. The primitive arithmetic operations are
evaluated in a similar way: both arguments of the operations are
evaluated and the corresponding arithmetic operations are applied
to the result of the evaluations. For assignments we need to evalu-
ate the expression being assigned and update the variable with the
new value. Sequential composition of an empty list of expressions
returns 0, whereas the sequential composition of a list with a single
expression returns the value of that expression. For a non-empty list
of expressions we evaluate the expression in the head and then the
expressions in the tail. Finally, while loops are evaluated similarly
to the C programming language, with integers playing the role of
booleans: we first evaluate the condition; if that condition is 0 we
stop and return 0, otherwise we evaluate the body of the while loop
and evaluate the original while loop expression again.

Suppose that, for debugging reasons, we wanted to watch the
assignments of some variable and trace the execution of the while
loops. Typically, in order to achieve this with the monadic evaluator

weval@advice around{eval}(exp@Assign (Var x) r) =
if x≡ "y" then

do n← proceed exp
tell (x++" = "++ show n++"\n")
return n

else proceed exp

Figure 4. The watching variables aspect.

teval@advice around{eval}(exp@While c b) =
do n← eval c

if (n≡ 0) then (tell "done\n">> return 0)
else (tell "repeating\n">> eval b>> eval exp)

Figure 5. The tracing loops aspect.

presented in Figure 3, we would need to directly change the original
program and adapt it with the extra functionality. Moreover, even
if we use approaches such as the mixin-based solution suggested
in [11], we would still need to do a little bit of planning for later
extensions by writing the base evaluator in a slightly different way.

Modular Aspects of Interpreters In AspectFun, there is no need
to touch the base program or plan ahead for possible extensions:
we can just write modular aspects that are woven into the base
program. In Figure 4 we show how we could modularly define a
watching aspect for assignments. This aspect watches a designated
variable "y". For all cases other than assignment we inherit the
functionality by calling proceed. For the Assign constructor we
do something different by overriding the functionality provided by
the base interpreter. Since we want to watch what happens in the
assignments of "y" we have to compare "y" with the variable being
assigned and, if they represent the same variable, call proceed to
execute the assignment code, as well as adding extra watching
code using the writer monad. If "y" does not match the variable
being assigned, then the guard will fail and the execution will fall
through the default case, just executing the standard assignment
code provided by proceed.

In Figure 5 we show how we could modularly define the code
for the tracing while loops using aspects. The idea is that, for the
While constructor, we make a recursive call directly, which has
the effect of completely overriding all the code for handling while
loops. Consequently, we need to essentially repeat the code that we
have in eval, but this time decorated by some tracing code using the
writer monad.

As we have seen the modularity benefits of using aspects to
capture the tracing and watching variables aspects are significant.
In order to add a new orthogonal piece of the functionality we do
not need to alter the original program. Instead, we can simply create
new aspects that decorate the base program and override just the
functionality that needs to be changed.

5. Discussion
In this section we briefly compare functional AOP with the more
established notion of AOP in OO, and discuss the issues that arise
in the design of purely functional AOP languages together with
possible solutions for them.

5.1 Object-Oriented AOP vs Functional AOP
AOP was born as a programming paradigm that improves sep-
aration of concerns by offering another dimension of grouping
other than the underlying support of encapsulation of a host lan-
guage [30]. This idea quickly took a strong hold in OO program-
ming, where encapsulation is predominant, and as a result, where



the problem of code dangling and scattering is most severe. No-
tably the success of AspectJ [29, 2], an AOP language based on
Java, is well recognised. Given the complicated control structure of
Java, the pointcut language in AspectJ is very rich. A typical aspect
in AspectJ crosscuts several classes, very often through the use of
wildcards in certain fields of the pointcuts. Consequently, despite
being oblivious, it is obvious that base programs with better nam-
ing disciplines make the aspect development easier.

In most functional AOP languages, the pointcut model based
on function invocation is much simpler. In addition to the well
known applications of separation of concerns, such as tracing or
contract checking, an AOP extension in a functional setting is able
to model OO style inheritance and overriding. This is novel, but
not surprising, since one of the main strengths of AOP lies in
facilitating extensibility and adaptability, which, however, has been
shadowed by the powerful inheritance infrastructure in OO.

5.2 Parametricity
Most (if not all) functional AOP languages, including AspectML,
Aspectual Caml and AspectFun, support type-directed program-
ming. In those languages, it is possible to define a function eval,
like the one presented in Section 3.2, with the following type:

eval ::∀a. a→ Val

In languages like Haskell, properties arising from parametricity
abound [50], but type-directed programming in the style above
breaks these properties. In this example, because of parametric-
ity, we would expect that eval would not be able to make any use
of its first argument, since nothing is known about the informa-
tion contained in values of the type a. Consequently, in a language
where parametricity is preserved, the eval function would necessar-
ily need to return a constant. However, with implicit type-directed
programming, we can perform a case analysis on the type and dis-
cover information about a, which allows us to return something
other than a constant. This breaks the parametricity properties that
we would normally expect from a function of this type. Since para-
metricity is highly valued in functional programming, it is impor-
tant to consider possible design alternatives that can be used to re-
store (or at least partially restore) parametricity. A few alternative
designs are discussed next:

Type-safe cast One possible alternative design is to allow type-
safe casts [56, 31] as in, for example, the current versions of the
Glasgow Haskell Compiler (GHC) [22]. In this design, we would
be able to do a (limited) form of type-directed programming but
only through the use of a type-safe cast function:

cast :: (Typeable b,Typeable a)⇒ a→Maybe b

The advantage of this design is that parametricity properties are
preserved, since any functions involving cast will necessarily give
rise to Typeable constraints. For example, if we wanted to define
an evaluation function using type-directed programming, we would
need to write

eval :: Typeable a⇒ a→ Val

In this design a function without any Typeable constraints has the
usual parametricity properties. However, a disadvantage of this ap-
proach is that it typically relies on some built-in compiler machin-
ery (for example, in GHC, we need to rely on the compiler gener-
ating the type-class instances for Typeable).

Type Representations Another alternative way of doing type-
directed programming is through the use of type representa-
tions [44], which are widely used in lightweight forms of datatype-
generic programming [8, 23]. In this design the function eval would
have a type like:

eval :: Rep a→ a→ Val

or, alternatively:

eval :: Rep a⇒ a→ Val

In either case it is possible to discriminate the possible type rep-
resentations of a. Like with the previous solution, we can tell if
a function uses type-directed programming because of the Rep ar-
guments (or constraints) in the type. The main advantage of this
solution when compared to the Typeable approach is that it is less
reliant on type-classes and some “magic” introduced by the com-
piler. Unfortunately, a typical disadvantage of this approach is that
the type representations are closed (that is, it is hard to add new type
representations without modifying the original Rep type). Some of
the latest work in this area has been focused on lifting this limi-
tation [45, 57], giving us some hope that this alternative may be
useful in practice.

Type Labelling The restoration of parametricity in the presence
of run-time analysis has been studied before [53]. The basic idea
of the proposal is simple: distinguishing parametric type variables
that are analysable by labels. Applying to the case here, we could
mark the types of all overloaded functions, for example eval in
Section 3.2, so that they are not confused with genuine parametric
polymorphic functions. Despite the loss of some obliviousness,
we believe in practise this should cause little disturbance because
programs only have to make a (usually clear) choice on whether
a polymorphic function is intended to be extended with additional
type cases.

5.3 Reasoning with Aspects
Equational reasoning is a distinctive feature of pure functional lan-
guages. Given the absence of (implicit) effects or, more generally,
the existence of referential transparency, a carefully designed lan-
guage can support local reasoning about program behaviours and
allow replacing programs with equivalent ones without any observ-
able differences in behaviour. The former is clearly beneficial for
program comprehension and the latter is important for program op-
timisation and parallisation. As a simple example, consider the map
fusion law:

map f ◦map g = map (f ◦g)

The left-hand side of the equation above can be safely replaced by
the more efficient right-hand side by a compiler regardless of the
context it is used. This nice property is directly threatened by the
introduction of aspects, especially oblivious aspects. Consider the
sum example in Section 3.4; an advice such as even may override
its behaviour. This gives us adaptability and reusability, but at the
cost of sound reasoning: the semantics of other programs that make
use of sum are changed silently. We suggest some possible designs
that can help restoring some (and perhaps all) forms of equational
reasoning next:

Noninterference To control the possible ‘damage’ that comes
with the use of aspects, a whole theory of non-interference, appear-
ing under different names, has been developed: observation [9],
orthogonal, independent and observation [46], almost specta-
tive [28], strongly independent [15] and harmless advice [13], are
just some of the most relevant works in this area. The common
goal is to classify aspects and base programs with respect to cer-
tain interference properties that they may have. For example, with
harmless advice we can ensure that advice will only perform effects
and will not change the core functionality of the base program. The
tracing aspect in Section 4.2 is an example of harmless advice.
Unfortunately, this notion of noninterference is too weak for func-
tional reasoning: two expressions are not equivalent even if they
only differ in the effects performed. As a matter of fact in Haskell



all effects are cleanly abstracted into monads (or other mechanisms
such as applicative functors [41] or comonads [49]) and two pro-
grams that only differ in their effects will have different types and
cannot be substituted for each other. It is perhaps more meaningful
to argue whether certain aspects will be capable of breaking exist-
ing invariants of the base program instead. For instance, we could
consider the sort aspect being harmless since it does not change
the invariant that any output will be sorted. On the other hand, ad-
vice of this kind may change the run-time performance or even the
time complexity of the original program. This makes the already
complex time complexity analysis of lazy languages even harder.

Modular Aspects Instead of insisting on being completely obliv-
ious, proposals have been made to give the base program some
control over the way it can be advised. Commonly hidden within
certain module boundaries, base programs may choose to explic-
itly export join points that are receptive to advising [37, 1]. Ap-
plied to the level of functions, it makes sense to syntactically mark
functions that are being advised, in the same spirit as the treatment
of monads. It is obvious that obliviousness will be affected. How-
ever, we believe that this is a reasonable trade-off for proper rea-
soning. With mixins [5] (which provide a simple model for inher-
itance) it is possible to program in a style very similar to AOP,
but with less obliviousness [11]. In this style a function that is
meant to be advised has to have a suitable Mixin type. For exam-
ple, rather than defining an advisable sorting function with a type
sort1 :: Ord a⇒ [a]→ [a] (such as the function discussed in Sec-
tion 2), we would need to write sort2 :: Ord a⇒Mixin ([a]→ [a]).
The advantage of being less oblivious is that it is clear from the
types of functions that we can expect sort2 to be more flexible and
general than sort1; and sort1 to be easier to reason about (since it is
less parametrized).

5.4 The Challenge of Effects
A primary goal of AOP is to capture orthogonal concerns that show
up in software. For example, we may be interested in capturing
tracing or memoisation concerns separately from the code that im-
plements the core functionality of a program. By their own nature,
orthogonal concerns tend to involve side-effects. For instance, in
the following toy example,

trace@advice around{h}(arg) =
proceed arg;
println "exiting from h"

h x = x

we can see how to separate tracing from the core functionality of a
function h. The function h (in this case just the identity function) is
advised by trace, which prints a message to the console every time
that an execution of h finishes.

While orthogonal concerns are one of the primary motivations
in traditional renderings of AOP, they pose a fundamental challenge
in pure functional languages because effects appear explicitly in
the types. In the example above we would expect h to have a type
a→ a but, since the advice executes an IO action, h should really
have a type a→ IO a. In a language with implicit effects (such as
AspectML or Aspectual Caml) this would not be a problem because
this kind of side-effect would be transparent and would not change
the original type. We can think of the following solutions to address
the challenge of effects in pure functional languages:

Anticipate possible effects One possible way out of the problem
would be to anticipate all possible effects that may occur. This
was the option we took in the example presented in Section 4.2.
For example, instead of declaring h as above, we could have the
following definition:

h :: a→ IO a
h x = return x

The idea here is just that we anticipate the use of IO by any possible
advice. In this way, advice could freely introduce IO computations
and no problem would arise in the first place. One problem with this
solution is the loss of some obliviousness, since now the program
h needs to make some preparation for advice. A more fundamental
problem is that this still does not account for the introduction of
other kinds of effects. If, for example, we wanted to use exceptions
we would fall back into the same problem. Alternatively, if we try
to anticipate all possible kinds of effects, then we may as well have
used a language with implicit effects.

Advice can introduce implicit effects One very pragmatic solu-
tion for the problem would be to allow a language where the base
programs are purely functional, but advice can introduce implicit
side-effects. The original design of AspectFun can be seen as an
example of this design. In AspectFun sequential composition is al-
lowed on advice and the expressions being composed can introduce
IO computations. However, sequential composition is not allowed
on the base programs. The tracing example above is an example
of a program written in this style. Nonetheless, even though only
advice can introduce side-effects we can still break properties that
we would expect from a pure functional program (such as for ex-
ample parametricity properties). The advantage is that if we ignore
all advice, we still have a pure functional program. As discussed
earlier, one possible way to recover most (if not all) properties of
the original pure functional program, while still allowing advice to
introduce side-effect, may be through the use of something similar
to Dantas and Walker’s harmless advice [13].

Type refinement in advice A more sophisticated alternative
would be to allow advice to perform some form of type refine-
ment on the original type of the base program. The idea here would
be that the base program could declare a type that specifies that the
program may involve some side-effect, but it is unknown which
specific effect that is. Although we do not know any AOP lan-
guage with this design, the library approach based on mixins by
Oliveira [11] allows the modular development of pure functional
programs in a similar way. For example, in the mixin approach, the
type of the base program for the interpreter presented in Section 4.2
would be:

eval :: Monad m⇒Mixin (Expr→ m Int)

and the code corresponding to the tracing aspect would refine that
type as follows:

teval :: MonadWriter String m⇒Mixin (Expr→ m Int)

The important thing to note here is that teval is allowed to make
use of the monad writer operations in its definition; but eval does
not need to prepare for that possibility in advance. Unlike the
mixin approach, with an AOP language we would not need to
to combine the programs explicitly, which would make it more
oblivious. However, we would still need to anticipate the existence
of some effects and declare a type that can then be refined by the
advice. While this would, perhaps, make the approach a bit less
oblivious than usual AOP solutions, it would be much more in line
with what is expected from a pure functional language.

5.5 Static Typing and Type Inference
All the existing functional AO languages are statically typed; but
the inference mechanisms are very different. In AspectFun, func-
tions and aspects are typed separately and then connected by the
pointcut. The type of the advice is checked to be more general than
the type of each function in the pointcut to ensure soundness. In ad-
dition, the type system is supplemented with type predicates, sim-



ilar to the ones found in qualified types to facilitate static weaving
of advice. Similarly, in Aspectual Caml, functions and aspects are
typed separately. However, there is no type compatibility check on
pointcuts. Instead, the weaver goes through the type annotated ab-
stract syntax tree and silently drops advice with mismatching types.
This missing connection allows aspects to be compiled indepen-
dently of the functions it advises, at the cost of losing error report-
ing. AspectML strives to give a concrete type to pointcuts, as they
are first-class entities in the language. This proves to be difficult:
higher-order unification is needed when more than one function
appears in a pointcut. To regain decidability, mandatory type anno-
tations are required with certain constructs of the language.

6. Other Related Work
In this section we discuss some other related work.

6.1 Type-Directed Programming and Generic Programming
Type-directed programming is an important ideology in strongly
typed functional languages. It is essentially about dispatching pro-
gram behaviour based on the input type. In general, approaches to
type-directed programming can be divided into two groups. Nomi-
nal approaches, such as Haskell’s type classes [51], stipulate a sep-
arate implementation of a type-directed function for each input type
of interest; structurally similar but nominally different types have
unrelated implementations. This is more refined – customised be-
haviours can easily be provided for functions – but less reusable.

On the contrary, structural approaches like Generic Haskell [24]
map every type into a fixed finite structural view, which allows
generic functions to be defined once for all types, even those yet
to be conceived. This works nicely in most situations, but not
all. We need some means of overriding generic behaviour without
endangering modularity; this is not possible in most of the current
approaches to generic programming.

The line that separates the nominal and structural approaches
is not always clear cut. Type classes are a popular tool to encode
structural generic programming. There have been some efforts [32,
45, 57], to reconcile genericity and extensibility with a type class
based solution for generic programming.

Type-scoped advice is nominal. Compared to type classes, it
is more flexible: we can conveniently combine it with structural
approaches and deploy it when needed as we see in Section 3.2.
In [55], AspectML is used for type-directed programming and
extensible generic programming, which inspired our discussion in
this paper.

6.2 Open Extensibility
Open extensibility, better known by the pun of the expression prob-
lem, is essentially about supporting modular extension of datatype
variants and functions at the same time.

The design of Aspectual Caml is centred around the expression
problem. Its static introduction mechanism allows direct injection
of new variants into existing datatypes. This solution is more con-
venient than ours since different expressions have the same type,
which makes the defining of certain functions (such as environ-
ment lookup) easier. However, it remains a challenge to compile
static introduction modularly, a core requirement for the expres-
sion problem. A similar problem exists in the proposal of adding
open datatypes and open functions into Haskell [38]. In that work,
datatype variants as well as clauses of functions can be declared
separately and grouped together at link time. This is not truly mod-
ular despite the fact that the impact of recompilation can be reduced
by the techniques mentioned in the paper.

Our approach only deals with open functions, and lifts variants
of datatypes to types for extensibility. The weaving of aspects is at

the use site, which is separately compiled from function definitions.
Nevertheless, this concept of modularity is different from the tradi-
tional one. Since we do not require advanced planning on whether
a function will be advised or how many times it may be advised,
the behaviour of the function is always subject to changes. There-
fore, introduction of advice on this function affects all definitions
that depend on it.

Extensible ML (EML) [43] is a much heavier-weight approach
to the problem of open extensibility, which basically completely
redesigns ML by proposing a very different syntax and semantics.
Datatypes and variants are encoded as super- and sub-classes that
are modularly extensible.

Polymorphic variants are a language and type system extension
implemented in OCaml [35] and proposed for Haskell [20, 34].
Polymorphic variants are declared independently to type definitions
and types are formed as collections of such variants. Thus, new
variants can be added easily without affecting existing programs.
However, polymorphic variants do not induce open functions. It
would be interesting to explore how polymorphic variants could be
combined with our AOP approach.

Oliveira et al. [45] addressed the problem of extensible generic
functions with Haskell type classes and noted the connection to the
expression problem. In a more recent development, Oliveira [12]
proposed a solution to the expression (families) problem inspired
by his earlier work and, more generally, showed how to encode
extensible datatypes in System Fω-like languages extended with
with record subtyping. Swierstra [48] has also proposed a solution
to the expression problem using extensible sums (or variants) that
has some close similarities to Oliveira et al.’s technique.

The problem of open extensibility is also studied in object-
oriented frameworks. In [58], the authors added algebraic datatypes
and pattern matching into an objected-oriented language, and ar-
gued that through the introduction of defaults they could reverse the
subtyping relationship and declare datatypes that extend variants
as subtypes of the original datatypes. As a result, standard object-
oriented mechanisms such as subtyping extension and overriding
can be deployed for extensibility of datatypes.

There is also a folklore encoding of open extensions in Haskell
through type classes. Open functions can be declared as class meth-
ods, which overload on variants that have been lifted to types. Since
each new open function requires a new class, code overhead of this
approach is significant. As we have seen in Section 3.2, this highly
exclusive approach makes it difficult to combine the approach with
other programming methodologies. The power of pattern match-
ing is compromised and there is no easy way of encoding nested
patterns.

6.3 Inheritance in Functional Programming
Traditionally in functional languages, code reuse is achieved
through higher-order functions as combinators, typical examples
of which are fold, unfold, map etc. However, it is also possible
to achieve reuse using mechanisms akin to inheritance (as usually
found in most object-oriented languages). Cook was probably the
first to note that inheritance had uses other than object-oriented
programming in his work on the denotational semantics of inher-
itance [10]. In that work, he used several different variations of
mixins to model different existing kinds of inheritance present at
the object-oriented programming languages of the time. McAdam
shows how some effects can be simulated (without using monads)
using mixins and he presents a type-inference algorithm where the
treatment of error messages is modularly defined [40]. Garrigue
employs open recursion to emulate open functions in his solu-
tion to the expression problem with polymorphic variants [19].
Läufer shows how to apply mixins to interpreters and how to de-
fine mutually-recursive functions using mixins [33]. He also ar-



gues about the relation of his technique with the OO VISITOR
pattern [18]. A nice application of inheritance to a problem of sep-
aration of concerns is given by Brown and Cook [6], who show
how to approach the problem of memoization in purely functional
languages using monadic memoization mixins. For many problems
involving separation of concerns it is possible to use mixin in-
heritance to provide solutions for these problems. In recent work,
Oliveira has shown how to use mixins to solve many problems tra-
ditionally solved using AOP-like techniques [11]. A drawback of
solutions with mixins is that they are less oblivious than typical
AOP approaches and additional parametrization is required.

7. Conclusion
As far as we are aware, this paper is the first extensive sur-

vey of the impact of AOP in (pure) functional programming. We
have identified the main strengths of AOP, namely extensibility and
adaptability; and separation of concerns. For each of the two, we
demonstrated classical functional applications where modularity
was traditionally believed difficult to achieve. The AOP solutions to
the problems are lightweight and blend in well in a functional style.
At the same time, we also identified the major challenges of a satis-
factory functional AOP language – sound reasoning, parametricity,
and effects – and discussed possible design options.

It is interesting to observe that, in contrast to the traditional
concept of crosscutting in the OO setting where aspects typically
crosscut several classes, the majority of the applications of aspects
in functional programming only involve a single function in the
pointcut. We believe the realisation of this difference as concluded
by this paper is important to both the functional and AOP commu-
nity. There is a pressing need to properly interpret and develop of
the concept of ‘crosscutting’ in the functional setting before func-
tional AOP spreads its wings.
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