
The VISITOR Pattern as a Reusable, Generic, Type-Safe Component

Bruno C. d. S. Oliveira, Meng Wang, and Jeremy Gibbons

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

{bruno,menw,jg}@comlab.ox.ac.uk

Abstract
The VISITOR design pattern shows how to separate the
structure of an object hierarchy from the behaviour of traver-
sals over that hierarchy. The pattern is very flexible; this very
flexibility makes it difficult to capture the pattern formally.

We show how to capture the essence of the VISITOR

pattern as a reusable software library, by using advanced
type system features appearing in modern object-oriented
languages such as Scala. We preservetype-safety statically:
no reflection or similar mechanisms are used. The library is
generic, in two senses: by types (the traversal return type and
the object hierarchy shape) and by strategy (internal versus
external control, imperative versus functional behaviour, or-
thogonal aspects such as tracing and memoisation). Finally,
we propose a generaliseddatatype-like notation, providing a
convenient functional decomposition style in object-oriented
languages.

1. Introduction
A software componentis a piece of software that can be
safely reusedand flexibly adapted. Safety can be ensured,
for example, by a type system; flexibility stems from making
componentsparametrizable. Component-oriented program-
ming [McIlroy, 1969], a programming style in which soft-
ware is assembled from independent components, has for a
long time been advocated as a solution to the so-calledsoft-
ware crisis[Naur and Randell, 1969].

This vision still has not been fully realised, largely due
to limitations of current programming languages. For ex-
ample, regarding the structure of datatype definitions, most
languages have a bias towards eitherobject-oriented decom-
position (where adding new variants is easy) orfunctional
decomposition(where adding new functions is easy). This
is an instance of what Tarr et al. [1999] call ‘the tyranny of

[Copyright notice will appear here once ’preprint’ option is removed.]

the dominant decomposition’: when software can be mod-
ularized along just one primary dimension at a time, con-
cerns that do not break down naturally along that dimension
will be scattered across the dominant structure and entangled
with other concerns. For another example, certain software
designs seem to be hard to capture more abstractly as soft-
ware components. This is the case for most of the ‘Gang of
Four’ (GoF) design patterns[Gamma et al., 1995], which
cannot be expressed better than in terms of prose, pictures
and prototypes.

Our first contribution is to show that, with the modern ex-
pressive type systems starting to appear in object-oriented
languages, we can in fact capture (at least the code aspects
of) the VISITOR design pattern [Gamma et al., 1995] as a
generic and type-safe visitor software component. Moreover,
it is possible to capture a number of variations on the pattern
within one parametrizable component — specifically, we
can support the following design decisions: who is responsi-
ble for traversing the object structure, the visitor or the object
structure; whether the visitor isimperative(with results of
traversals stored as mutable state in the visitor) orfunctional
(pure, with results returned by theacceptmethod); whator-
thogonal concernssuch as tracing or caching of computa-
tions are supported. Instead of committing to a particular
decision at the time we design a visitor, as would be nec-
essary with the informally-expressed VISITOR pattern, we
can define a single visitor that postpones all of these design
decisions by allowing them to be specified by parametriza-
tion.

Our component is implemented in the Scala program-
ming language [Odersky, 2006] and its type safety isstat-
ically guaranteed by the type system. The Scala features that
make this possible areparametrization by type(or gener-
ics, as found in recent version of Java or C#) andabstract
types(althoughtype-constructor polymorphism[Altherr and
Cremet, 2007] could be used instead). As far as we are
aware, all existing solutions trying to capture some notion
of generic visitors [Palsberg and Jay, 1998, Visser, 2001,
Grothoff, 2003, Forax et al., 2005, Meyer and Arnout, 2006]
make use of reflection or introspection mechanisms that do
not statically guarantee type-safety. Furthermore, most of

1

those solutions only capture particular variations of the pat-
tern.

Our second contribution is a semantics for a generalised
algebraic datatype notation. The notation allow us to define
parametric, mutually-recursiveandexistentialvisitors, be-
ing comparable in expressive power to Haskell 98 and ML-
style datatypes. It also integrates well with object-oriented
languages, allowing both datatypes and data-constructorsto
override or define new fields and methods. Furthermore,
it generalises traditional algebraic datatypes, in the sense
that both the traversal and the dispatching strategies are
parametrizable.

2. The VISITOR as a Design Pattern
2.1 The VISITOR Pattern

The VISITOR design pattern is an alternative to the normal
object-oriented approach to hierarchical structures, separat-
ing the operations from the object structure. Figure 1 shows
the class structure of the pattern. TheVisitor interface de-
claresvisit methods for eachConcreteElementtype, imple-
mented in eachConcreteVisitorclass; theElementabstract
superclass declares theacceptmethod, taking aVisitor as ar-
gument, defined in eachConcreteElementsubclass to select
the appropriatevisit method from aVisitor.

In contrast to the standard object-oriented decomposi-
tion, the VISITOR pattern makes it easy to add new opera-
tions — at the cost of making it difficult to add new vari-
ants. One can see the pattern as a way of simulating double
dispatch in a single-dispatch language: the method imple-
mentation chosen depends on the dynamic types of both the
ConcreteElementand theConcreteVisitor.

2.2 Imperative and Functional VISITOR s

In the traditional presentation of the visitor pattern, thevisit
andacceptmethods return no result; any value computed by
the visitor is stored in the visitor for later retrieval. An alter-
native is for thevisit andacceptmethods to return the value
directly. Buchlovsky and Thielecke [2005] use the termim-
perative visitorfor one that hasvisit andacceptmethods that
return void, with all computations executed through side-
effects, accumulating results via mutable state; in contrast,
a functional visitoris immutable, all computations yielding
their results through the return values of thevisit andaccept
methods, which are pure.

2.3 Internal and External V ISITOR s

Gamma et al. [1995] raise the question of where to place
the traversal code: in the object structure itself (in theaccept
methods), or in the concrete visitors (in thevisit methods).
Buchlovsky and Thielecke [2005] use the terminternal visi-
tor for the former approach, andexternal visitorfor the lat-
ter. Internal visitors are simpler to use and have more inter-
esting algebraic properties, but the fixed pattern of computa-
tion makes them less expressive than external visitors.

Figure 2 shows examples of the two variations, using
functional-style VISITORs in Scala. In both visitors, the trait
Tree and the classesEmpty and Fork define a COMPOS-
ITE. Using the visitor terminology,Tree is the element type
andEmptyandFork are the concrete elements. The method
accept, defined inTreeand implemented in the two concrete
elements, takes aTreeVisitorobject with twovisit methods
(one for each concrete element). Unlike with the traditional
presentation of the VISITOR, the parameters of the construc-
tors are fed directly into thevisit methods instead of passing
the whole constructed object. Parametrizing thevisit meth-
ods in this way gives a functional programming feel when
using visitors.

Operations on trees are encapsulated inConcreteVisitor
objects. For example, an external visitor to compute the
depth of a binary tree — explicitly propagating itself to
subtrees — is defined as follows:

object DepthextendsTreeVisitor[int] {
def empty = 0
def fork (x : int, l : Tree, r : Tree) =

1+max(l.accept(this), r.accept(this))

}

Defining values of typeTreebenefits from Scala’scase
classsyntax, which avoids some uses of thenew keyword.
To use aConcreteVisitor, we need to pass it as a parameter
to theacceptmethod of aTreevalue. As a simple example,
we define a methodtestto compute the depth of a small tree.

val atree= Fork (3,Fork (4,Empty,Empty),Empty)
def test = atree.accept(Depth)

2.4 The Class Explosion

As is the case with most design patterns, the VISITOR pat-
tern presents the programmer with a number of design deci-
sions. An obvious dimension of variation follows the shape
of the object structure being traversed: theVisitor interface
for binary trees will differ from that for lists. We have just
discussed two other dimensions of choice: imperative versus
functional behaviour, and internal versus external control.
A fourth dimension captures certain cross-cutting concerns,
such as tracing of execution and memoization of results.

Handled naively, this flexibility introduces some prob-
lems. For one thing, capturing each combination sepa-
rately leads to an explosion in the number of classes:
ImpExtTreeBasicVisitorfor imperative external tree visi-
tors,FuncIntTraceListVisitorfor functional internal tracing
list visitors, and so on. Secondly, the dependency on user-
supplied information (the shape of the object structure) pre-
vents these classes from being provided in a library. Finally,
because the variations have different interfaces, the choice
between them has to be made early, and is difficult to change.

All three of these problems can be solved, by specify-
ing the variation by parametrization. The main contribution

2

0..*

Visitor

+visitConcreteElementA(e:ConcreteElementA):void

+visitConcreteElementB(e:ConcreteElementB):void

ConcreteVisitor1

+visitConcreteElementA(e:ConcreteElementA):void

+visitConcreteElementB(e:ConcreteElementB):void

ConcreteVisitor2

+visitConcreteElementA(e:ConcreteElementA):void

+visitConcreteElementB(e:ConcreteElementB):void

Element

+accept(v:Visitor):void

ConcreteElementA

+accept(v:Visitor):void

+operationA():void

ConcreteElementB

+accept(v:Visitor):void

+operationB():void

void accept (Visitor v) {

v.visitConcreteElementA(this);

}

void accept (Visitor v) {

v.visitConcreteElementB(this);

}

ObjectStructure

Client

Figure 1. The VISITOR design pattern

of this paper is the provision of a generic visitor compo-
nent, parametrizable on each of these dimensions: shape
(of object structure), result type (hence imperative versus
functional), strategy (internal versus external), and concern
(cross-cutting).

3. Programming with the Visitor Library
3.1 A Datatype Notation for Visitors

Inspired by datatype declarations from functional program-
ming languages, we introduce a succinctdata-like notation
as syntactic sugar for the actual visitor library in Scala, with-
out compromising clarity and expressiveness. We present
this notation informally in this section; a formal account is
presented in Section 6.

Consider the following Haskell [Peyton Jones, 2003]
datatype definition:

data Tree=

Empty
| Fork Int Tree Tree

An equivalent definition in ourdata notation is:
data Tree{

constructor Empty
constructor Fork (x : int, l :Tree, r : Tree)

}

The following table presents the correspondence between
the concepts in our visitor library and the traditional VISI-
TOR pattern notation.

Library notation V ISITOR terminology

data T Element
constructor Concrete Element
(D)CaseT Visitor
V extends(D)CaseT Concrete Visitor
new(D)CaseT Anonymous Concrete Visitor

The traits(D) CaseT are generated from the datatype defini-
tions. For the tree example, this means that we would have
DCaseTreeandCaseTreetraits.

Generalized data notation We also make ourdata nota-
tion more amenable to object-oriented programming by gen-
eralizing it so that datatypes can, in the same way as classes
or traits, define and override methods and values. In Figure 3,
we define a newNatdatatype that uses this generalized nota-
tion; it overrides thetoString, equalsandhashCodemethods
and defines aval intValuethat is implemented by each of the
constructors.

3

Internal Visitors External Visitors
trait Tree{

def accept[R] (v : TreeVisitor[R]) :R
}

case classEmptyextendsTree{
def accept[R] (v : TreeVisitor[R]) :R= v.empty

}

case classFork (x : int, l : Tree, r : Tree) extendsTree{
def accept[R] (v : TreeVisitor[R]) :R=

v.fork (x, l.accept(v), r.accept(v))
}

trait TreeVisitor[R] {

def empty:R
def fork (x : int, l : R, r : R) :R

}

trait Tree{
def accept[R] (v :TreeVisitor[R]) :R

}

case classEmptyextendsTree{
def accept[R] (v :TreeVisitor[R]) :R= v.empty

}

case classFork (x : int, l : Tree, r : Tree) extendsTree{
def accept[R] (v :TreeVisitor[R]) :R=

v.fork (x, l, r)
}

trait TreeVisitor[R] {

def empty: R
def fork (x : int, l :Tree, r : Tree) :R

}

Figure 2. Internal and External VISITORs for Binary Trees

data Nat {
val intValue: Int

constructor Zero{
val intValue= 0

}

constructor Succ(n :Nat) {
val intValue= 1+n.intValue

}

override def toString() :String= this.accept(
newCaseNat[Internal,String] {

def Zero = "Zero"

def Succ(n :String) = "Succ("+n+")"

})

override def equals(x :Any) : boolean=
x match {

casem:Nat⇒ intValue.equals(m.intValue)
case ⇒ false

}

override def hashCode() = intValue.hashCode()
}

Figure 3. Using the generalizeddatanotation to defineNat.

3.2 Traversal Strategies and the Functional Notation

While conventional datatypes normally usecase analysis
or pattern matchingto decompose values, visitors have a
choice of traversal strategies: internal, and external. Case
analysis and pattern matching are a form of the latter. Con-
sider, for example, a definition of thedepthfunction on trees
in Haskell:

depth::Tree→ Int
depth t= caset of

Empty → 0
Fork x l r → 1+max(depth l) (depth r)

This corresponds, in our library, to:
def depth1 = newCaseTree[External, int] {

def Empty= 0
def Fork (x : int, l : R[TreeVisitor], r : R[TreeVisitor]) =

1+max(l.accept(this), r.accept(this))
}

Here,depth1 defines a new anonymous concrete visitor on
Treeusing theCaseTreevisitor trait. TheExternal type ar-
gument ofCaseTreeselects the external traversal strategy,
which allows the programmer to explicitly drive the traver-
sal through theacceptmethods. Theint type argument spec-
ifies the return type of thevisit methodsEmptyand Fork.
R[TreeVisitor] is a type dependent on the traversal strategy;
in the case of external visitors, it is effectively a type syn-
onym for theTreecomposite1. For the remainder of the pa-
per, for clarity, we will use the composite type directly in-
stead for specifying the recursive types for external visitors.

Functional Notation Calling the acceptmethod repeat-
edly is awkward. In Scala, functions are objects, so we can
use a functional notation by making visitors a subclass of
functions with composites as arguments. With this notation,
depth1 can be rewritten as follows, which nicely reflects the
recursive nature of the definition:

def depth2 = newCaseTree[External, int] {
def Empty = 0

1 Unfortunately, for external visitors, Scala does not allowus to write
def (x: int, l : Tree,r : Tree) directly (we believe this may be a bug).

4

def Fork (x : int, l : Tree, r : Tree) =

1+max(depth2 (l),depth2 (r))
}

Internal Visitors In the definitions ofdepth1 and depth2
the particular traversal strategy used is parametrized on the
concrete visitor instead of being fixed by the visitor compo-
nent. This is a major advantage of our visitor library over the
traditional design pattern interpretation: we do not need to
commit in advance to a particular strategy when designing a
new visitor. For example, instead of using external visitors
to define thedepthfunctions, we could have used instead an
internal visitor:

def depth3 = newCaseTree[Internal, int] {
def Empty = 0
def Fork (x : int, l : int, r : int) = 1+max(l, r)

}

Since with internal visitors use traversal strategies deter-
mined by the elements, the above definition does not require
explicit traversal of the structure, so it is simpler to define.
In the case of internal visitors,R[TreeVisitor] is just a type
synonym forint, which we use to give the types forl andr.

3.3 Advice and Modular Concerns

Having explicit control over traversal gives us the capabil-
ity of decoupling non-functional concerns from base pro-
grams into localized modules and invoking them at each
step of recursion. Inspired byAspect-Oriented Programming
(AOP) [Kiczales et al., 1997], we term such localized non-
functional concernsadvice2. Consider the following (naive)
version of the Fibonacci function defined overNat.

def fib1 = newCaseNat[External, int] {
def Zero = 0
def Succ(n :Nat) = n.accept(

newCaseNat[External, int] {
def Zero = 1
def Succ(m: Nat) = fib1 (n)+fib1 (m)

})

}

Though straightforward, the above definition has exponen-
tial time complexity. One way around this ismemoization
[Michie, 1968], which involves caching and reusing the
computed results. Memoization is an orthogonal concern to
the base computation, andcross-cuts[Kiczales et al., 1997]
different functions, so is likely to become entangled with
those functions.

Our visitor library offers a way to overthrow this ‘tyranny
of the dominant decomposition’: it allows parametrization
by dispatching, which can be used to introduce advice like

2 In contrast to the pointcut mechanism in AOP, our advice is installed by
parametrization. We leave a detailed comparison to Section7.

memoization. In order to benefit from this additional power,
we explicitly parametrizefib by the dispatching behaviour:

def fib2 (d :Dispatcher[NatVisitor,External, int]) =
newDCaseNat[External, int] (d) {

def Zero = 0
def Succ(n :Nat) = n.accept(

newCaseNat[External, int] {
def Zero = 1
def Succ(m:Nat) = fib2 (d) (n)+fib2 (d) (m)

})

}

Instead ofCaseNat, we use the more generalDCaseNat, a
visitor parametrized by aDispatcher(a type defined in our
library, explained in detail in Section 5). Thefib2 function
now takes an extra value argument that determines dispatch-
ing and passes it to the constructor ofDCaseNat. We include
several commonly used pieces of advice in our library, and
provide templates for user-defined new ones. We discuss a
few of them below.

• Basic— the simple dispatcher, which defines the default
behaviour of a visitor;

• Memo— memoization of results;

• Advice— a template for defining new dispatchers, which
hasbeforeandaftermethods that are triggered before and
after calls;

• Trace— tracing a computation by printing out the input
and output, implemented usingAdviceas template.

More than one piece of advice can be deployed at the
same time by composing them together. The specialBasic
dispatcher is atomic and is used as the unit of composition.
Here are a few possible instantiations offib2:

def nfib = fib2 (Basic)
def mfib = fib2 (Memo(Basic))
def tmfib= fib2 (Trace(Memo(Basic)))
def mtfib= fib2 (Memo(Trace(Basic)))

The programnfib is equivalent tofib1, whilemfibis a ver-
sion with memoization. The programstmfibandmtfibcom-
bine tracing and memoization in different ways and, while
both programs return the same output for any given input, the
trace written to the console is different. In our library, the or-
dering of advices is determined by the order of composition.
In tmfib, traceis triggered beforeMemo, which prints out all
calls including those resorting to memoization. On the other
hand,mtfib only prints out traces that do not involve mem-
oization, asMemo(which can be seen as anaroundadvice)
takes precedence and may bypass the tracing.

3.4 Imperative Visitors

The GoF presentation of the VISITOR pattern discusses both
internal and external imperative visitors; the emphasis is

5

on the internal variant, with external visitors being recom-
mended for advanced uses (where the recursion scheme does
not fit the internal variant). As it turns out, imperative visi-
tors are a special case of functional visitors, with the return
type set tovoid (or Unit, in Scala). For example, suppose we
wanted to add all the integers in some tree, but we wanted
to do so by using an imperative visitor that accumulates the
value of the sum in a mutable variable. Using aninternal
visitor, we could write that program in Scala as:

classAddTree1 extendsCaseTree[Internal,Unit] {
var sumValue= 0

def Empty = {}

def Fork (x : int, l : Unit, r : Unit) =

{sumValue+= x; }
}

We could also write an imperativeexternalversion of the
visitor as:

classAddTree2 extendsCaseTree[External,Unit] {
var sumValue= 0

def Empty = {}

def Fork (x : int, l : Tree, r : Tree) =

{this (l); this (r);sumValue+= x; }
}

In this case, we need to explicitly traverse the structure,
by applying the visitor to the composites (remember that
this (l) ≡ l.accept(this)). The imperative visitors are used
as follows:

def test: int = {

val addTree= newAddTreen ();
val tree1 = Fork (3,Empty(),Empty());
val tree2 = Fork (4, tree1, tree1);
addTree(tree2);

return addTree.sumValue;
}

Here,AddTreen should be replaced by eitherAddTree1 or
AddTree2. The program creates a new instanceaddTreeof
AddTreen, defines the valuetree2, appliesaddTreeto it, then
returns the value accumulated by the visitor traversal in the
variablesumValue.

3.5 A Simple Form of Multiple Dispatching

As we mentioned in Section 2.1, the VISITOR pattern sim-
ulates double dispatching in a single-dispatching language.
The use of nested external visitors allows us to go further,
and simulate multiple dispatching. For example, we could
define a type-safe (in the sense that no casts are required)
equality function by using this nesting technique. Figure 4
shows an implementation; the method takes two trees as ar-
guments, performs a case analysis (using an external visitor)

def isEmpty= newCaseTree[External,boolean] {
def Empty = true
def Fork (x : int, l : Tree, r : Tree) = false

}

def equal(t : Tree) : Tree⇒ boolean=
newCaseTree[External,boolean] {

def Empty = isEmpty(t)
def Fork (x : int, l1 : Tree, r1 : Tree) =

t.accept[External,boolean] (

newCaseTree[External,boolean] {
def Empty= false
def Fork (y : int, l2 : Tree, r2 : Tree) =

x≡ y∧ equal(l1) (l2) ∧ equal(r1) (r2)

})

}

Figure 4. A type-safe equality function using External Vis-
itors.

on one of the trees, then in both theEmptyandFork cases,
performs a case analysis on the other tree.

Note that this version of equality requires triple dispatch-
ing, because the method is defined in some objectA, which
is used to dynamically determine the implementation of
equal, and the two tree arguments need to be dynamically
inspected. We could, of course, have defined a version of
equality that would only require double dispatching, by plac-
ing the methodequalin Treeand taking anotherTreeas an
argument.

While this technique can be used to emulate a form of
multiple dispatching, the programs start suffering from read-
ability issues, due to the nesting of visitors. Similar problems
occur in functional programming languages, when multi-
ple nested case analyses are used. To alleviate these, many
of those languages introduce pattern matching as syntactic
sugar on top of case analysis, allowing a definition likeequal
to be written as follows:

equal::Tree→ Tree→ Bool
equal Empty Empty = True
equal(Fork x l1 r1) (Fork y l2 r2) =

x≡ y∧ equal l1 l2 ∧ equal r1 r2

equal = False
Support for pattern-matching could be built on top of exter-
nal visitors in essentially the same way that it is built on top
of case analysis in most functional programming languages;
we leave the details of such an extension for future work.

3.6 Parametrized and Mutually Recursive Visitors

The expressiveness of our library extends to parametrized
and mutually recursive visitors. An example is forests and
trees:

6

data Tree[a] {

constructor Fork (x : a, f : Forest[a])
}

data Forest[a] {
constructor Nil
constructor Cons(t : Tree[a], f : Forest[a])

}

Trees, of typeTree[a], have one constructorFork that builds
a tree containing one element of typea and a forest; forests,
of type Forest[a], have two constructorsNil andConsthat
construct empty and non-empty forests.

We could define a function to sum all the leaves of a tree
of integers as follows:

def sumTree= newCaseTree[Internal, int, int] {
def mrefForest= sumForest

def fork (x : int,xs: int) = x+xs
}

def sumForest= newCaseForest[Internal, int, int] {
def mrefTree= sumTree

def nil = 0
def cons(x : int,xs: int) = x+xs

}

Due to the mutually dependent nature of the two visitors,
a function that traverses one must know of a corresponding
function on the other. For this reason, mutually recursive vis-
itors contain fields referring to the visitors that they depend
on. We name such fieldsmrefForestandmrefTree(the details
are explained in Section 6). Additionally, for parametrized
types likeTree[a], type arguments (such asa) are also passed
as arguments toCaseTree.

4. Visitors as Encodings of Datatypes
4.1 Encoding Datatypes in the Lambda Calculus

In the pure lambda calculus, there is no native notion of
datatype; this has to be encoded using functions. Church
[1936] showed how to encode the natural numbers via re-
peated function composition: the number 0 is represented by
‘zero-fold composition’, the number 1 by ‘one-fold compo-
sition’, the number 2 by ‘two-fold composition’, and so on.

zero≡ λf ⇒ λx⇒ x
succ≡ λn⇒ λf ⇒ λx⇒ f (n f x)

Much later, Böhm and Berarducci [1985] demonstrated
precise typings of such encodings in System F. The name
‘Church encoding’ is normally associated with Böhm and
Beraducci’s System F encoding. Church encodings allow us
to write iterative definitions. A less well-known encoding
is theParigot encoding[Parigot, 1992], which allows us to
write recursivedefinitions, but requires System F to be ex-
tended with recursion. Splawski and Urzyczyn [1999] give

precise definitions of iteration versus recursion in this sense;
we shall not dig into the details in this paper.

Figure 5 shows the Church and Parigot encodings of
naturals and trees in a System F-like calculus extended with
recursion. For Church encodings, the typesNat and Tree
are not recursive: the constructors traverse the structure, and
the functions that form the basis of those two types only
need to process the results of those traversals. In contrast,
with Parigot encodings, the constructors do not traverse the
structure; therefore, the functions that representNatandTree
need to define the traversal themselves. This requires that the
types of those functions recursively refer toTree andNat,
which can only be achieved if we allow recursive types. Note
that the internal and external visitors presented in Figure2
correspond very closely to, respectively, the Church and
Parigot encodings for trees (although we useNat instead of
int here).

4.2 Generic Visitors: Shape Abstraction

We are not the first to realize that visitors are related to en-
codings of datatypes; in fact, it has become folklore knowl-
edge among some communities. Buchlovsky and Thielecke
[2005], in work directed to the type-theory community,
formalized the relation between visitors and encodings of
datatypes precisely and showed a singleshape-genericform
of the encodings.

The traditional presentation of encodings of datatypes in
System F (and common variants) [Girard et al., 1989] is of
the form:

T ≡ ∀X. (F R⇒ X) ⇒ X
where the operation on typesF specifies the shape of the
datatype. Typically,F R takes the form of a sum of products
Σi Fi R, a collection of variants in which eachFi R is a simple
product of types; so the encoding is equivalent to

T ≡ ∀X. ((Σi Fi R) ⇒ X) ⇒ X
Now, the type(Σi Fi R) ⇒ X of functions from a sum is iso-
morphic to the typeΠi (Fi R⇒ X) of products of functions
(in the same way thatxy+z = xy×xz); so another equivalent
encoding is:

T ≡ ∀X. (Πi (Fi R⇒ X)) ⇒ X
Buchlovsky and Thielecke [2005] point out that this clearly
relates the datatypeT with the type of itsacceptmethod
∀X. (Πi (Fi R⇒ X)) ⇒ X: the latter can be read, for some
result typeX, as taking a visitor of typeΠi (Fi R ⇒ X)
and yielding a result of typeX; the visitor itself is just a
collection of functions of the formFi R⇒ X, each being the
visit method for one variant of the datatype, with argument
vectorFi R.

Church and Parigot encodings — corresponding, respec-
tively, to internal and external visitors — follow from two
specific instantiations ofR. For reference, define operation
V by V R X≡ Πi (Fi R⇒ X).

• Generic internal visitorsare obtained by specializingR≡
X; we can define

7

Church Encodings Parigot Encodings
Nat ≡ ∀A. (A⇒ A) ⇒ A⇒ A

zero ∈ Nat
zero ≡ λs z⇒ z

succ ∈ Nat⇒ Nat
succ n ≡ s z⇒ s(n s z)

Tree ≡ ∀A. A⇒ (Nat⇒ A⇒ A⇒ A) ⇒ A

empty ∈ Tree
empty ≡ λe f ⇒ e

fork ∈ Nat⇒ Tree⇒ Tree⇒ Tree
fork x l r ≡ λe f ⇒ f x (l e f) (r e f)

Nat ≡ ∀A. (Nat⇒ A) ⇒ A⇒ A

zero ∈ Nat
zero ≡ λs z⇒ z

succ ∈ Nat⇒ Nat
succ n ≡ λs z⇒ s n

Tree ≡ ∀A. A⇒ (Nat⇒ Tree⇒ Tree⇒ A) ⇒ A

empty ∈ Tree
empty ≡ λe f ⇒ e

fork ∈ Nat⇒ Tree⇒ Tree⇒ Tree
fork x l r ≡ λe f ⇒ f x l r

Figure 5. Encodings of naturals and binary trees.

Internal V≡ ∀X.V X X⇒ X

• Generic external visitorsare obtained by specializing
R≡ External V; we can define

External V≡ ∀X.V (External V) X ⇒ X

In each case,V is a type parameter abstracting over con-
crete visitor components. It could be said thatV is theshape
parameterof the encodings, since different instantiations of
V will lead to different datatypes.

4.3 Generic Visitors: Traversal Strategy Abstraction

Generic encodings based on products of functions allow one
to abstract from differences in the shape of data and model
different traversal strategies — internal and external — of
datatype-generic visitors. Still, there is substantial duplica-
tion of code whenever we want to have both strategies. How-
ever, this duplication can be avoided: we can model visitors
that are generic in both the shape and the traversal strategy.
The template

Composite V≡ ∀X. V R X⇒ X
could be used to capture different implementations of the
V ISITOR pattern by using a proper instantiation forR. How-
ever, this definition is not valid in System F, becauseR is un-
bound; some other approach is needed. SinceR represents
the type of recursive occurrences that appear in the visit
methods, if we want to capture both internal and external
visitors,Rshould depend on bothV andX. This dependency
can be made explicit by havingR≡ S V X and bindingS
universally.

Composite V≡ ∀S X. V (S V X) X ⇒ X

We shall refer toSas thetraversal strategy.
AlthoughComposite Vis now a valid System F definition,

it is still not right. To see what the problem is, let’s first refor-
mulate the Church peano numerals using products of func-
tions, as in Figure 6. When we try to useComposite NatF
instead ofInternal NatF:

Nat≡ Composite NatF

NatF R A≡ (A,R⇒ A)

Nat ≡ Internal NatF

zero ∈ Nat
zero ≡ λ(z,s) ⇒ z

succ ∈ Nat⇒ Nat
succ n ≡ λ(z,s) ⇒ s(n (z,s))

Figure 6. Church encoding of Peano numerals using prod-
ucts of functions

zero∈ Nat
zero≡ λ(z,s) ⇒ z

succ∈ Nat⇒ Nat
succ n≡ λ(z,s) ⇒ s?

there are no problems in defining the constructorzero. How-
ever forsucc, it is impossible to provide a value of the right
type:s requires an argument with typeS V X, and we cannot
create any values of that type. The solution for this prob-
lem consists in adding some extra information aboutS in the
definition ofComposite.

Composite V≡ ∀X S. Decompose S⇒ V (S V X) X ⇒ X

The extra information is given byDecompose S, which is
basically just a type-overloaded (in the type-parameterS)
method. In other words, the implementation of this method
can be determined solely from the typeS and, therefore,
made implicit. Referring to the method inDecompose Sas
decS, we have that:

decS∈ V (S V X) X ⇒ Composite V⇒ S V X

The operationdecS solves the problem of producing a value
of type S V X, and allows us to define the constructorsucc
as:

succ∈ Nat⇒ Nat
succ n≡ λ(z,s) ⇒ s(decS (z,s) n)

8

Note that theDecompose Sparameter is implicitly passed.
In order to define new strategies, we need to define some

concrete typeS and the correspondingdecS operation. For
example, to make internal and external visitors two instances
of Composite V, we specializeS to InternalandExternal:

Internal V X ≡ X
External V X≡ Composite V

Here we reuse the identifiersInternalandExternalto refer to
the associated traversal strategies. The specific instantiations
of decS for internal and external visitors are:

decInternal ∈ (V (Internal V X) X) ⇒ Composite V⇒
Internal V X

decInternal v c ≡ c v

decExternal∈ (V (External V X) X) ⇒ Composite V⇒
External V X

decExternalv c≡ c
In the definition ofdecInternal the reader should (again) note
that theDecompose Sparameter is implicitly passed and,
therefore, the compositec just needs to take the visitorv as
an argument. WithdecExternal, we simply ignore the visitor
parameter and return the composite itself. This allows the
use of the composite directly in the definitions of thevisit
methods.

5. A Scala Library for Visitors
In the previous section, we used the Church and Parigot en-
codings of datatypes to motivate a notion of visitors that is
generic in two dimensions: in the shape of the data structure
being visited, and in the strategy for assigning the respon-
sibility of traversal. Armed with this insight, we will now
present an implementation in Scala of a generic visitor li-
brary.

We use the results from Section 4.3 as a functional speci-
fication for our Scala visitor library. The translation fromthe
functional specification into a Scala component is relatively
straightforward, although some typings vary slightly due to
the differences between System F-like languages and Scala.
We start by recalling the definition ofComposite, and anno-
tate it with extra information identifying theacceptmethod
and the visitor component.

Composite V≡

accept method
︷ ︸︸ ︷

∀X S. Decompose S⇒ V (S V X) X
︸ ︷︷ ︸

Visitor

⇒ X

In order to implement the different components present in
the functional specification we will make extensive use of
generics (parametrization by types) and abstract types [Oder-
sky, 2006], which provide a means to abstract over concrete
types used inside a class or trait declaration. Abstract types
are used to hide information about internals of a component,
in a way similar to their use in SML [Harper and Lillibridge,
1994] and OCaml [Leroy, 1994]. They are considered by

Odersky and Zenger [2005] to be essential for the construc-
tion of reusable components; they allow information hiding
over several objects, a key part of component-oriented pro-
gramming [Pfister and Szyperski, 1996].

Alternatively to abstract types, we could have usedtype-
constructor polymorphism[Altherr and Cremet, 2007] in-
stead. A Haskell solution that exploits this approach is
shown in Oliveira [2007]. Since Scala now supports type-
constructor polymorphism [Moors et al., 2007], a solution
using such an approach should also be possible. However,
as discussed by Oliveira, abstract types seem to be more
expressive than type-constructor polymorphism alone, and
allow the definition of a slightly more general visitor library.

Visitors and the Functional Notation TheVisitor compo-
nent in the library, which captures the shape of the typeV in
the functional specification, has two abstract types:S(repre-
senting the traversal strategy) andX (representing the return
type of the visitor). TheVisitor also contains a typeR that
corresponds to the typeS V X(the first argument ofV, spec-
ifying the type of recursive arguments).

trait Visitor {
type X
type S<:Strategy
type R[v<:Visitor] =

(S{type X = Visitor.this.X; type V = v})#Y
}

The notationT#Y used in the definition of the type synonym
R is the equivalence ofobj.methodon type level. In other
words,T #Y selects the typeY from the trait or classT. We
will explain the typeY when we introduceStrategy.

We also introduce a type synonymVisFuncparametrized
by a visitorv, a strategys and a result typex, as a shortcut
for visitors that are also functions.

type VisFunc[v<:Visitor,s<: Strategy,x] =

Function1[Composite[v],x] with
v {type S= s; type X = x}

In essence, we treat visitors as functions that take aComposite[v]
as an argument and return a value of typex, by observing that
the invocationa.accept(f) wherea is a composite andf is
a visitor can be interpreted as a form of function applica-
tion f (a). The with keyword is used in Scala to do mixin
composition of traits.

Composites TheCompositetrait is parametrized by a visi-
tor V and contains anacceptmethod that takes two parame-
ters. The first parameter is the visitor to apply; the second is
the traversal strategy to use while visiting the structure.

trait Composite[v<:Visitor] {
def accept[s<:Strategy,x] (vis: VisFunc[v,s,x])

(implicit decompose: Decompose[s]) : x
}

9

We switch the order of the two arguments (when com-
pared to theCompositeequation shown earlier) because
decomposecan be implicitly inferred (since it is determined
by the concrete instantiation ofs), and Scala requires im-
plicit arguments to be placed last.

Traversal Strategies The shape of the parameterS is cap-
tured in Scala by the following trait:

trait Strategy{
type V<:Visitor
type X
type Y

}

A Strategyhas two abstract typesV and X and a typeY
that is dependent onV andX (although that dependency is
not captured directly by Scala’s type system). The typeY
represents the type used in place of recursive occurrences
in the visit methods. Subtypes of this trait will correspond
to different possible traversal strategies for the visitors. In
particular, the strategiesInternal and External are defined
as:

trait InternalextendsStrategy{
type Y = X

}

trait ExternalextendsStrategy{
type Y = Composite[V]

}

As we have seen, the traversal strategy parameter in the
acceptmethod can be made implicit. This means that we can
call theacceptmethod by passing just the first parameter,
given that adecoperation of the appropriateDecomposetype
for the second argument is in scope. The traitDecomposeis
parametrized by the traversal strategyS and encapsulates a
single methoddec. This method takes a visitor and a com-
posite and returns the result of recurring on that composite
using the traversal strategy.

trait Decompose[s<:Strategy] {
def dec[v<:Visitor,x] (vis:VisFunc[v,s,x],

comp: Composite[v]) :
(s{type V = v; type X = x})#Y

}

Traversal strategies for internal and externals visitors are
provided by the library (note that both strategies can be used
implicitly):

implicit def internal: Decompose[Internal] =
newDecompose[Internal] {

def dec[v<:Visitor,x] (vis:VisFunc[v, Internal,x],

comp: Composite[v]) = vis.apply(comp)
}

implicit def external:Decompose[External] =
newDecompose[External] {

def dec[v<:Visitor,x] (vis: VisFunc[v,External,x],

comp: Composite[v]) = comp
}

The two implementations of the methoddeccorrespond, re-
spectively, to the definitionsdecInternal anddecExternal in the
functional specification. The important thing here — effec-
tively the piece of code that we want to abstract from — is
the definition ofdec, which isvis.apply(comp) for internal
visitors and justcompfor external visitors. In essence, the
traversal strategy of the internal visitors recurs on the com-
positecomp(since it calls theacceptmethod viaapply); and
the traversal strategy for external visitors returns the com-
posite untouched, which allows concrete visitors to control
recursion themselves.

Dispatchers In Scala, functions are not primitive: they are
defined as a traitFunction1 with an apply method. This
means that we can provide our own implementation of the
apply methods, which allows us to add extra behaviour
on function calls. Our visitor library has the notion of a
dispatcher, allowing us to parametrize the dispatching be-
haviour of our visitors, adding an extra form of parametriza-
tion that is not considered by the functional specification.

Figure 7 shows the trait that defines the interface of a
Dispatcher and a few implementations of that trait. The
methoddispatchtakes a visitor and a traversal strategy and
returns a function that will be used by theapply method
in the visitor to define the dispatching behaviour. The def-
inition Basic implementsDispatcherwith the standard dis-
patching behaviour by just calling theacceptmethod. The
classAdvice, inspired by the notion of advice in AOP, wraps
itself around another dispatcher and definesdispatchas a
TEMPLATE METHOD [Gamma et al., 1995] that calls the
beforeand after methodsaround the dispatchfunction of
the dispatcher argument. One implementation of advice is
given byTrace, which provides a simple tracing concern that
prints the arguments before performing a call and prints the
result after returning. Finally, theMemodispatcher imple-
ments a form of memoization: it intercepts function calls
so that only calls on values that have not been seen before
are performed — results for other calls are retrieved from a
cache.

We should emphasize that dispatchers are composable
havingBasicas the unit of composition. Furthermore, new
ones can be easily added.

The Case Visitor Having built the basic building blocks for
the visitor library, we now introduce theCaseclass, which
will be used to provide the functional notation and to define
concrete visitors:

abstract classCase[v<:Visitor,s<:Strategy,x]

(d :Dispatcher[v,s,x]) (implicit dec:Decompose[s])
extendsFunction1[Composite[v],x] {

self: Case[v,s,x] with v {type S= s; type X = x}⇒

10

trait Dispatcher[v<:Visitor,s<:Strategy,x] {

def dispatch(vis:VisFunc[v,s,x],dec:Decompose[s]) :Function1[Composite[v],x]

}

implicit def Basic[v<:Visitor,s<:Strategy,x] = newDispatcher[v,s,x] {

def dispatch(vis:VisFunc[v,s,x],dec:Decompose[s]) :Function1[Composite[v],x] =

c⇒ c.accept[s,x] (vis) (dec)
}

abstract classAdvice[d<:Visitor,s<:Strategy,x] (dis: Dispatcher[d,s,x]) extendsDispatcher[d,s,x] {

def before(comp: Composite[d]) :Unit = {}

def after (comp:Composite[d], res:x) : Unit = {}

def dispatch(vis:VisFunc[d,s,x],dec: Decompose[s]) :Function1[Composite[d],x] =

c⇒ {before(c);val res= dis.dispatch(vis,dec) (c);after (c, res); res}
}

def Trace[v<:Visitor,s<: Strategy,x] (dis: Dispatcher[v,s,x]) = newAdvice[v,s,x] (dis) {
override def before(comp:Composite[v]) :Unit = {

System.out.println ("Calling function with argument: \t"+comp);
}

override def after (comp: Composite[v], res: x) :Unit = {

System.out.println (res+"\t was returned from the call with argument: \t"+comp);
}

}

def Memo[v<:Visitor,s<:Strategy,x] (dis:Dispatcher[v,s,x]) = newDispatcher[v,s,x] {

val cache:HashMap[Composite[v],x] = newHashMap[Composite[v],x] ()

def dispatch(vis:VisFunc[v,s,x],dec:Decompose[s]) :Function1[Composite[v],x] = c⇒ {

cache.get(c) match {

caseSome(x) ⇒ x
caseNone⇒ {val res= dis.dispatch(vis,dec) (c);cache.put(c, res); res}
}

}

}

Figure 7. Visitor Library Dispatchers

type X = x
type S= s

def dispatcher= d
def decompose= dec

def apply(c :Composite[v]) :x =

dispatcher.dispatch(this,decompose).apply(c)
}

The classCase is type-parametrized by a visitorv (the
shape argument), a strategys (the traversal strategy argu-
ment) and the return typex. Furthermore, it is also value-
parametrized by ad (the dispatcher argument) and an im-
plicit valuedec(related to the traversal strategy). Subclasses
of Casewill implement the visitor typev passed as an ar-
gument. This is expressed by Scala’sself-type annotation
self:Case[v,s,x] with v {typeS= s; type X = x}. The class

CaseextendsFunction1and theapplymethod is defined by
calling thedispatchmethod from the provided dispatcherd.

6. Translation of Datatypes
In this section we define a translation scheme between
datatype-like declarations and visitors defined using our
Scala library. We introduce a mini-language for datatypes
as follows.

Datas τ ::= data T [ᾱ] = {c̄ s̄}
Constructors c ::= constructor K [β̄] v : t {s̄}
Types t ::= t1 | T0 [ᾱ]
Non-recursive Types t1 ::= α | T1 [t1] | t1 → t1
Scala s ::= Scala declarations

A datatypeT , possibly parametrized by type variablesᾱ,
introduces a set of data constructors and some optional Scala
codes̄. Each constructor,K , can take an optional list of type

11

arguments̄β (which act as existentially quantified types) and
a list of labelled type argumentsv : t. Scala definitions ¯scan
be inserted to define or override fields and methods. We
single out non-recursive type arguments,t1, which do not
make self-reference to the datatype that introduced them.
Recursive occurrences of type constructors are denotedT0,
to separate them from the non-recursive ones (T1).

The reason for this separation is to enforce a few syn-
tactic restrictions on the language. In particular, nested
datatypes [Bird and Meertens, 1998] and constructors with
functional parameters having recursive occurrences [Mei-
jer and Hutton, 1995] are excluded, since traversals are
hard to define for those types. Despite these restrictions, the
data constructor presented here is comparable in expressive
power to ML-style and Haskell 98-style datatypes, allow-
ing us to express(type-)parametrized datatypes, mutually
recursive datatypesandexistential datatypes.

Declarations in the datatype language can be translated
to visitors by the meta-functionGEN in Figure 8. Before
going into the details of the translation, we first introduce
a few notational conventions. We write ¯on for a sequence
of entities numbered from 1 ton andoi as theith of them.
We use a pattern matching syntaxti@T [γ̄] to denote that
the bound variablet is of typeT [γ̄] for someT andγ. New
names for visitors and references are created by prefixing
or postfixing with the type constructor name, for example
T Visitor. We assume a dependency analysis and writeTm
to denote the set of mutually recursive types thatT makes
references to (excludingT itself).

For each datatypeT , we generate a corresponding vis-
itor type (a trait that extendsVisitor) and a composite (a
trait that extendsComposite[T Visitor [ᾱ]]). We also gener-
ate two auxiliary visitorsDCaseT andCaseT . The former
extendsCase[T Visitor[ᾱ],s,x], providing a convenient way
to parametrize visitors by traversal and dispatching strate-
gies as well as allowing visitors to be interpreted as func-
tions. The latter provides a shorthand for theBasicdispatch-
ing strategy. The functionGENDATA creates a case class for
each constructorK extendingT [ᾱ] and generates the cor-
respondingacceptmethod by checking the recursive status
of K ’s arguments, which determines the traversal code.

Each of the visitorsT Visitor [ᾱ] may have mutually re-
cursive references to other visitors that it depends on, which
are generated by the functionGENREF. The types of thevisit
methodsK (named after the corresponding constructor) also
depend on the recursive status of the constructor’s arguments
and are generated by theGENTYPE function.

In Figure 9 we apply the translation to the trees and
forests example in Section 3.6. For the datatypeTree[a], we
generate the visitor and composite typesTreeVisitor[a] and
Tree[a], the two auxiliary visitorsCaseTreeandDCaseTree,
and the constructorFork. The mutual dependency with
Forest[a] is captured by themrefForestdefinition onTreeVisitor[a].
A similar process happens forForest[a], resulting in the gen-

eration ofForestVisitor[a], Forest[a], CaseForest, DCaseForest,
Nil andCons. A mutual referencemrefTreeis also placed in
ForestVisitor[a].

7. Discussion and Related Work
7.1 Traversal Strategies and Recursion Patterns

Traversal strategies are closely related to the recursion pat-
terns studied by the Algebra of Programming movement
[Bird and De Moor, 1997]. This work supports Hoare’s ob-
servation that data structure determines program structure;
the shape of the data induces for free a number of patterns
of computation, together with reasoning principles for those
patterns.

The most familiar of these families of recursion patterns
is the ‘fold’ (or ‘catamorphism’) operation, which performs
structurally inductive computations reducing a term to a
value. Better still, those similar definitions are related para-
metrically, and can all be subsumed in one singledatatype-
genericdefinition, parametrised by the shape. The internal
visitors expressible with our library are basically folds.

The Algebra of Programming patterns can provide inspi-
ration for new types of visitor, beyond what is well-known in
the literature. For example, Meertens [1992] introduces the
notion of aparamorphism, which in a precise technical sense
is to primitive recursion what catamorphism is to iteration.
Informally, the body of a paramorphism has direct access to
the original subterms of a term, in addition to the results of
traversing those subterms as a catamorphism does. The ob-
vious definition of factorial, in which(n+ 1)! depends on
n as well asn!, is a representative application. This recur-
sion pattern can be expressed as a strategy using our visitor
library:

trait ParaextendsStrategy{
type Y = Pair [X,Composite[V]]

}

implicit def para:Decompose[Para] =

newDecompose[Para] {

def dec[v<:Visitor,x] (vis: VisFunc[v,Para,x],

comp: Composite[v]) =

Pair [x,Composite[v]] (vis.apply(comp),comp)
}

7.2 Dispatching Strategies and Modular Concerns

Kiczales et al. [1997]’s aspect-oriented programming (AOP)
aims at modularizing concerns that cut across the compo-
nents of a software system. These ideas inspired some of
the applications of our library in Section 3. In AOP, pro-
grammers are able to modularize these crosscutting concerns
within locally defined aspects:pointcutsdesignate when and
where to crosscut other modules, andadvicespecifies what
will happen when a pointcut is reached. Although AOP suc-
cessfully separates concerns that are scattered and tangled

12

GEN(data T [ᾱ] = {c̄ s̄}) =

LET

GENREF(Tm) = def mrefTm :VisFunc[TmVisitor[ᾱ],S,X]

GENTYPE(constructor K [β̄] v : tn { s̄}) =

defK [β̄] (vi : CASE STATUSOF(ti@T ′[γ̄]) OF RECURSIVE → R[T Visitor[ᾱ]]

MUTUAL REC→ R[T ′Visitor[ᾱ]]

NONREC → ti)i∈1..n :X
GENDATA(constructor K [β̄] v : tn { s̄}) =

case classK [β̄, ᾱ] (vi : ti) i∈1..nextendsT [ᾱ] {

def accept[s<:Strategy,x] (vis: VisFunc[T Visitor[ᾱ],s,x]) (implicit decompose:Decompose[s]) : x =

vis.K [β̄] (CASE STATUSOF(ti@T ′[γ̄]) OF RECURSIVE → decompose.dec[T Visitor[ᾱ],x] (vis,vi)

MUTUAL REC→ decompose.dec[T ′Visitor[ᾱ],x] (vis.mrefT ′,vi)

NONREC → vi)
i∈1..n

s̄
}

IN

trait T Visitor[ᾱ] extendsVisitor {

GENREF(Tm)

GENTYPE(c̄)
}

trait T [ᾱ] extendsComposite[T Visitor[ᾱ]]{ s̄}
abstract classCaseT [s<:Strategy, ᾱ,x] (implicit dec: Decompose[s]) extendsDCaseT [s, ᾱ,x] (Basic) (dec)
abstract classDCaseT [s<:Strategy, ᾱ,x] (disp:Dispatcher[T Visitor[ᾱ],s,x]) (implicit dec:Decompose[s])

extendsCase[T Visitor[ᾱ],s,x] (disp) (dec) with T Visitor[ᾱ]

GENDATA(c̄)

Figure 8. Translation Scheme

throughout the program, it can also introduce a form of tight
coupling between base programs and their aspects, which
complicates modular program understanding and reasoning.

Several authors [Aldrich, 2005, Kiczales and Mezini,
2005, Gudmundson and Kiczales, 2001] have proposed
ways to harness the power of aspects by giving more control
to programmers over which parts of their code are open to
advice. Notable among these are Aldrich’sopen modules,
which encapsulate function definitions into modules and ex-
port public interfaces for both calling and advising from
other modules. Internal function calls that are private to a
module can only be advised if the module explicitly chooses
to allow this. In this sense, our use of advice through visitors
is akin to the internal advising of open modules. Functions
or modules that are subject to advice are parametrized by
dispatchers and instantiated to a particular generic advice. A
significant difference between our approach and open mod-
ules lies in the means of triggering advice: parametrization
versus pointcuts. It is no surprise that our library does not
have fully fledged support for AOP; however, a significant
class of applications of AOP can be coded up conveniently
and modularly.

7.3 Case Classes and Algebraic Datatypes

The datatype notation that we have introduced in this paper
is inspired byalgebraic datatypes(AlgDts) from functional
programming. Scala [Odersky, 2006] has its own notion of
AlgDts via (sealed) case classes. With case classes, we could
rewrite theTreeanddepthexamples as:

sealed case classTree
case classEmptyextendsTree
case classFork (x : int, l : Tree, r : Tree) extendsTree

def depth(t : Tree) : int = t match {

caseEmpty() ⇒ 0
caseFork (x, l, r) ⇒ 1+max(depth(l),depth(r))

}

Thesealedkeyword guarantees that the class hierarchy will
not be extended in other modules. Sealing allows the Scala
compiler to perform an exhaustiveness check, guaranteeing
that an operation is defined for all cases. This gives us essen-
tially the same advantages (and disadvantages) as AlgDts.
However, simple case classes are more general than AlgDts,
because they do not need to be sealed: we could have defined
Treewithout thesealedkeyword, gaining the ability to add

13

trait TreeVisitor[a] extendsVisitor {
def mrefForest: VisFunc[ForestVisitor[a],S,X]

def Fork (x :a,xs: R[ForestVisitor[a]]) :X
}

trait Tree[a] extendsComposite[TreeVisitor[a]]

abstract classCaseTree[s<:Strategy,a,x] (implicit dec: Decompose[s]) extendsDCaseTree[s,a,x] (Basic) (dec)

abstract classDCaseTree[s<:Strategy,a,x] (disp:Dispatcher[TreeVisitor[a],s,x]) (implicit dec: Decompose[s])
extendsCase[TreeVisitor[a],s,x] (disp) (dec) with TreeVisitor[a]

case classFork[a] (x :a,xs: Forest[a]) extendsTree[a] {

def accept[s<:Strategy,x] (vis: VisFunc[TreeVisitor[a],s,x]) (implicit decompose: Decompose[s]) : x =

vis.Fork (x,decompose.dec(vis.mrefForest,xs))
}

trait ForestVisitor[a] extendsVisitor {
def mrefTree: VisFunc[TreeVisitor[a],S,X]

def Nil : X
def Cons(x : R[TreeVisitor[a]],xs: R[ForestVisitor[a]]) :X

}

trait Forest[a] extendsComposite[ForestVisitor[a]]

abstract classCaseForest[s<:Strategy,a,x] (implicit dec: Decompose[s]) extendsDCaseForest[s,a,x] (Basic) (dec)

abstract classDCaseForest[s<:Strategy,a,x] (disp:Dispatcher[ForestVisitor[a],s,x]) (implicit dec:Decompose[s])
extendsCase[ForestVisitor[a],s,x] (disp) (dec) with ForestVisitor[a]

case classNil [a] extendsForest[a] {

def accept[s<:Strategy,x] (vis: VisFunc[ForestVisitor[a],s,x]) (implicit decompose:Decompose[s]) :x =

vis.Nil
}

case classCons[a] (x : Tree[a],xs:Forest[a]) extendsForest[a] {

def accept[s<:Strategy,x] (vis: VisFunc[ForestVisitor[a],s,x]) (implicit decompose:Decompose[s]) :x =

vis.Cons(decompose.dec(vis.mrefTree,x),decompose.dec(vis,xs))
}

Figure 9. Translation of theTreeandForestdatatypes into visitors.

new variants in the future. Nevertheless, this extra generality
can create problems because, although new variants can be
added, functions defined by matching cannot be extended,
and exhaustiveness checks become unavailable, essentially
introducing the possibility of “Message not understood” run-
time errors.

There are three main differences between the notion of
datatypes introduced in this paper and case classes. Firstly,
AlgDts and case classes correspond, essentially, to visi-
tors with traversal and dispatching strategies set toExternal
and Basic, therefore losing much of the reusability bene-
fits offered by those parametrizations. Secondly, although
the datatype notation requires a language extension, the ap-
proach we have taken is mostly library-based. This has the
important advantage that we can extend the functionally pro-
vided by the visitor library, without extending the compiler

itself. For example, as we have seen in Section 7.1, it is very
simple to add a new kind of traversal strategy. We believe
that an approach could be taken similar to the one with IT-
ERATORs [Gamma et al., 1995] in C# and new versions of
Java, with a library component and some built-in language
support (theforeachkeyword). We envision a language ex-
tension supporting the datatype notation, perhaps also with
a parametrizablecaseconstruct and pattern matching nota-
tion, built on top of the visitor library. Finally, the semantics
of case classes is essentially given by type inspection and
downcasting. Our semantics does not rely on the availability
of casts or run-time type information, so it could be used in
object-oriented languages without these mechanisms.

7.4 Generic Visitors

There have been several proposals forgeneric visitors(visi-
tor libraries that can be reused for developing software using

14

something like the VISITOR pattern) in the past. Palsberg
and Jay [1998] presented a solution relying on the Java re-
flection mechanism, where a single Java classWalkabout
could support all visitors as subclasses. Refinements to this
idea, mostly to improve performance, have been proposed
since by Grothoff [2003] and Forax et al. [2005]. Meyer and
Arnout [2006] also present a generic visitor along the same
lines, but having less dependence on introspection mecha-
nisms (although those are still needed). One advantage of
these approaches is that they are not invasive — that is,
the visitable class hierarchies do not need to haveaccept
methods and it is possible to write generic traversal code
(i.e. code that works for different visitors). In this paper, we
can avoid most of the direct uses of theacceptmethods by
using the datatype and functional notations, but the meth-
ods will still be needed. Although we do not address the
issue here, very flexible and type-safe generic traversal code
can be written using adatatype-generic programmingexten-
sion to our visitor library [Oliveira, 2007]. A disadvantage
of introspection-based approaches is that they cannot stati-
cally ensure type-safety, and so strictly speaking should not
be classified as components. Furthermore, those approaches
lack flexibility in the choice of the dispatching policy [Cunei
and Vitek, 2005].

Visser [2001] observes that the VISITOR pattern suffers
from two main limitations: lack of traversal control; and
resistance to combination, which are closely related to our
notions of traversal and dispatching parametrization. His
solution for those problems consists of a number of generic
visitor combinators for traversal control. These combinators
can express interesting traversal strategies like bottom-up,
top-down or sequential composition of visitors and can be
used to define visitor-independent (or generic) functionality.
Like all other implementations of forms of generic visitors,
Visser’s solution requires run-time introspection. It would be
interesting to explore some of Visser’s ideas in the context
of our visitor library.

7.5 Multiple Dispatch

Mainstream object-oriented languages, like C++, C# and
Java, all use asingle dispatchingmechanism, where a single
argument (theself object) isdynamicallydispatched and all
other dispatching is static. A problem arises, however, when
a method requires dynamic dispatching on two or more ar-
guments. There is a rich literature motivating and proposing
solutions for this problem: Chambers and Leavens [1995],
Clifton et al. [2000], Ernst et al. [1998] are just a few ex-
amples. Still, none of those solutions have been adopted
by mainstream programming languages. Two reasons for
this are the difficulty of providing modular (compile-time)
type-checking to catch ambiguous and invalid combinations
of dynamically dispatched arguments, and fears that multi-
methods go against object-oriented principles like encapsu-
lation.

Visitors can be used to emulate a (limited) form of mul-
tiple dispatching in object-oriented languages, as we men-
tioned in Section 2.1. Ambiguous and invalid combinations
of dynamically dispatched arguments do not pose a problem
for our visitors, but the price to pay for this is that we lose
the ability to (easily) add new variants, which is possible
with many of the multiple-dispatching solutions. Encapsula-
tion is more problematic, and visitor-based solutions are of-
ten criticized as not being very object oriented. We agree that
the idea of encapsulation is important and, whenever possi-
ble, it should be preserved. Nevertheless, for some problems
a functional decomposition style is more appropriate, and
trying to preserve (full) encapsulation is hard. What seems
clearly worse to us than the loss of encapsulation is the fact
that most object-oriented languages do not have an easy-to-
use mechanism for a form of multiple dispatching (even if
limited) except via the (statically) type-unsafeinstanceOf
introspection mechanism. We believe that our datatype nota-
tion and the relatedExternaltraversal strategy could provide
an easy-to-use and lightweight (if simple-minded) solution
for the multiple dispatching problem.

8. Conclusions
We have argued that (the code aspects of) the VISITOR de-
sign pattern can be captured as a reusable, generic and stat-
ically type-safe component by using some advanced type
system features that are starting to appear in modern object-
oriented languages. We have shown that, inspired by func-
tional programming, we can significantly improve the use
of visitors by using a datatype-like and functional notations,
while at the same time providing a simple functional decom-
position mechanism that, we think, is well-suited for object-
oriented languages.

This work is based on Chapter 3 of Oliveira [2007] dis-
sertation that, in essence, builds on the insights provided
by type-theoretic encodings of datatypes to derive a visitor
software component. Other chapters of that dissertation ad-
dress two other issues, related to visitors, not discussed here:
datatype-generic programming(the ability to write func-
tions that work for any visitors); andextensibility(the ability
to add new variants to visitors). Solutions for those are also
achieved without compromising static type-safety.

The hope is that this line of work will, more generally,
show how more expressive forms of parametrization can
help in resolving limitations of current programming lan-
guages when it comes to componentization and modulariza-
tion of software. For the future, we would like to:

• Investigate possible programming languages extensions
for the datatype-notation, as well as a case analysis and
a pattern matching notation, with full support for all the
parametrization aspects of the visitor library.

• Develop a formal setting that can be used to formalize
and reason about components. In particular, we would

15

like to create a simple, but expressive, purely functional
object-oriented language and investigate the implemen-
tation of some design patterns as components.

The code for this paper can be obtained fromwww.comlab.
ox.ac.uk/people/Bruno.Oliveira/VisLib.tgz.

References
J. Aldrich. Open modules: Modular reasoning about advice.

In LNCS 3586: European Conference on Object-Oriented
Programming, pages 144–168, 2005.

Philippe Altherr and Vincent Cremet. Adding type construc-
tor parameterization to Java, July 2007.

Richard Bird and Lambert Meertens. Nested datatypes. In
J. Jeuring, editor,LNCS 1422: Mathematics of Program
Construction, pages 52–67. 1998.

Richard S. Bird and Oege De Moor.Algebra of Program-
ming. Prentice Hall, 1997.

C. Böhm and A. Berarducci. Automatic synthesis of typed
lambda-programs on term algebras.Theoretical Com-
puter Science, 39(2-3):135–153, August 1985.

Peter Buchlovsky and Hayo Thielecke. A type-theoretic
reconstruction of the Visitor pattern.Electronic Notes in
Theoretical Computer Science, 155, 2005. Mathematical
Foundations of Programming Semantics.

Craig Chambers and Gary T. Leavens. Typechecking
and modules for multimethods.ACM Transactions on
Programming Languages and Systems, 17(6):805–843,
November 1995.

A. Church. An unsolvable problem of elementary number
theory. American Journal of Mathematics, 58:345–363,
1936.

Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd
Millstein. MultiJava: Modular open classes and symmet-
ric multiple dispatch for Java. InObject-Oriented Pro-
gramming, Systems, Languages, and Applications, vol-
ume 35(10), pages 130–145, 2000.

Antonio Cunei and Jan Vitek. Polyd: a flexible dis-
patching framework. SIGPLAN Not., 40(10):487–503,
2005. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/
1103845.1094849.

Michael Ernst, Craig Kaplan, and Craig Chambers. Pred-
icate dispatching: A unified theory of dispatch. InEu-
ropean Conference on Object-Oriented Programming,
pages 186–211, London, UK, 1998. Springer-Verlag.

Rémi Forax, Etienne Duris, and Gilles Roussel. Reflection-
based implementation of Java extensions: the double-
dispatch use-case. InACM Symposium on Applied Com-
puting, pages 1409–1413, 2005.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Soft-

ware. Addison-Wesley, 1995.

Jean-Yves Girard, Paul Taylor, and Yves Lafont.Proofs and
types. Cambridge University Press, 1989.

Christian Grothoff. Walkabout revisited: The Runabout. In
LNCS 2743: European Conference on Object-Oriented
Programming, pages 103–125, 2003.

S. Gudmundson and G. Kiczales. Addressing practical soft-
ware development issues in AspectJ with a pointcut inter-
face. InECOOP 2001 Workshop on Advanced Separation
of Concerns, 2001.

Robert Harper and Mark Lillibridge. A type-theoretic ap-
proach to higher-order modules with sharing. InPrinci-
ples of Programming Languages, pages 123–137, 1994.

Gregor Kiczales and Mira Mezini. Aspect-oriented pro-
gramming and modular reasoning. InACM: International
Conference on Software engineering, pages 49–58, 2005.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Ir-
win. Aspect-oriented programming. In Mehmet Akşit and
Satoshi Matsuoka, editors,LNCS 1241: European Confer-
ence on Object-Oriented Programming, pages 220–242.
1997.

Xavier Leroy. Manifest types, modules, and separate com-
pilation. InPrinciples of Programming Languages, pages
109–122, 1994.

M.D. McIlroy. Mass Produced Software Components. In
Naur and Randell [1969], pages 138–155.

L. Meertens. Paramorphisms.Formal Aspects of Computing,
4(5):413–425, 1992.

Erik Meijer and Graham Hutton. Bananas in space: Ex-
tending fold and unfold to exponential types. InFunc-
tional Programming Languages and Computer Architec-
ture, pages 324–333. 1995.

Bertrand Meyer and Karine Arnout. Componentization: The
Visitor example.Computer, 39(7):23–30, 2006.

Donald Michie. Memo functions and machine learning.
Nature, 218:19–22, 1968.

Adriaan Moors, Frank Piessens, and Martin Odersky. To-
wards equal rights for higher-kinded types. In6th Inter-
national Workshop on Multiparadigm Programming with
Object-Oriented Languages, 2007.

Peter Naur and Brian Randell, editors.Software Engineer-
ing: Report of a Conference Sponsored by the NATO Sci-
ence Committee, Garmisch, Germany, 7–11 Oct. 1968.
1969.

Martin Odersky. An Overview of the Scala programming
language (second edition). Technical Report IC/2006/001,
EPFL Lausanne, Switzerland, 2006.

16

Martin Odersky and Matthias Zenger. Scalable component
abstractions. InObject Oriented Programming, Systems,
Languages, and Applications, pages 41–57, 2005.

Bruno C.d.S. Oliveira.Genericity, Extensibility and Type-
Safety in theV ISITOR Pattern. PhD thesis, University of
Oxford, 2007.

Jens Palsberg and C. Barry Jay. The essence of the Visitor
pattern. InComputer Software and Applications, pages
9–15, 1998.

Michel Parigot. Recursive programming with proofs.Theo-
retical Computer Science, 94(2):335–356, 1992.

Simon Peyton Jones, editor.Haskell 98 Language and Li-
braries – The Revised Report. Cambridge University
Press, Cambridge, England, 2003.

Cuno Pfister and Clemens Szyperski. Why objects are not
enough. InInternational Component Users Conference,
1996.

Zdzislaw Splawski and Pawel Urzyczyn. Type fixpoints:
Iteration vs. recursion. InInternational Conference on
Functional Programming, pages 102–113, 1999.

Clemens Szyperski. Independently extensible systems –
software engineering potential and challenges. In19th
Australian Computer Science Conference, 1996.

Peri Tarr, Harold Ossher, William Harrison, and Stanley
Sutton, Jr. N degrees of separation: Multi-dimensional
separation of concerns. InInternational Conference on
Software Engineering, pages 107–119, 1999.

Joost Visser. Visitor combination and traversal control. In
Object Oriented Programming, Systems, Languages, and
Applications, pages 270–282. ACM, 2001.

17

