
On the Pursuit of Static and Coherent Weaving

Meng Wang
National University of Singapore,

Singapore
wangmeng@comp.nus.edu.sg

Kung Chen
National Chengchi University, Taiwan

chenk@cs.nccu.edu.tw

Siau-Cheng Khoo
National University of Singapore,

Singapore
khoosc@comp.nus.edu.sg

Abstract
Aspect-oriented programming (AOP) has been shown to be a use-
ful model for software development. Special care must be taken
when we try to adapt AOP to strongly typed functional languages
which come with features like type inference mechanism, poly-
morphic types, higher-order functions andtype-scopedpointcuts.
Specifically, it is highly desirable that weaving of aspect-oriented
functional programs can be performed statically and coherently. In
[13], we showed a type-directed weaver which resolves all advice
chainings coherently at static time. The novelty of this paper lies in
the extended framework which supports static and coherent weav-
ing in the presence of polymorphic recursive functions, advising
advice bodies and higher-order advices.

1. Introduction
Aspect-oriented programming (AOP) aims at modularizing con-
cerns such as profiling and security that crosscut the components
of a software system [7]. In AOP, a program consists of many func-
tional modules and someaspectsthat encapsulate crosscutting con-
cerns. An aspect provides two specifications: Apointcut, compris-
ing a set of functions, designates when and where to crosscut other
modules; and anadvice, which is a piece of code, that will be exe-
cuted when a pointcut is reached. The complete program behavior
is derived by some novel ways of composing functional modules
and aspects according to the specifications given within the aspects.
This is calledweavingin AOP. Weaving results in the behavior of
those functional modules impacted by aspects being modified ac-
cordingly.

Two highly desirable properties of weaving are it beingstatic
and coherent. Static weaving refers to making as many weaving
decisions at compilation time as possible, usually by static trans-
lation to a “less-aspect-oriented” program. A direct benefit out of
static weaving is that less run-time checking overhead is required.
In addition, a weaver should allow different invocations of a func-
tion with inputs of the same type to be advised with the same set of
advices. This property is known as coherence. Coherent weaving
is also crucial as it ensures correct and understandable behavior of
programmes. However, it is far from straightforward to bring these
two properties together particularly under a strongly typed func-
tional language setting. Let’s consider a small example to have a
feel of the intricacy involved.

Example 1
n1@advice around {h} (arg::Int) = proceed (arg+1) in
n2@advice around {h} (arg) = proceed arg in
let h x = x in
let f x = h x in
(f 1) + (h 2)

This piece of code defines two pieces of advice namelyn1 and
n2; it also defines a main program consisting of declarations of
f and h and a main expression specifying applications off and
h. The first advice,n1, designates execution ofh as its pointcut.
It also contains a type constraint, which is called atype scope,
attached to the first argument.n1 is only triggered whenh is
executed with anInt argument. On the other hand, the pointcut
of n2 is not constrained by a type-scope. Thus all executions of
function h match the pointcut. Consequently, pointcuts ofn1 and
n2 overlap in that the former is subsumed by the latter. In general,
it is not possible to determine locally if a particular advice should be
triggered. Let’s consider the main program of the above example.

From a syntactic viewpoint, functionhwill be called in the body
of f. If we naively infer that the argumentx to functionh in the
RHS off’s definition is of polymorphic type, we will be tempted
to conclude that (1) advicen2 should be triggered at the call, and
(2) advicen1 should not be called as its type scope is less general
than∀a.a → a. As a result,n2 will be statically chained to the call
to h.

Unfortunately, this approach will cause incoherence behavior
of h at run-time. Specifically, in the main expression,(h 2) will
trigger both advicesn1 andn2. On the other hand,(f 1) in the
main expression will actually pass integer argument1 to h. There,
triggering of n1 is missed out since the weaver has mistakenly
committed its choice in the definition off. The only coherent
behavior of a weaver in this case is to haveh being advised by
both n1 andn2, during both invocations ofh, i.e., (h 1) and(h
2).

It appears that the goals of achieving static weaving while en-
suring coherent weaving are not in tandem here. In PolyAML [4],
dynamic type checking is employed to handle matching of type-
scoped pointcuts; on the other hand, Aspectual Caml [9] takes a
syntactic approach which sacrifices coherence for static weaving.

In our earlier work [13], we designed a static weaving strategy
that smoothly incorporates essential features of aspects into a core
functional language with parametric polymorphism and higher-
order functions. In contrast with the work done on PolyAML and
Aspectual Caml, our strategy synthesizes functional core and as-
pects during compilation, thus successfully reconciling the desires
to be static and to be coherent. The central idea there is to make
full advantage of type information, both from the base program and
the type-scoped pointcuts, to guide the weaving of aspects. Specifi-
cally, it advocates a source-level type inference system for a higher-
order, polymorphic language coupled with type-scoped pointcuts.

A type-directed translation scheme is then devised to resolve all
advice applications, thus eliminating any future need for dynamic
type checking. The translation removes advice declarations from
source programs and produces translated codes in an intermediate
language which is essentially polymorphically typed lambda calcu-
lus with a small extension. The program in example 1 is translated
as follows.

let n1 = \arg -> proceed (arg+1) in
let n2 = \arg -> proceed arg in
let h x = x in
let f dh x = dh x in
(f <h,{n1,n2}> 1) + (<h,{n1,n2}> 2)

Note that all advice declarations are translated into functions and
are woven in. A special syntax〈 , {. . .}〉 is used to chain together
advices and advised functions. For instance,〈h , {n1, n2}〉 denotes
the chaining of advicesn1 and n2 to advised functionh. In the
above example, the two invocations ofh in the original aspect pro-
gram have been translated to an invocation of the chained function
〈h , {n1, n2}〉. This shows that our weaver respects the coherence
property.

This coherent weaving of advices toh entails passing appropri-
ate chained expressions ofh to those function calls in the program
text from whichh may be called indirectly. This requirement is sat-
isfied by allowing functions of those affected calls to carry extra
parameters. In the code above, the translated definition of function
f carries such an additional parameter,dh. The original(f 1) call
is then translated to(f <h,n1,n2> 1), in which the chained ex-
pression forh is passed.

In this paper, we re-engineer our type system and translation
scheme to handle recursive functions, advising advice bodies and
higher-order advices; this gives full-fledged support of aspects.1

Previously, functions and advices in our framework were treated
very differently. In particular, advices cannot be the targets of ad-
vising, neither directly by another advice nor indirectly through
calls to advised functions in advice bodies. While completely blur-
ring the distinction between functions and advices is not desir-
able, maintaining an unnecessary wide gap between them can also
make aspect programming overly restrictive. As well argued by Ra-
jan et al [11], two-layered models of advice and function cannot
provide proper modularization for higher-order crosscutting con-
cerns. Therefore, we refine our framework by devising new typing
and translation rules that handle both advising advice bodies and
higher-order advices, i.e., advices advising other advices.

The main contributions of this paper are:

• A translation scheme that enablesstatic and recursive weaving
of advices into recursive function definitions.

• A set of novel type rules with the support of an intermediate
language that ensure static and coherent weaving of advanced
aspect-oriented features. Specifically,

The weaving ofadvices into other advices’ bodies. Static
and coherent weaving of such advices has been challenging
because the decision for weaving is only known after the
context of invoking the underlying advice is known.

The weaving ofhigher-order advices. These are advices
that advise other named advices. Such feature demands a
uniform typing and translation scheme that not only infer
the types of both functions and advices consistently but also
weave in proper advices in a cascading manner according
the type context.

1 Previously supported features such as higher-order functions, curried
pointcuts andany pointcut are compatibly supported in the new system
even though a discussion of them are omitted from this paper.

The outline of the paper is as follows: Section 2 describes an
aspect-oriented language and provides background information and
terminologies used. In Section 3, we describe the intermediate lan-
guage to be used as target of type-directed weaving. Section 4 de-
scribes our type-directed weaving algorithm, and presents our so-
lutions to the handling of giving advice to both recursive functions
and other advices, and the handling of higher-order advices. Sec-
tion 5 surveys related work done in this field, and Section 6 con-
cludes our work.

2. Aspect Language
In this section, we introduce an aspect-oriented functional language
for our investigation. We shall focus on only some essential features
of aspects, namely,aroundadvice withexecutionpointcuts. Note
that we drop the description of some features discussed previously
in [13], namely higher-order functions, curried pointcuts andany
pointcuts, as they are orthogonal to the discussion of this paper.
However, it should be understood that they are still safely supported
by the new system. The following syntax specifies the language.

Expressions e ::= x | λx.e | e e |
let f = e in e | proceed |
n@advice around pc = e in e

Arguments arg ::= x | x :: t
Pointcuts pc ::= {jp} (arg)
Joinpoints jp ::= f | n

We writeō as an abbreviation for a sequence of objectso1, ..., on

(e.g. expressions, types etc). Note that we generally assumeō and
o denotes non-related objects which should not be confused. The
term [o/a]o′ denotes simultaneous substitution ofoi for variables
ai in o′, for i = 1, . . . , n. We write t1 ∼ t2 to specify equality
between two typest1 andt2 (a.k.a, unification) to avoid confusing
with assignment=. We write fv(o) to denote the free variables in
some objecto.

For simplicity, we leave out type annotations, user defined data
types,if statements and patterns but may make use of them in
examples. Basic types such as booleans, integers, tuples and lists
are predefined and their constructors are recorded in some initial
environment.

In our language, an aspect is an advice declaration which in-
cludes a piece of advice and its targetpointcut. Pointcuts are rep-
resented by{jp} (arg) wherejp stands for joinpoints, comprising
f , ranging over functions, andn, ranging over advices. A pointcut
describes the point in time any function or advice from the set is
executed. Usually function names are included in the pointcuts to
designate the target functions for advice weaving. Since advices are
also named, we allow advices advising other advices, i.e., higher-
order advices. The argument variablearg is bound to the actual ar-
gument of the function execution and it may contain an annotated
type.

Advice is a function-like expression that executes before, after,
or around a pointcut. Note thataround advice executes in place
of the indicated pointcut, allowing a function to be replaced. A
special functionproceedmay be called inside the body of anaround
advice. It is bound to a function that represents the rest of the
computation at the advised pointcut. It is easy to see that both
beforeadvice andafter advice can be simulated byaroundadvice
that alwaysproceeds. Therefore, our aspect language only needs to
supportaroundadvice.

There are two things about our pointcuts that merit further dis-
cussion. Firstly, the pointcut designatoraround pc represents the
point in time when the functions or advices inpc are about to exe-
cute. Like theexecutionpointcuts of AspectJ, these pointcuts cover
the cases when functions are explicitly invoked as well as those

when they are implicitly called. They are necessary for languages
with functions as first-class values, for, in such languages, functions
can be applied directly through name-based invocation as well as
indirectly through aliasing and functional arguments to a higher-
order function. The following simple program illustrates the situa-
tions.

n@advice around {f} (arg) = e in
let f x = x in
let g = f in
let h k x = k x in
(f True, g ’a’, h g 3)

Clearly, in this example, if we look for only the function calls
made tof, following the call pointcuts of AspectJ, we will not be
able to capture the applications off throughg andk. However, de-
riving a static weaving scheme for advices on execution pointcuts
in a statically typed functional language is not as easy as it may
appear. In AspectJ, the pointcut designator,execution f (arg),
will direct the weaver to insert the advice call into the body off.
As a result, the invocations off throughg andk will also trigger
the advice. However, this naive approach will encounter great sta-
tic typing difficulties when handling advices with additional type
constraints, which is strongly related to the following discussion
on type-scoped advices.

Secondly, as well demonstrated in [4] and [9], it is very often
that we need to have advices with type constraints to confine the ap-
plicable scope of such advices. Our aspect language support such
advices as it allows type constraints to be imposed on the argu-
ments of those functions occurring in pointcuts. We call such point-
cutstype-scoped pointcuts. Advices with type scoped pointcuts are
henceforth calledtype-scoped advices. However, having such type-
scoped advices in a statically typed language will pose significant
challenges for advice weaving, since it calls for a smooth reconcili-
ation between type-based advice dispatch and static weaving. In our
opinions, previous work did not address this issue adequately. In
designing Aspectual Caml, Masuhara et al. also suggest using exe-
cution pointcuts to handle indirect function calls. But they followed
the weaving scheme of AspectJ by inserting a call to the associ-
ated advice in the advised function. Apparently, this scheme will
only work for monomorphic functions; dynamic type-dispatch is
needed to support polymorphic yet type-scoped advices. This may
also partly explain why Dantas et al. include runtime type analy-
sis mechanism in their design of PolyAML. By contrast, our aspect
language supports type-scoped advices while retaining both static
typing and static weaving.

The following syntax defines the type expressions in our aspect
language.

Types t ::= a | t → t
Type Schemes σ ::= ∀ā.ρ
Advised Types ρ ::= (x : t).ρ | t

Basic types such as booleans, integers, tuples and lists are pre-
defined and their constructors are recorded in some initial environ-
ment. Central to our approach is the construct ofadvised types, in-
spired by thepredicated types[12] used in Haskell’s type classes.
These advised types augment common type schemes withadvice
predicates, which are used to capture the need of future advice
weaving dependent on the type context. For example, the type
scheme for the functiong in the above example will be∀a.(f :
a → a).a → a, which indicates that wheneverg is applied in a
specific context, the advices onf will also be triggered. We shall
explain them in detail in Section 4.

In the next a few (sub)sections, we show how the features
discussed in this paper are used when programming with aspects.

The challenges in incorporating them into a static and coherent
weaving framework are also outlined.

2.1 Recursive Functions

Recursive functions are widely used in functional programming.
When type-scope advices are defined on a polymorphic recursive
function, it may yield an interesting advised type which has a
predicate refers the function itself. Let’s consider a small example
for illustration.

Example 2
let g x = x + 1 in
n@advice around {f} (arg:[Int])

= Cons (g (head arg)) (proceed arg) in
let f x = if (length x) > 0 then f (tail x) else x
in f [1,2,3]

The functionf above defines a generic traversal of an input list.
When the input list containsInt elements, advicen intercepts the
execution and applies functiong to the list head. Thus, it simulates
the behavior of the standardmapfunction.

In an AO system which performs weaving by static translation,
the definition of functionf should be translated into an expression
with relevant advices chained. However, because of the recursion,
the translation off requires a translated definition of itself which
results into a cyclic process!

A syntactic weaver may sees this matter from a syntactic view
by chaining advices into the type-annotated abstract syntax tree. In
that case, coherence is lost as the execution of the recursive calls
may be chained with a different set of advices other than those of
the initial call even when the recursion is monomorphic.

Let’s consider the program in Example 2. The typed AST an-
notates the initialf-call in the main expression with type[Int] →
[Int] and the recursivef-calls in the definition off with type[a] →
[a]. Thus, the former is chained with advisen whereas the later is
not even though both receive arguments of type[Int] → [Int] dur-
ing the actual execution.

In Section 4, we show how a fixed point combinator can be
employed to achieve coherent weaving of recursive functions.

2.2 Nested Advices

Aspects are not limited to observing base programs. Inside the
bodies of advice definitions, there may be calls to other functions
that are advised. We call thesenested advices.

The program in example 2 increments all the elements of a list
by one through the interception of aspectn. However, whenf is
called with the empty list[], the program crashes as the advice
attempts to extract the head from[] before the test of list length in
the body off is performed.

To remedy this safety violation, we may implement a patch
aspect by setting the head of[] to an invalid bit, say -1.

n1@advice around {head} (arg:[Int])
= if arg == [] then -1 else proceed arg

Note that advicen1 advises on a function called inside the body of
an advice. In another words,n1 is a nested advice.

This small example sheds light on a wide range of applications
of nested advices. When aspects are used for enforcing safety and
security concerns, it is important that the advices are applied to
every execution of the target functions. Therefore, nested advices
becomes the essential feature which supports this behavior.

Note that we do not allow circulararoundadvices that apply to
the execution of their own bodies, directly or indirectly. The rea-
son for this restriction is that circulararoundadvices together with

potential recursive functions that they are advising may form a sce-
nario similar to polymorphic mutual recursion which threatens de-
cidability of type inference. We leave this for future investigation.

Even without circulararoundadvices, weaving nested advices
statically is a challenging task primary for the following two rea-
sons.

1. Advice chainings only appear in the woven program which is
not a subject for further weaving. A syntactic approach to solve
this problem is to have an iterative process which repetitively
feeds the woven program back to the weaver until no more
advice can be woven. One side condition for this approach
is that both input and output of weaver are from the same
language.

2. The typing context where an advicen is chained may not be
sufficiently specific for another advice to be chained to the calls
insiden’s body. This complicates coherent weaving.

In Section 4, we show in details how our translation works coher-
ently without the need of iteratively feeding the woven program
back to the weaver.

2.3 Higher-Order Advices

The two-layered design of AspectJ like languages only allow ad-
vices to advise other advices in a very restricted way. The loss of
expressiveness of such an approach has been well argued in [11].
The idea of a multi-layered design dates back to [5, 1, 10]; and this
is sometimes calledhigher-order advices.

In Section 2.2, we use a piece nested advice to patch an unsafe
program. However, the result is not completely satisfactory asn1
always inserts an extra invalid bit into the result list. The root of
the problem is the inability of advising an advise directly. In this
section, we show a solution with a higher-order advice which cause
no undesirable side effects such as the extra bit.

n2@advice around {n} (arg)
= if arg == [] then [] else proceed arg

Advice n2 advise directly onn which allows us to short circuit
thehead-call when the input is[].

There has been some argument that higher-order advices can be
simulated by nested-advices. Take AspectJ as an example. Advices
are nameless in AspectJ, hence we cannot directly advise another
advice. Instead, if we know there are such requirements in advance,
we can shape the target advice for advice nesting as follows: Move
its entire advice body into a help method, and write a piece of
advice that advise this help method, thus achieving the effect of
advising advices to a certain degree. But there are at least two
shortcomings using this way of simulation. Firstly, this only works
for beforeandafter advices, becauseproceedwill take effect only
when it occurs inside an around advice. Thus, the example given
above cannot be handled. Secondly. This scheme does not scale up
well. What if later we want yet another third-order advice on the
second-order one?

Besides being used as patches for other advices, higher-order
advices are also useful as development aspects. Let’s say we want
to compute the total amount of a customer order and apply discount
rates according to certain regular rules as follows.

Example 3
let calcPrice cart = sum (map discount cart) in
let discount item = (getRate item) * (getPrice item)

In addition to regular discount rules, there are also other ad-hoc
sale discounts that may be put into effect on certain occasions, such
as special holiday-sales, anniversary-sales, etc. Due to their ad-hoc

nature, it is better to separate them from the functional modules and
put them in aspects that advise on the discount rate query function.

n1@advice around {getRate} (arg) =
(getHolidayRate arg) * (proceed arg)

n2@advice around {getRate} (arg) =
(getAnniversaryRate arg) * (proceed arg)

Furthermore, it is common to have some business rules that
govern all the sales promotions offered to customers. For example,
there may be a rule stipulates the maximum discount rate that is
applicable to any product item, regardless of the multiple discounts
it qualifies. Such business rules can be realized using aspects of
higher-order in a modular manner.

n3@advice around {n1,n2} (arg) =
let finalRate = proceed arg
in if (finalRate < 0.5) then 0.5 else finalRate

Here the second-order advicen3 has meta-control over advices
n1 andn2. The call toproceedgets the compounded discount rate
and the rule that no products can be sold under50% of their list
prices is applied.

Weaving higher-order advices involves allowing advices to be
advised as functions. This adds in another layer of complexity to the
translation. Again, we refer the readers to Section 4 for a detailed
discussion of the solution.

3. Intermediate Language
Our type-directed weaving produces codes in an intermediate lan-
guage, which explicitly expresses the chaining of advices. The in-
termediate language is based on a polymorphically typed lambda
calculus pluslet introductions, extended with chaining expressions
which are used to model advice invocations triggered by function
calls.

3.1 Operational Semantics

The syntax of the language is displayed below.

Values v ::= λx.e | µf.e | 〈v, {v̄}〉
Expressions e ::= v | x | proceed | λx.e | e e | 〈e, {ē}〉

| let f = e in e

There is no notion of advices in this language as they are mod-
elled straightforwardly as functions. Pointcuts are also not neces-
sary since we assumes all advices are already woven in place. A
chaining expression of the form〈e, {ē}〉 consists of an expression
e which evaluates to a function (or an advice) and a chain of ex-
pressions̄e which evaluates to advices to be triggered by the func-
tion call. We calle occurring at the left component theactivefunc-
tion/advice, and{ē} thedormantadvices. When bothe and ē are
values, the chaining expression is itself a value.

The set ofβ reductions are defined as follow:

(λx.e v) 7−→β (e[v/x])
(µf.e v) 7−→β (e[µf.e/f] v)
(let x = v in e) 7−→β (e[v/x])
(〈v, {}〉 v′) 7−→β (v v′)
(〈v, {v1, v̄}〉 v′) 7−→β (v1[〈v, {v̄}〉/proceed] v′)

These rules specifies a call-by-value evaluation strategy which
is orthogonal to the language design. The first three rules are stan-
dardβ-rules for lambda calculus. In the fourth rule, when the ad-
vice sequence is empty, the chaining returns the original function.
Otherwise, as shown in the last rule, the chaining replaces thepro-
ceedin the first advice in sequence by a value which chains the
functionv with the remainder of the advice sequence.

The substitution operatione[v/x] performs the usual substitu-
tion of values for variables, with one exception: When the variable
being substituted isproceed, and the expression is a chained ex-
pression, then the corresponding substitution is performed only on
the active expression, but not the dormant expressions:

〈e, {ē}〉[v/proceed] ≡ 〈e[v/proceed], {ē}〉.
Note that the dormant advices above,{ē}, have not been substi-
tuted, because theproceedis bound to the existing active expres-
sione, not the dormant expression̄e. This point is particularly im-
portant in the case of second-order advice, which will have different
proceedvalue from the advice which the former is advising.

3.2 Type System

Programs produced in the intermediate language first undergoα-
conversion. This frees the programs from scoping concerns. Con-
sequently, the program can be type-checked for its correctness. The
type system is defined in Figure 1.

(VAR)
x : σ ∈ Γ

Γ `i x : σ
(CHAIN)

Γ, proceed : t′ `i ē : t̄

Γ `i e : t′ t′ E t̄

Γ `i 〈e, {ē}〉 : t′

(ABS)
Γ, x : t1 `i e : t2

Γ `i λx.e : t1 → t2
(FIX)

Γ, f : t `i e : t

Γ `i µf.e : t

(∀ELIM)
Γ `i e : ∀a.σ

Γ `i e : [t/a]σ
(APP)

Γ `i e1 : t1 → t2
Γ `i e2 : t2

Γ `i e1 e2 : t2

(∀INTRO)
Γ `i e : σ a 6∈ Γ

Γ `i e : ∀a.σ

(LET)
Γ, proceed : t′, f : σ `i e1 : σ

Γ, f : σ `i e2 : t σ D t′

Γ `i let f = e1 in e2 : t

Figure 1. Typing Rules

There is no introduction of new type syntax other than the one
of the standard polymorphically typed lambda calculus.

Types t ::= a | t → t
Type Schemes σ ::= ∀ā.t

The typing rules are presented in Figure 1 which are mostly
standard except that type bindings ofproceedis needed for func-
tion definitions introduced bylet. The reason for this is that advices,
which may containproceed-calls, appear as functions in the inter-
mediate language. In Rule(CHAIN), the advices are typed under
the assumption thatproceedis an instance of the function. We also
require the advices have types more general than that of the func-
tion. We say a type scheme is more general than the other if it can
be instantiated to the latter via variable substitutions. The relation
is formally defined as:

(GEN)
[t̄/ā]t1 ∼ t2

∀ā.t1 D ∀b̄.t2
The type system enjoys the standard safety properties.

Theorem 1 (Progress)If `i e : σ, then either e is a value or else
there is some e’ with e7−→β e’.

Theorem 2 (Preservation)If Γ `i e : σ and e 7−→β e’, then
Γ `i e′ : σ.

4. Type Directed Weaving
As introduced in Section 2,advised type denoted asρ is used
to capture function names and their types that may be required
for advice resolution. For instance, in the main program given in
Example 1, functionf possesses the advised type∀a.(h : (a →
a)).a → a, in which (h : a → a) is called anadvice predicate.
It signifies thatthe execution of any application off may require
advices ofh applied with type which should be no more general
thana → a.

Note that advised types are used to indicate the existence of
someindeterminate advices. If a function contains only applica-
tions whose advices are completely determined, then the function
will not be associated with an advised type; it will be associated
with a normal (and possibly polymorphic) type. As an example,
the type of the advised functionh in Example 1 is∀a.a → a since
it does not contain any applications of advised functions in its def-
inition.

(AERASE) [[∀ā.(x : t).ρ]] = [[∀ā.ρ]] [[∀ā.(x : t).t′]] = ∀ā.t′

(GENF) gen(Γ, σ) = ∀ā.σ whereā = fv(σ)\fv(Γ)

(CARD) |o1...ok| = k (CARDp) |∀ā.p̄.t|pred = |p̄|

Figure 2. Auxiliary Definitions

Figure 2 defines a set of auxiliary functions/relations that as-
sists type inference. The lettert ranges over unification (type-
)variables which are distinct from quantified rigid type variablea.
Rule (AERASE) defines a function[[·]] which removes all advice
predicates from an advised type scheme. We also define, in rule
(GENF), a generalization procedure which turns a type into a type
scheme by quantifying type variables that do not appear free in the
type environment. The(CARD) function, denoted by|· |, returns the
cardinality of a sequence of objects. The(CARDp) function returns
the number of advice predicates in a type scheme.

The main set of type inference rules, as described in Figure 3,
is an extension to the Hindley-Milner system. We introduce a judg-
mentΓ ` e : σ Ã e′ to denote that expressione has typeσ under
type environmentΓ and it is translated toe′. We assume that the ad-
vice declarations are preprocessed and all the names which appear
in any of the pointcuts are recorded in an initial global storeA. We
also assume that the base program is well typed in Hindley-Milner
and the type information of all the functions are stored inΓbase.

The typing environmentΓ contains not only the usual type
bindings (of the formx : σ Ã e) but alsoadvice bindingsof the
form n : σ ./ x̄. This states that an advice with namen of typeσ
is defined on̄x. We may drop the./ x̄ part when it is not relevant.
When the bound variable is advised (i.e.x ∈ A), we use a different
binding :∗ to distinguish from the non-advised case. We also use
the notation:(∗) to represent a binding which is either: or :∗.

Note that while it is possible to present the typing rules without
the translation detail by simply deleting the ‘Ã e’ portion, it is not
possible to present the translation rules independently since typing
controls the translation.

4.1 Predicating and Releasing

There are two rules for variable lookups. Rule(VAR) is standard.
In the case that variablex is advised, rule(VAR-A) will check all
advices defined onx (we do not distinguish: and :∗-binding for

(VAR)
x : σ Ã e ∈ Γ

Γ ` x : σ Ã e
(VAR-A)

x :∗ σx ∈ Γ [[σ̄]] 5 [[σ′]] Γ ` ni : [[σ′]] Ã ei

n̄ :(∗) σ ./ x Ã n̄′ ∈ Γ {ni | [[σi]] D [[σ′]]}
|ȳ| = |σx|pred ȳ is fresh σx D σ′

Γ ` x : σ′ Ã λȳ.〈x ȳ , {ei}〉

(∀ELIM)
Γ ` e : ∀a.σ Ã e′

Γ ` e : [t/a]σ Ã e′
(∀INTRO)

Γ ` e : σ Ã e′ a 6∈ Γ

Γ ` e : ∀a.σ Ã e′
(APP)

Γ ` e1 : t1 → t2 Ã e′1
Γ ` e2 : t1 Ã e′2

Γ ` e1 e2 : t2 Ã (e′1 e′2)

(ABS)
Γ, x : t1 Ã x ` e : t2 Ã e′

Γ ` λx.e : t1 → t2 Ã λx.e′
(LET)

Γ ` e1 : σ Ã e′1
Γ, f :(∗) σ Ã f ` e2 : t Ã e′2

Γ ` let f = e1 in e2 : t Ã let f = e′1 in e′2

(PRED)
x :∗ σx ∈ Γ t E [[σx]]

Γ, x : t Ã xt ` e : ρ Ã e′t x ∈ A

Γ ` e : (x : t).ρ Ã λxt.e
′
t

(REL)
Γ ` e : (x : t).ρ Ã e′

Γ ` x : t Ã e′′ x ∈ A x 6= e

Γ ` e : ρ Ã e′ e′′

(FIX)
Γ, f :(∗) ρ Ã f ` e : ρ Ã e′

Γ ` µf.e : ρ Ã e′
(REL-F)

Γ ` f : (f : t).ρ Ã e′ F fresh f ∈ A

Γ ` f : ρ Ã let F = (e′ F) in F

(ADV)
Γ, proceed : t ` λx.ea : p̄.t Ã e′a fi : σ′ ∈ Γbase

σ′ E [[σ]] Γ, n :(∗) σ ./ f̄ Ã n ` e : t′ Ã e′ σ = gen(Γ, p̄.t)

Γ ` n@advice around {f̄} (x) = eain e : t′ Ã let n = e′a in e′

(ADV-AN)
Γ, proceed : t ` λx : tx.ea : p̄.t Ã e′a fi : ∀ā.ti → t′i ∈ Γbase

tx E ∀ā.ti (ti → t′i) ∼ t Γ, n :(∗) σ ./ f̄ Ã n ` e : t′ Ã e′ σ = gen(Γ, p̄.t)

Γ ` n@advice around {f̄} (x :: tx) = eain e : t′ Ã let n = e′a in e′

Figure 3. Type-directed Weaving by translation

these advices here) to see whether any of them has a more specific
type thanx’s. This is to ensure that chaining of advices is only
done in a sufficiently specific context. We call this checksufficiently
specific context check, and it is expressed in the rule as the guard
[[σ̄]] 5 [[σ′]] (the relation5 is defined in Section 3.2). If the check
succeeds (i.e., no advice has a more specific type thanx), x will
be chained with the translated forms of all those advices defined
on it, having the same or more general types thanx has. We give
all these selected advices a non-advised type in the translation of
them Γ ` ni : [[σ′]] Ã ei. This ensures correct weaving of
nested advices advising the bodies of the selected advices. The
detail will be elaborated in Section 4.4. Finally, the final translated
expression isnormalizedby bringing all the advice abstractions of
x outside the chain〈. . .〉. This ensures type compatibility between
the advised call and its advices as required by the type system of
the intermediate language.

If the check for sufficiently specific context fails, there must ex-
ists some advices forx with more specific types, and rule(VAR-A)
fails to apply. Sincex ∈ A still holds, rule(PRED) can be applied.
This rule introduces anadvice parameterto the program (through
the corresponding translation scheme). This advice parameter en-
ables concreteadvice-chained functionsto be passed in at a later
stage, calledreleasing, through the application of rule(REL).

Before we describe rules(PRED) and(REL) in detail, we illus-
trate the application of these rules by derving the type and the wo-
ven code for the program shown in Example 1. During the deriva-
tion of the definition off , we have:

Γ = { h :∗ ∀a.a → a Ã h, n2 : ∀a.a → a ./ h, n1 : I → I ./ h}

h : t → t Ã dh ∈ Γ2
(VAR)

Γ2 ` h : t → t Ã dh

x : t Ã x ∈ Γ2
(VAR)

Γ2 ` x : t Ã x
(APP)

Γ2 = Γ1, x : t Ã x ` (h x) : t Ã (dh x)
(ABS)

Γ1 = Γ, h : t → t Ã dh ` λx.(h x) : t → t Ã λx.(dh x)
(PRED)

Γ ` λx.(h x) : (h : t → t).t → t Ã λdh.λx.(dh x)

Next, for the derivation of the main expression, we have:

Γ3 = { h :∗ ∀a.a → a Ã h, n2 : ∀a.a → a ./ h,
n1 : I → I ./ h, f : ∀a.(h : a → a).a → a Ã f}

f : ∀a.(h : a → a).a → a Ã f ∈ Γ3
(VAR)

Γ3 ` f : (h : I → I).I → I Ã f
a©

(REL)
Γ3 ` f : I → I Ã (f 〈h , {n1, n2}〉)

...

(APP)
Γ3 ` (f 1) : I Ã (f 〈h , {n1, n2}〉 1)

a© =
h :∗ ∀a.a → a Ã h ∈ Γ3 ...

(VAR-A)
Γ3 ` h : I → I Ã 〈h , {n1, n2}〉

We note that rules(ABS),(LET), (APP), (∀INTRO) and(∀ELIM)
are rather standard, with the tiny exception that rule(LET) will bind
f with : when it is not inA; and with:∗ otherwise.

Rules(PRED) and(REL) respectively introduces and eliminates
advice predicates just as(∀INTRO) and(∀ELIM) do to bound type
variables. Rule(PRED) adds an advice predicate to a type (Note
that we only allow sensible choices oft constrained byt E [[σx]]).
Correspondingly, its translation yields a lambda abstraction with
an advice parameter. At a later stage, rule(REL) is applied to
release (i.e.,remove) an advice predicate from a type. Its translation

generates a function application with an advised expression as
argument.

4.2 Advising Recursive Functions

Now let’s consider Example 2 given in Section 2.1 where the
advised functionf is recursive. The code is reproduced below.

let g x = x + 1 in
n@advice around {f} (arg:[Int])

= Cons (g (head arg)) (proceed arg) in
let f x = if (length x) > 0 then f (tail x) else x
in f [1,2,3]

In our type system, rule(FIX) is used to type and translate recur-
sive functions. In this above example, our translation produces an
interesting advised type∀a.(f : [a] → [a]).[a] → [a] for f. If
Rule (REL) is applied to release this type, the translation will not
terminate as the derivation ofΓ ` f : [a] → [a] depends on itself.
The solution is to break the loop by using a fixed point combinator
as the translation result. This is manifested in Rule(REL-F), by
which example 2 is translated to the following:

let g x = x + 1 in
let n = \arg.(Cons (g (head arg)) (proceed arg)) in
let f df x = if (length x) > 0

then df (tail x) else x in
(let F = \y.<f y,{n}> F in F) [1,2,3]

By a simple Let-lifting, we lift the local definition ofF to the top
level. The final translation result is:

let g x = x + 1 in
let n = \arg.(Cons (g (head arg)) (proceed arg)) in
let f df x = if (length x) > 0

then df (tail x) else x in
let F = \y.<f y,{n}> F in
F [1,2,3]

The fixed point combinatorF correctly captures the desired be-
havior by chaining every execution off with n. In the following,
we sketch the evaluation steps for the main expressionF [1,2,3]
based on the operational semantics given in Section 3.

For the sake of presentation, some long expressions are renamed
as follows.

v1 = \x.if (length x) > 0 then F (tail x) else x
v2 = \arg.(Cons (g (head arg)) (v1 arg))

We also use−→β
∗ to represent multiple steps ofβ reduction.

F [1, 2, 3]
−→β (\y.〈f y , {n}〉 F) [1, 2, 3]
−→β 〈f F , {n}〉 [1, 2, 3]
−→β 〈v1 , {n}〉 [1, 2, 3]
−→β v2 [1, 2, 3]
−→β

∗ Cons 2 (F [2, 3])
...

4.3 Handling Advices

There are two type-inference rules for handling advices. Rule
(ADV) handles non-type-scoped advices, whereas rule(ADV-AN)
handles type-scoped advices. In rule(ADV), we firstly infer the
(possibly advised) type of the advice as a functionλx.ea under
the type environment extended withproceed. The advice body is
therefore translated. Note that this translation does not necessarily
complete all the chaining because the most specific context con-
dition may not hold. In this case, just like functions, the advice is
parameterized. At the same time, an advised type is assigned to it
and only released when it is chained in Rule(VAR-A).

After type inference of the advice, we ensure that all functions
in the pointcut have type schemes that are not more general than
the advice’s. Note that the type information of all the functions are
stored inΓbase. Then, this advice is added to the environment. It
does not appear in the translated program, however, as it is trans-
lated into a function awaiting for participation in advice chaining.

In rule (ADV-AN), variablex can only be bound to a value of
typetx such thattx is no more general than the input type of those
functions in the pointcut. We also require the type of all functions
in the pointcut to be unifiable to the advice type, so that any bogus
advices which can never be safely triggered will be rejected by our
type system.

Note that we do not allow the annotated typetx to be more
general than the input type of any function in the pointcut, as this
will be contrary to the intention of type-scoped advices.

4.4 Advising Advice Bodies

As mentioned in the previous (sub)section, the Rules(ADV) and
(ADV-AN) make an attempt to translate advice bodies. However,
just like the translation of function bodies, the local type contexts
may not be specific enough to chain all the advices. We illustrate
this with an example.

Example 4
n1@advice around {f} (arg::Int) = e1 in
n2@advice around {f} (arg) = e2 in
let f x = x in
n3@advice around {g} (arg) = f arg in
let g x = x in
let h x = g x in
h 1

Here, advicen3 calls f which is in turn being advised. The goal
of our translation is to chain advices which are applicable to the
call of f inside an advice. Concretely, when a call tog is chained
with advicen3, the body ofn3 must also be advised. Moreover, the
choice of advices must be coherent.

At the time when the declaration ofn3 is translated, the body
of the advice is translated. An advised type is given to it since the
currently context is not sufficiently specific.

When the translation attempts to chain an advice in Rule
(VAR-A), the judgmentΓ ` ni : [[σ′]] Ã ei in the premise
forces the advice to have a non-advised type. This is to ensure that
all the advice abstractions are fully released so that chaining can
take effect.

In the case that this derivation fails, it signifies that the current
context is not sufficiently specific for advising some of the calls in
this advice’s body, and chaining has to be delayed. In example 4,
the call tog in the body ofh’s definition is of typea → a. This is
sufficiently specific for advisingg, sincen3 is the only candidate.
Consequently, the call tof inside the body ofn3 is also of type
a → a. However, this type is not sufficiently specific for advising
f. As a result, we have to giveh an advised type and it is translated
as follows.

let n1 = \arg.e1 in
let n2 = \arg.e2 in
let f x = x in
let n3 = \df.\arg.df arg in
let g x = x in
let h dg x = dg x in
h <g,{n3 <f,{n1,n2}>}> 1

n3 is only chained in the main expression where the context is
sufficiently specific for both the calls tog andf.

4.5 Higher-Order Advices

In our system, we show that, just like functions, advices can be
advised liberally. An example is given below.

Example 5
n1@advice around {f} (arg::Int) = e1 in
n2@advice around {n1} (arg::Int) = e2 in
let f x = x in
let g x = f x in
g 1

The second advice declaration is higher-order as it advises an-
other advicen1. The advising mechanism in our language does not
prejudice functions over advices. The translationΓ ` ni : [[σ′]] Ã
ei in the premise of Rule(VAR-A) not only translates bodies of
advices but also chainsni with advices defined on it.

In the premises of Rule(ADV) and (ADV-AN), we note that
typing information of advices is not stored inΓbase. Thus, we
replacefi : σ′ ∈ Γbase by ni :∗ σ′ ∈ Γ.2 Consequently, the
checkσ′ E [[σ]] in (ADV) becomes[[σ′]] E [[σ]] as σ′ may be
an advised type. By doing this, we assume advised advices are
translated before the advices defined on them. This is valid because
circular cases are precluded.

Thus, example 5 is translated into

let n1 = \arg.e1 in
let n2 = \arg.e2 in
let f x = x in
let g df x = df x in
g <f,{<n1,{n2}>}> 1

Note that advicen1 is chained withn2 before the chaining tof.

4.6 Correctness of Translation

One of the desirable properties of our type-directed weaving algo-
rithm is its reliance on a type-inference system that is a conserva-
tive extension of the Hindley-Milner Type System. (Note that the
notation[[·]] is defined in Figure 2.)

Theorem 3 (Conservative Extension)Given a programP con-
sisting of a set of advices and a closed base programe. If

` P : σ Ã P ′,

then

` e : [[σ]].

Our main theorem is to ensure that our translated program pre-
serves the type of the original program. When the original program
is of an advised type, the translated scheme will concretize the ad-
vice predicates into advice parameters, which constitute part of the
translated program. To this end, we define a functionη that trans-
lates advised type to normal polymorphic type.

η(∀ā.ρ) = ∀ā.η(ρ)
η((x : t).ρ) = t → η(ρ)

η(t) = t

This main theorem ensures that the type-directed weaving is type-
safe.

Theorem 4 (Type Preservation)Given a programP consisting of
a set of advices and a closed base program. If

` P : σ Ã P ′,

2 Advices defined on functions cannot be treated this way because of possi-
ble recursiveness of the functions.

then
`i P ′ : η(σ).

5. Related Works and Discussions
Since the introduction of aspect-oriented paradigm [7], researchers
have been developing its semantic foundations. Most of the works
in this aspect were done in object-oriented context in which type
inference, higher-order functions and parametric polymorphism are
of little concern. Recently, researchers in functional languages have
also started to study various issues of adding aspects to functional
languages. Two notable works in this area, PolyAML [4] and As-
pectual Caml [9], have made many significant results in support-
ing polymorphic pointcuts and advices in strongly typed functional
languages such as ML. While these works have introduced some
expressive aspect mechanisms into the underlying functional lan-
guages, they have not successfully reconciled aspects with para-
metric polymorphism and higher-order functions – two essential
features of modern functional languages. Neither have they ade-
quately addressed the issues of advising advices, which we have
discussed in this paper.

PolyAML advocates first-class join points for constructing
generic aspect libraries [4]. It allows programmers to define poly-
morphic advices using type-annotated pointcuts. Unfortunately,
PolyAML in [4] does not supportaroundadvice. The authors are
currently extending the language to remedy this [14, 3]. In order
to support non-parametric polymorphic advice, PolyAML includes
case-advices which are subsumed by our type-scoped advices. Its
type system is a conservative extension to Hindley-Milner type
inference algorithm with a form of local type inference based on
the required annotation on pointcuts. A type-preserving translation
inserts labels which serve as marks of control-flow points. During
execution, advices are looked-up through the labels and runtime
type analysis are performed to handle the matching of type-scoped
pointcuts, through whichexecutionpointcuts with higher-order
functions are supported. It is worth mention that this translation
has little resemblance to ours as it does not strive to make weaving
decisions at static time. Lastly, advices are anonymous in PolyAML
and apparently not intended to be the targets of advising,aka.no
higher-order advices.

Aspectual Caml [9], on the other hand, does not require annota-
tions on pointcuts. It gives pointcuts the most general types avail-
able in context and ensures that the types of the advices hinged on
the pointcut are consistent with the type of the pointcut. Similar to
PolyAML, it also allows a restricted form of type-scoped advices.
Yet, unlike our approach, the types of the functions specified in a
pointcut are not checked against the type of the pointcut during type
inference. Type safety of advice application is considered later in
the weaving process. After type inference, its weaver goes through
all type-annotated functions to insert advice calls. For each expres-
sion, it looks for advice definitions which have pointcuts that match
this expression. If the type of the pointcut is more general than
the type of the matched expression, the expression will be replaced
by an application to the advice function. This syntactic approach
makes it easy to advise anonymous functions. However, for poly-
morphic functions invoked indirectly through aliases or functional
arguments, this approach cannot achieve coherent weaving results.
It is also not clear how to extend the syntactic weaving scheme to
handle nested advices or higher-order advices.

The current work is a conservative extension of our previous
work [13], where we developed a type-directed weaving strategy
for functional languages featuring higher-order functions, curried
pointcuts and overlapping type-scoped advices.Around advices
are woven into the base program based on the underlying type
context using a Hindley-Milner type inference system extended
with advised types and source translation. Coherent translations are

achieved without using any dynamic typing mechanisms. However,
in that work, advices and functions are still kept in two completely
different levels: advices can neither invoke advised functions nor
advise other advices. It was also not clear how to weave advice into
polymorphic recursive functions properly. All these shortcomings
are fully addressed in this paper by re-designing our type inference
system and translation scheme.

In contrast to AspectJ’s direct translation into a non-aspect-
oriented language, our targeted intermediate language requires ad-
dition of chaining expressions. This has been designed for the pur-
pose of presentation clarity. There are many well known schemes
such as inlining and closure [2] which can be directly applied to
translate the intermediate language into a main stream non-aspect-
oriented language. For the purpose of this paper, we omit discus-
sions on this aspect as the added complexity does not contribute
any further insights into the static and coherent weaving problem
addressed here. Another advantage of our intermediate language is
that it supports incremental weaving. Note that a chaining expres-
sion 〈f , {ē}〉 has the same static semantics asf . Therefore, it is
straightforward to extend our current system to incorporate chain-
ing expressions of the form〈f , {ē}〉 as the targets for chaining any
future advices defined onf.

Our type-directed translation was originally inspired by the
dictionary translation of Haskell type classes [12]. A number of
subsequent applications of it [8, 6] also shares some similarities.
However, the issues discussed in this paper are unique, which
makes our translation substantially different from the others.

6. Conclusion
Static typing, static and coherent weaving are our main concerns in
investigating how to incorporate the essential features of aspects
into a core functional language with higher-order functions and
parametric polymorphism. As a sequel to our previous results, this
paper has advanced our investigation in a variety of ways. Firstly,
the target language of our translational semantics of advice weaving
has been refined and given a neater formalization. Secondly, we
have devised new typing and translation rules to handle the weaving
of advices on polymorphic recursive functions. Thirdly, while the
basic structure of our type system remains the same, the typing
rules have been significantly refined and extended beyond the two-
layered model of functions and advices. Consequently, advices
can also be advised, either directly or indirectly. All these are
accomplished by fully exploring the type information available in
context and a novel technique of threading the types of matching
advice chains; it is truly a type-directed weaving.

Moving ahead, we shall continue this line of investigation in a
few directions. Currently the operational semantics of the interme-
diate language is purely reduction-based and hence we need to per-
form α-conversions to avoid name clashes. We plan to look into a
closure-based semantics for the intermediate language that should
be free of such intricacies. At the aspect language side, some ex-
tensions of the pointcuts are worth further investigation. Specifi-
cally, we shall consider how to support the control-relatedCflow
pointcuts available in many Java-based aspect-oriented languages.
Finally, a prototype implementation is surely a necessary means
for us to explore potential applications of our type-scoped advices
[13].

References
[1] Aspectwerkz project. http://aspectwerkz.codehaus.org.

[2] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Jennifer Lhot́ak, Onďrej Lhot́ak, Oege de Moor, Damien
Sereni, Ganesh Sittampalam, and Julian Tibble. Optimising aspectj.
In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, pages 117–128,
New York, NY, USA, 2005. ACM Press.

[3] Daniel S. Dantas, January 2006. personal communication.

[4] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. Polyaml: a polymorphic aspect-oriented functional
programmming language. InProc. of ICFP’05. ACM Press,
September 2005.

[5] Jboss aop project. http://www.jboss.org/products/aop.

[6] Mark P. Jones. Exploring the design space for type-based implicit
parameterization. Technical report, Oregon Graduate Institute of
Science and Technology, 1999.

[7] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Matsuoka,
editors,Proceedings European Conference on Object-Oriented
Programming, volume 1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[8] Jeffrey R. Lewis, Mark Shields, John Launchbury, and Erik Meijer.
Implicit parameters: Dynamic scoping with static types. In
Symposium on Principles of Programming Languages, pages 108–
118, 2000.

[9] Hidehiko Masuhara, Hideaki Tatsuzawa, and Akinori Yonezawa.
Aspectual caml: an aspect-oriented functional language. InProc. of
ICFP’05. ACM Press, September 2005.

[10] Harold Ossher and Peri Tarr. Aspectwerkz projectmulti-dimensional
separation of concerns in hyperspace, 1999. IBM research report.

[11] Hridesh Rajan and Kevin J. Sullivan. Classpects: unifying aspect-
and object-oriented language design. InICSE ’05: Proceedings of the
27th international conference on Software engineering, pages 59–68,
New York, NY, USA, 2005. ACM Press.

[12] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism
less ad-hoc. InConference Record of the 16th Annual ACM
Symposium on Principles of Programming Languages, pages 60–
76. ACM, January 1989.

[13] Meng Wang, Kung Chen, and Siau-Cheng Khoo. Type-directed
weaving of aspects for higher-order functional languages. InPEPM
’06: Workshop on Partial Evaluation and Program Manipulation.
ACM Press, 2006.

[14] Geoffrey Washburn, February 2006. personal communication.

A. Sample Derivations
In this section, we present the typing/translation derivation of the
examples given in the paper. We useI as a short hand forInt to
save space. Some obvious details are also omitted.

A.1 Example 1

The derivation of the definition off is:

Γ = {h :∗ ∀a.a → a Ã h, n2 : ∀a.a → a ./ h,
n1 : I → I ./ h}

h : t → t Ã dh ∈ Γ2
(VAR)

Γ2 ` h : t → t Ã dh

x : t Ã x ∈ Γ2
(VAR)

Γ2 ` x : t Ã x
(APP)

Γ2 = Γ1, x : t Ã x ` (h x) : t Ã (dh x)
(ABS)

Γ1 = Γ, h : t → t Ã dh ` λx.(h x) : t → t Ã λx.(dh x)
(PRED)

Γ ` λx.(h x) : (h : t → t).t → t Ã λdh.λx.(dh x)

The derivation of the main expression is:

Γ3 = {h :∗ ∀a.a → a Ã h, n2 : ∀a.a → a ./ h,

n1 : I → I ./ h, f : ∀a.(h : a → a).a → a Ã f}

f : ∀a.(h : a → a).a → a Ã f ∈ Γ3
(VAR)

Γ3 ` f : (h : I → I).I → I Ã f
a©

(REL)
Γ3 ` f : I → I Ã (f 〈h , {n1, n2}〉)

...

(APP)
Γ3 ` (f 1) : I Ã (f 〈h , {n1, n2}〉 1)

a© =
h :∗ ∀a.a → a Ã h ∈ Γ3 ...

(VAR-A)
Γ3 ` h : I → I Ã 〈h , {n1, n2}〉

A.2 Example 2

The derivation of the definition off is:

Γ = {g : I → I Ã g, head : ∀a.[a] → a Ã head,
tail : ∀a.[a] → [a] Ã tail}

f : [a] → [a] Ã df ∈ Γ2
(VAR)

Γ2 ` f : [a] → [a] Ã df
...

(APP)
Γ2 = Γ1, x : [a] ` f (tail x) : [a] Ã df (tail x)

(*)
Γ1 = Γ, f : [a] → [a] Ã df ` λx....then f (tail x)...

: [a] → [a] Ã λx....then df (tail x)...
(PRED)

Γ ` λx....then f (tail x)... : (f : [a] → [a]).[a] → [a]
Ã λdf.λx....then df (tail x)...

The derivation of the main expression is:

Γ3 = {g : I → I Ã g, head : ∀a.[a] → a Ã head,
tail : ∀a.[a] → [a] Ã tail, n : I → I ./ f,
f :∗ ∀a.(f : [a] → [a]).[a] → [a] Ã f}

f :∗ ∀a.(h : [a] → [a]).[a] → [a] Ã f ∈ Γ3
(VAR-A)

Γ3 ` f : (f : [I] → [I]).[I] → [I] Ã λy.〈f y , {n}〉
(REL-F)

Γ3 ` f : [I] → [I] Ã let F = λy.〈f y , {n}〉 F

...

(APP)
Γ3 ` (f [1, 2, 3]) : [I] Ã (let F = λy.〈f y , {n}〉 F) [1, 2, 3]

A.3 Example 4

The derivation of the definition ofn3 is:

Γ = {f :∗ ∀a.a → a Ã f, n1 : I → I ./ f,
n2 : ∀a.a → a ./ f}

f : a → a Ã df ∈ Γ2
(VAR)

Γ2 ` f : a → a Ã df
...

(APP)
Γ2 = Γ1, arg : a Ã arg ` f arg : a Ã df arg

(ABS)
Γ1 = Γ, f : a → a Ã df ` λ arg.f arg : a → a

Ã λ arg.df arg
(PRED)

Γ1 = Γ, prd : a → a ` λ arg.f arg : (f : a → a).a → a
Ã let n = λ df.λ arg.df arg

(ADV)
Γ ` n3@advice around g (arg) = f arg in ... : ...

Ã let n = λ df.λ arg.df arg in...

Similarly, h is inferred to have type(g : a → a).a → a. The
reason for this advised type is thatn3 fails to be chained with the
g-call in that context as the sub-derivationΓ ` n3 : a → a in
(VAR-A) fails.

The derivation of the main expression is:

Γ3 = {f :∗ ∀a.a → a Ã f, n1 : I → I ./ f,

n2 : ∀a.a → a ./ f, n3 : ∀a.(f : a → a).a → a ./ g
g :∗ ∀a.a → a Ã g, h :∗ ∀a.(g : a → a).a → a Ã h}

h : ∀a.(g : a → a).a → a Ã h ∈ Γ3
(VAR)

Γ3 ` h : (g : I → I).I → I Ã h
a©

(REL)
Γ3 ` h : I → I Ã (h 〈g , {n3 〈f , {n1, n2}〉}〉)

...

(APP)
Γ3 ` (h 1) : I Ã (h 〈g , {n3 〈f , {n1, n2}〉}〉 1)

a© =

...
(VAR)

Γ3 ` n3 : (f : I → I).I → IÃ n3

...
(VAR-A)

Γ3 ` f : I → I
Ã 〈f , {n1, n2}〉

(REL)
Γ3 ` n3 : I → I Ã n3 〈f , {n1, n2}〉

(VAR-A)
Γ3 ` g : I → I Ã 〈g , {n3 〈f , {n1, n2}〉}〉

A.4 Example 5

The derivation of the main expression is:

Γ = {f :∗ ∀a.a → a Ã f, n1 :∗ I → I ./ f,
n2 : I → I ./ n1, g : ∀a.(f : a → a).a → a Ã g}

g : ∀a.(h : a → a).a → a Ã g ∈ Γ
(VAR)

Γ ` g : (f : I → I).I → I Ã g
a©

(REL)
Γ ` g : I → I Ã g 〈f , {〈n1 , {n2}〉}〉

...

(APP)
Γ ` (g 1) : I Ã (g 〈f , {〈n1 , {n2}〉}〉 1)

a© =

n1 :∗ I → I Ã n1 ∈ Γ ...
(VAR-A)

Γ ` n1 : I → I Ã 〈n1 , {n2}〉 ...

(VAR-A)
Γ ` f : I → I Ã 〈f , {〈n1 , {n2}〉}〉

