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Abstract 

Large-area uniform carbon films with graphene-like properties are synthesized by chemical vapor 

deposition directly on Si3N4/Si at 1000 
o
C without metal catalysts. The as-deposited films are 

atomically thin and wrinkle- and pinhole-free. The film thickness can be controlled by modifying 

the growth conditions. Raman spectroscopy confirms the sp
2
 graphitic structures. The films show 

ohmic behavior with a sheet resistance of ~2.3-10.5 kΩ/□ at room temperature. An electric field 

effect of ~2-10% (VG=-20 V) is observed. The growth is explained by the self-assembly of carbon 

clusters from hydrocarbon pyrolysis. The scalable and transfer-free technique favors the 

application of graphene as transparent electrodes. 

 

 

 

 

                                                        
a) Author to whom correspondence should be addressed. Electronic mail: albertjefferson@sohu.com, 

jiesu@chalmers.se. 



 2 

Graphene is a monolayer of sp
2
 hybridized carbon atoms forming a two-dimensional hexagonal 

crystal lattice. Graphene has received much attention since 2004.
1
 Due to its extraordinary 

properties, graphene is considered to be one of the candidate materials for post-silicon 

nanoelectronics.
2
 For instance, by virtue of its high optical transparency and high carrier mobility, 

graphene can be used in transparent electrodes and ultrafast transistors.
3,4

 However, while 

mechanical exfoliation is still widely used to fabricate graphene, the flakes are far too small and 

irregular for practical applications. Today, there are two common alternative techniques for 

large-area graphene synthesis. One is the high-temperature annealing of SiC which results in the 

desorption of Si from the surface leaving excess carbon behind.
5
 This method, however, suffers 

from the lack of availability of large, inexpensive SiC substrates. Another more promising 

technique in terms of scalability is chemical vapor deposition (CVD) on metals from hydrocarbon 

precursors. It is fully compatible with the existing semiconductor processes, and has shown 

significant potential as a cost effective route toward producing high-quality graphene. Commonly, 

graphene is grown on Ni
6,7

 or Cu
8-11

 catalysts. For most electronic applications, however, the 

as-synthesized graphene must be transferred to various dielectric substrates, inevitably resulting in 

wrinkles, holes and metal etching residues. Thus, there is a substantial need to develop a scalable 

method for reliable production of large-area graphene directly on insulating substrates. 

Previously, we have demonstrated that graphene-like thin films can be synthesized by CVD 

directly on silicon dioxide (300 nm thermal SiO2 on Si)
12

 or hafnium dioxide (320 nm atomic 

layer deposited HfO2 on Si),
13-15

 which is promising in applications such as transparent electrodes. 

Graphene-like thin films can also be realized on nitrides such as GaN
16

 and BN.
17

 However, the 

electrical properties of these films on nitrides are unknown. This letter reports the synthesis and 
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electronic characterization of large-area uniform graphene-like thin films by CVD directly on a 

silicon nitride substrate. Although Si3N4 has a larger number of bulk traps compared with SiO2, it 

has higher resistivity (10
16

 Ω∙cm) and dielectric strength (10 MV/cm) than most insulators 

commonly available in microelectronics.
18

 The thickness of the as-deposited films on Si3N4, which 

can be reduced to be atomically thin, is controlled by tuning the deposition time and/or the carbon 

precursor partial pressure. The films are termed “graphene-like” because of the optical and 

electrical similarity to metal-catalyzed graphene. However, the quality of the thin films requires 

continued optimization in terms of crystallinity and carrier mobility. The sp
2
-C structure was 

confirmed by Raman spectroscopy. At room temperature, the thin films showed ohmic behavior 

and electric field effect. This transfer-free process results in highly reproducible fabrication and 

favors the industrialization of graphene-based technology. 

Si3N4 thin films (100 nm) grown at 770 
o
C from SiCl2H2 and NH3 precursors by low-pressure 

CVD (Centrotherm) on Si were used as the substrates. The graphene-like thin films were produced 

in a home-built hot-wall CVD system under atmospheric pressure. The Si3N4/Si substrates were 

heated to 1000 
o
C in a flow of 50 sccm hydrogen and 1000 sccm argon. The samples were kept at 

1000 
o
C for 3 min. Then, 300 sccm methane was introduced into the chamber to initiate the 

deposition. The growth time was 30 min for sample A and 45 min for sample B. Sample C was 

grown at CH4:H2=1000:50 sccm (no Ar) at 1000 
o
C for 30 min. After growth, the CH4 flow was 

terminated, and the system was held at high temperature for a further 3 min before ambient 

cooling to room temperature in the same H2+Ar atmosphere. The temperature profile for the 

deposition of sample A is depicted in Fig. 1. To test the reproducibility, the growth of 

graphene-like thin films on Si3N4/Si was repeated in a cold-wall low-pressure CVD system (Black 
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Magic, AIXTRON). The deposition temperature was 1000 
o
C with C2H2 as the precursor. A 30 

min deposition at 20 sccm C2H2, 20 sccm H2 and 1000 sccm Ar produced graphene-like thin films 

similar to sample A in terms of optical and electrical properties. 

The Raman spectra of the thin films grown directly on Si3N4/Si are summarized in Fig. 2. The 

G band centered at ~1604 cm
-1

 and the 2D band at ~2704 cm
-1

 are clearly resolved for all samples. 

The G- and 2D bands are Raman signatures of sp
2
 graphitic materials.

19
 The well-defined peaks 

differentiate the thin films from amorphous carbon (a-C).
19

 The D band at ~1349 cm
-1

 and the 

G+D band (higher order Raman signals) at ~2953 cm
-1

 are also noted. The large D band indicates 

the high defect densities within the as-synthesized thin films. The graphene-like films on samples 

A and B are much thinner than sample C because of the lower CH4 concentration. As a result, 

spectral features associated with the substrate were detected at approximately 1000 cm
-1

. 

An overview of the samples is shown in Fig. 3(a). The bare Si3N4/Si, samples A1 and B are in 

the upper row; sample C and sample A2 (after device processing) are in the lower row. After the 

growth, there was no apparent change in color except for sample C. Fig. 3(b) shows an optical 

image of a device made on sample A by traditional photolithography using a Shipley S1813 resist. 

A rather weak contrast between the graphene-like thin film and Si3N4/Si can be seen at this scale. 

Atomic force microscopy line-scans across the steps in the fabricated devices indicate that the 

thickness of the thin films was ~2, 4 and 70 nm for samples A, B and C, respectively. It is known 

that exfoliated monolayer graphene typically has a height of 0.6-0.8 nm
20

 which often increases to 

~2 nm after lithographic processing.
21,22

 Samples A and B have depths that are largely consistent 

with these values, which may correspond to monolayer and few-layer graphene-like thin films, 

respectively. Sample C is a shiny-gray graphite-like film. Clearly, the number of graphene layers 
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in the thin films increases as the deposition time and/or C precursor partial pressure increases, 

permitting accurate control over the film thickness. Neither wrinkles nor pinholes are observed in 

the deposited thin films in Fig. 3, implying a high degree of macroscopic uniformity. 

Room temperature electrical measurements were performed on samples A, B and C. In Fig. 3(b), 

electrodes (5 nm Cr/45 nm Au) in the Hall-bar structures were used for current biasing (left and 

right) and voltage probing (upper and lower). The device active area was 4×4 µm
2
. Figs. 4(a) and 

(b) show the measured properties of samples A and B, respectively. Linear I-V curves (at zero gate 

voltage) were obtained for all three samples, indicating an ohmic behavior of the thin films and 

their contacts with metals. Four-terminal resistance measurement gave the sheet resistance Rs of 

~10.5, 2.3 and 0.15 kΩ/□ for samples A, B and C, respectively. The Rs values of samples A and B 

are comparable to that of Cu-catalyzed graphene.
8-11

 Fig. 4 also shows Rs versus the back-gate 

voltage VG (-20 V to 38 V) applied to the doped Si substrate. The dielectric properties of the Si3N4 

films were changed by the lengthy high temperature CVD, and therefore higher VG may lead to the 

breakdown of Si3N4. Electric field effects of 10.38% and 2.48% were observed at VG=-20 V in 

samples A and B, respectively, whereas no field effect was seen in sample C. Here, the field effect 

is quantified by ΔΣs/Σs(0)=[ Σs(VG)- Σs(0)]/Σs(0), where Σs=1/Rs.
1,23

 The Dirac point was not seen 

over this VG range, possibly related to the charge doping effect associated with photoresist 

residues.
24

 Nevertheless, a down-bending trend in the curves was observed, implying the possible 

ambipolar behavior of the materials. By virtue of a thinner dielectric with higher k value, the field 

effect observed here was more pronounced compared to the graphene-like thin films deposited 

directly on SiO2.
12 

To date, graphitization on insulators has rarely been studied and the mechanism associated with 
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it is not well understood. Some authors suggest that the substrates play a catalytic role.
25

 However, 

in this letter, a different explanation is proposed, because there is no direct evidence of the 

catalytic chemical reaction. In this case, the CVD of graphene-like thin films is much more likely 

a self-assembly process of C clusters, resulting from the pyrolysis of the hydrocarbon precursor. 

At 1000 
o
C, most CH4 molecules thermally decompose, liberating the C atoms, which arrange 

themselves, through thermal activation, into hexagonal structures forming sp
2
 hybridized graphene 

flakes (~10-100 nm). Usually, these flakes chaotically aggregate into large porous lumps, as is 

widely used in industry for the large-scale production of carbon black.
26

 Nevertheless, under our 

conditions, hot flat substrates allow the graphene flakes to self-organize into continuous textured 

thin films. This process, however, is a slow procedure, requiring longer deposition time and higher 

CH4 concentration compared with the catalytic CVD of graphene, on Cu for example. The 

crystallinity of the as-synthesized graphene-like thin films is relatively poor compared to 

Cu-catalyzed graphene, but is still significantly superior to atomically thin a-C.
27

 The 

graphene-like thin films produced here are electrically conducting and optically transparent, and 

hence are promising in applications involving transparent electrodes. They can be grown on 

virtually any substrate that can withstand the high temperature processing at ~1000 
o
C. Indeed, it 

was found that large-area uniform graphene-like thin films with controlled thickness can be 

deposited on sapphire, quartz, mica, etc. 

In conclusion, uniform large-area carbon thin films with graphene-like properties were 

synthesized directly on silicon nitride by CVD using CH4 or C2H2 as precursors. The thin films 

show a high degree of topographic uniformity, with no observable wrinkles or pinholes. The sp
2
-C 

network was confirmed by Raman spectroscopy. At room temperature, the thin films were ohmic 
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and showed a modest field effect. This work demonstrates the feasibility of directly forming 

graphene-like thin films on Si3N4 and other dielectric substrates by CVD and favors the 

industrialization of graphene-based materials in applications such as transparent electrodes. 
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Figure captions: 

FIG. 1: (Color online) A typical temperature profile for the deposition of graphene-like thin films 

on Si3N4/Si. The shadowed region indicates the growth time. 

 

FIG. 2: (Color online) Raman spectra (514 nm) of samples A, B and C. For all samples, distinct G, 

2D, D and G+D peaks are observed. 

 

FIG. 3: (Color online) (a) Optical micrograph of the ~6×6 mm
2
 samples. Top row: bare substrate 

(left), sample A1 (middle), and sample B (right). Bottom row: sample C (left) and sample A2 

highlighting the fabricated Hall-bar devices (right). (b) Optical micrograph of a typical Hall-bar 

device fabricated by standard photolithography and O2 plasma etching on sample A. 

 

FIG. 4: Electric field effect observed in Hall-bar structures fabricated on samples (a) A and (b) B. 

Sheet resistance Rs is plotted against back-gate voltage VG. Inset: I-V curves of the devices 

fabricated on samples (a) A and (b) B, showing linear ohmic behavior. Rs values are calculated 

from four-probe resistance measurements (not shown). 

 

 

 

 

 

 


