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Abstract. CONT08 was a 15 days campaign of continuous VLBI (Very Long Baseline 

Interferometry) sessions during the second half of August 2008 carried out by the International 

VLBI Service for Geodesy and Astrometry (IVS). In this study, VLBI estimates of troposphere 

zenith total delays (ZTDs) and gradients during CONT08 were compared with those derived from 

observations with the Global Positioning System (GPS), Doppler Orbitography and 

Radiopositioning Integrated by Satellite (DORIS), and water vapor radiometers (WVRs) co-located 

with the VLBI radio telescopes. Similar geophysical models were used for the analysis of the space 

geodetic data, whereas the parameterization for the least-squares adjustment of the space geodetic 

techniques was optimized for each technique.. In addition to space geodetic techniques and WVRs, 

ZTDs and gradients from numerical weather models (NWMs) were used from the European Centre 

for Medium-Range Weather Forecasts (ECMWF) (all sites), the Japan Meteorological Agency 

(JMA) and Cloud Resolving Storm Simulator (CReSS) (Tsukuba), and the High Resolution Limited 

Area Model (HIRLAM) (European sites). Biases, standard deviations, and correlation coefficients 

were computed between the troposphere estimates of the various techniques for all eleven CONT08 

co-located sites. ZTDs from space geodetic techniques generally agree at the sub-centimetre level 

during CONT08, and − as expected − the best agreement is found for intra-technique comparisons: 

between the Vienna VLBI Software and the combined IVS solutions as well as between the Center 

for Orbit Determination in Bern (CODE) solution and an IGS Kalman filter series; both intra-

technique comparisons with standard deviations of about 3 to 6 mm. The best inter space geodetic 

technique agreement of ZTDs during CONT08 is found between the combined IVS and the IGS 

solutions with a mean standard deviation of about 6 mm over all sites, whereas the agreement with 

numerical weather models is between 6 and 20 mm. The standard deviations are generally larger at 

low latitude sites because of higher humidity, and the latter is also the reason why the standard 

deviations are larger at northern hemisphere stations during CONT08 in comparison to CONT02 

which was observed in October 2002. The assessment of the troposphere gradients from the 

different techniques is not as clear because of different time intervals, different estimation 

properties, or different observables. However, the best inter-technique agreement is found between 

the IVS combined gradients and a GPS solutions with standard deviations between 0.2 mm and 0.7 

mm.  

 

Keywords: space geodetic techniques, numerical weather models, troposphere zenith delays, 

horizontal troposphere gradients 
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1 Introduction 

Modelling the propagation of the electromagnetic microwave signals through the electrically neutral 

part of the atmosphere (in this paper referred to as troposphere) is of common interest for the space 

geodetic techniques, e.g., Very Long Baseline Interferometry (VLBI), Global Navigation Satellite 

Systems (GNSS) such as the Global Positioning System (GPS), or Doppler Orbitography and 

Radiopositioning Integrated by Satellite (DORIS). The troposphere causes an excess delay as well 

as the bending of the microwave signals along the path through the troposphere; the (slant) delay 

( ) along the slant path ( ) between the station and the top of the troposphere ( ) can be 

expressed as the integral over the sum of hydrostatic and wet refractivity ( ): 

. (1) 

Equation (1) can be decomposed into hydrostatic, wet, and gradient delays (Davis et al., 1993) as 

follows: 

 (2) 

where  is the elevation angle from local horizon,  the azimuth (angle from geodetic north), and 

 the zenith hydrostatic delay, which can be computed from the total pressure and the station 

coordinates (Saastamoinen, 1972).  is the zenith wet delay,  and  are the 

hydrostatic and wet mapping functions (e.g., Marini, 1972; Niell, 1996; Böhm et al., 2006a),  

and  are north and east troposphere gradients (MacMillan, 1995; Bar-Sever et al., 1998), 

respectively. The hydrostatic mapping function is accounting for the bending effect. 

 

Troposphere delays are an important error source for space geodetic measurements. Uncertainties in 

the troposphere delay models propagate into all geodetic estimates, and in particular into the height 

component of the station positions (Herring, 1986; Davis et al., 1991) due to the high correlations 

between zenith delays and station heights. The influence of different mapping functions and cut-off 

elevation angles on geodetic parameters like station heights and baseline lengths has been 

investigated in several studies, e.g., Davis et al. (1985), Böhm and Schuh (2004), Böhm et al. 

(2006a, 2006b), Teke et al. (2007), Tesmer et al. (2007), or Steigenberger et al. (2007). Troposphere 

gradients describe the azimuthally asymmetric delays (Davis et al., 1993). In the analysis of VLBI 

and GPS observations, they are usually estimated since this improves the accuracy of geodetic 

estimates. Different studies have been carried out to develop and evaluate troposphere gradient 

models (e.g., Chen and Herring, 1997). According to MacMillan (1995), VLBI baseline length 
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repeatabilities can be improved by up to 8 mm if gradients are estimated, thus gradients are very 

important for the realization of terrestrial reference frames (TRFs) (Böhm and Schuh, 2007) and 

celestial reference frames (CRFs) (MacMillan and Ma, 1997). 

 

Various comparisons of troposphere parameters derived from space geodetic techniques and 

numerical weather models (NWMs) have been performed in order to assess the level of agreement. 

Behrend et al. (2000, 2002) compared the ZWDs derived from the non-hydrostatic numerical 

weather prediction (NWP) model (MM5) (Cucurull and Vandenberghe, 1999) and a hydrostatic 

NWP model (HIRLAM) (Cucurull et al., 2000) with the observational results of VLBI, GPS, and a 

water vapor radiometer (WVR), and they found good agreement for the European geodetic VLBI 

network during six observing sessions in 1999 in terms of biases, standard deviations, and 

correlations. Snajdrova et al. (2006) compared zenith total delays (ZTDs) from GPS, VLBI, 

DORIS, WVR (hydrostatic delays were added), and ECMWF during CONT02 (a 15 days 

continuous VLBI campaign in 2002) for co-located sites with VLBI antennas, and the agreement 

between ZTDs from GPS and VLBI was rather good (see Table 7); DORIS was fairly compatible 

with GPS and VLBI, but the agreement for WVR and ECMWF with ZTDs estimated from space-

geodetic techniques was rather low. To get detailed information on comparisons of troposphere 

parameters, readers are referred to, e.g. MacMillan and Ma (1994), Chen and Herring (1997), 

Emardson et al. (1998), Haas et al. (1999), Behrend et al. (2000, 2002), Cucurull et al. (2000), 

Gradinarsky et al. (2000), Niell et al. (2001), or Schuh and Böhm (2003). 

 

In our study, the troposphere zenith total delays from VLBI, GPS, DORIS, and WVRs are also 

compared with those determined by ray-tracing through the profiles of various NWMs. A detailed 

description of all datasets can be found in Section 2. In Section 3 we compare the ZTDs and 

gradients in terms of biases, standard deviations, and correlations, and we provide some conclusions 

in Section 4.  

2 CONT08 co-located sites, techniques and solutions 

This section provides a general overview of the co-located sites during CONT08, the data types 

available, and it focuses on the details inherent to each technique. CONT08 was a special campaign 

of the International VLBI Service for Geodesy and Astrometry (IVS, Schlüter and Behrend, 2007), 

and it was a follow-on to similar campaigns (CONT94, CONT95, CONT96, CONT02, and 

CONT05). The aim of this campaign was to derive the highest quality geodetic results that VLBI 

currently can provide. It was a 15 days continuous VLBI observation campaign, carried out from 12 

to 26 of August 2008 with eleven sites on five continents (Figure 1). Unlike previous CONT 
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campaigns, the CONT08 sessions were observed from 0 UT to 24 UT, and observational gaps 

between the single sessions (30 min gaps in the case of CONT05) were avoided by performing the 

daily station interrupts at well-coordinated, sequential times for all stations in order not to introduce 

gaps in the estimated time series, e.g. of Earth orientation parameters (Schuh and Behrend, 2009). 

 
Figure 1 IVS CONT08 stations. 

 
For all eleven sites of CONT08, troposphere zenith delays and gradients are available from VLBI 

and GPS, and for three sites (Ny-Ålesund in Norway, Hartebeesthoek in The Republic of South 

Africa, and Kokee Park on Hawaii, U.S.A.) also troposphere estimates from DORIS are provided. 

Profiles through NWMs were used to compute zenith total delays and to estimate gradients. These 

NWMs are a global model from the European Centre for Medium-Range Weather Forecasts 

(ECMWF), a regional model by the Japan Meteorological Agency (JMA) for East Asia, a regional 

model from the Cloud Resolving Storm Simulator (CReSS) covering Japan, and HIRLAM, which is 

also a regional model for Europe. ZWDs from the measurements of WVRs are available at three 

sites during CONT08: Onsala in Sweden, Wettzell in Germany, and Tsukuba in Japan. When 

comparing ZTDs of different techniques, ZHDs computed from surface pressure values were added 

to the ZWDs of the WVRs and HIRLAM. In Table 1 the acronyms of GPS antennas, DORIS 

beacons, and WVR names at VLBI co-location sites are listed. 

 

Table 1 Geodetic instruments co-located at the VLBI sites during the CONT08 campaign. 

 
Table 2 shows the ITRF2005 (Altamimi et al., 2007) ellipsoidal heights of the reference points of 

VLBI, GPS, DORIS, and WVRs, as well as the GPS antenna reference point (ARP) eccentricity in 

the radial direction (the radial distance from the geodetic marker to the phase center of the GPS 

antenna). GPS ARP eccentricities in radial direction are added to the heights of the GPS reference 

points when calculating the troposphere ties (see Section 3.2). The approximate horizontal distances 

between co-located sites are listed in Table 2 to give an idea on how similar the troposphere above 

the geodetic instruments can be assumed. 

 

Table 2 ITRF2005 ellipsoidal heights and approximate horizontal distances of the co-located VLBI, GPS, and DORIS 
antennas, and WVRs involved in CONT08. 
 

At the end of this introduction it should be emphasized that all comparisons and validation tests 

carried out in this study provide important information with respect to the planned combination and 

integration of various observing techniques. In fact, such a multitude of different methods to 
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simultaneously determine troposphere parameters from space geodetic techniques and other sources 

have never been available for comparison before. Thus, the data taken during the CONT08 

campaign will greatly contribute to studies in the framework of the Global Geodetic Observing 

System (GGOS) (Rummel et al., 2005) of the International Association of Geodesy (IAG). 

2.1 Space geodetic solutions 

2.1.1 VLBI-Vienna VLBI Software (VLBI-VieVS) 

For the analysis of the VLBI observations carried out during CONT08, the Vienna VLBI Software 

(VieVS, Böhm et al., 2010) was used. Neither any cut-off elevation angle nor any down weighting 

of low elevation observations was applied (in CONT08 no VLBI observation was taken below 5° 

elevation). The zenith hydrostatic delays were determined from local surface pressure 

measurements (Saastamoinen 1972; Davis et al., 1985), whereas the zenith wet delays were 

estimated in the least-squares adjustment as piece-wise linear offsets at 30 minutes time intervals. In 

both cases − hydrostatic and wet − the Vienna Mapping Functions 1 (VMF1, Böhm et al., 2006a) 

were used. No-net-translation (NNT) and no-net-rotation (NNR) condition equations were 

introduced on the ITRF2005 (Altamimi et al., 2007) coordinates, except for the antenna 

Zelenchukskaya which is not available in ITRF2005. Source coordinates were fixed to ICRF2 (Fey 

et al., 2009), and atmospheric loading (Petrov and Boy 2004) as well as tidal ocean loading based 

on the ocean model FES2004 (Lyard et al., 2006) were introduced a priori. Nutation offsets were 

estimated once per day in addition to the IAU2000A model plus IERS 05 C04 values (Gambis 

2004; Bizouard and Gambis 2009), and polar motion as well as the Earth’s phase of rotation (UT1-

UTC) were estimated once per day in addition to the IERS 05 C04 values and the ocean tidal terms 

as recommended by the IERS Conventions 2003 (McCarthy and Petit 2004). The estimation 

interval was 30 minutes for the ZWDs and 120 minutes for troposphere gradients. Loose constraints 

for ZWDs (10 mm after 30 minutes) and troposphere gradients (0.17 mm after 120 minutes) were 

introduced. 

2.1.2 VLBI-International VLBI Service for Geodesy and Astrometry (VLBI-IVS) 

Like previous IVS troposphere products (Heinkelmann et al., 2007), the combination of troposphere 

parameters during the 15 days CONT08 campaign is based on final ZTD and gradient time series by 

individual groups (and not carried out at the normal equation level). The VLBI-IVS series is a 

weighted linear combination of the estimates provided by ten IVS Analysis Centers (see 

Heinkelmann et al., this issue). It is important to note here that the solution with the Vienna VLBI 

Software (Section 2.1.1) was also part of the IVS combination which was carried out at Deutsches 
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Geodätisches Forschungsinstitut. However, we want to keep both solutions in order to assess the 

difference between an individual and the combined solution compared to other techniques. Also, it 

has to be mentioned that the parameterization and the models are not homogeneous for all 

submissions that were used in the combination. After manual outlier exclusion, the weights for each 

IVS Analysis Center and parameter (zenith delays, horizontal gradients) were obtained by variance 

component estimation using the iterative algorithm of Förstner (1979) as outlined in Koch (1997). 

The details of the submissions, combination procedure and a quality assessment are presented by 

Heinkelmann et al. (this issue).  

2.1.3 DORIS- Institut Géographique National (DORIS-IGN) 

For the DORIS data analysis, the GIPSY-OASIS software package developed at JPL and modified 

at IGN (Willis et al., 2010b) was used. Instead of the results from the regular IGN solution 

(ignwd08) submitted to the International DORIS Service (IDS) (Willis et al., 2010c), a specific 

study was performed by using the VMF1 and also daily estimates (for test purposes in this specific 

study) of horizontal troposphere gradients, following some initial tests of consistency towards GPS 

(Willis et al., 2010a). A cut-off elevation angle of 10° was used, as Jason-2 DORIS data were not 

considered yet in this investigation and as the older DORIS satellites do not provide a large amount 

of data below this elevation angle. Consequently, during CONT08, only 4 DORIS satellites were 

used (Envisat, SPOT-2, SPOT-4 and SPOT-5), all having a sun-synchronous and almost polar orbit. 

DORIS data were processed in daily batches using a filter approach. Zenith troposphere parameters 

were estimated at the start of passes, and only if the previous reset was not within 20 minutes (see 

Bock et al., 2010, for a more detailed discussion). This solution is as close as possible to the IERS 

Conventions 2003 (McCarthy and Petit, 2004), and it also includes the most recent improvement in 

DORIS data analysis, in particular in terms of solar radiation pressure modelling (Gobinddass et al., 

2009a, 2009b) as well as in terms of atmospheric drag parameterization (Gobinddass et al., 2010). 

Station coordinates were fixed to their ign09d02 values. This frame is based on the ignwd08 time 

series, it provides coordinates and velocities for all stations, and it is aligned to ITRF2005 (Willis et 

al., 2010b). Discontinuities in station coordinates were also properly handled using information 

contained in DPOD2005 (Willis et al., 2009). 

2.1.4 GPS-International GNSS Service (GPS-IGS) 

This ZTD product of the IGS (Byun and Bar-Sever, 2009) was estimated by using the precise point 

positioning (PPP) technique as defined in Zumberge et al. (1997). The Earth orientation parameters, 

orbits, and clocks were fixed to the IGS final combined products. The analyses were carried out 

with the software GIPSY-OASIS for 24 hour data intervals (Webb and Zumberge, 1993). A cut-off 
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elevation angle of 7° was introduced, and the Niell mapping functions (hydrostatic and wet) (NMF; 

Niell, 1996) were used. A priori hydrostatic and wet delays were applied based on station altitude 

(2.3 m at sea level, and 0.1 m, respectively). The estimated parameters were receiver clocks 

(modelled as white noise), station positions (constant), zenith wet delays (random walk with 

variance of 3 cm/h, loose) every 5 minutes, atmospheric gradients (random walk with variance of 

0.3 cm/h, loose), and phase biases (white noise). The formal errors of the new ZTD product are 

about 1.5 to 5 mm. However, they are biased by systematic errors in the combined GPS orbits and 

clocks, as concluded by Byun and Bar-Sever (2009). 

2.1.5 GPS-Center for Orbit Determination in Europe (GPS-CODE) 

The Center for Orbit Determination in Europe (CODE, Dach et al., 2009) is a cooperation of the 

Astronomical Institute of the University of Bern (AIUB), the Swiss Federal Office of Topography 

(swisstopo), the German Federal Agency for Cartography and Geodesy (BKG), and the Institut für 

Astronomische und Physikalische Geodäsie of the Technische Universität München (IAPG/TUM). 

CODE is one of the global IGS Analysis Centers. The solution used in this paper originated from 

the CODE contribution to the first IGS reprocessing campaign (Steigenberger et al., 2010). It is 

based on a global network of 244 GPS tracking stations processed with the current development 

version 5.1 of the Bernese GPS Software (Dach et al., 2007), and the following models were used: 

gridded VMF1 and ECMWF a priori delays, non-tidal atmospheric loading model of Petrov and 

Boy (2004) applied on the observation level, and S1/S2 atmospheric tidal model of Ray and Ponte 

(2003). 

 

Daily normal equations were combined for the whole CONT08 time period to get one consistent 

solution for station coordinates, Earth rotation parameters, troposphere zenith delays and gradients. 

One set of station coordinates was estimated with an NNT condition of a subset of IGS05 stations 

w.r.t. the IGS05 reference frame. Troposphere zenith delays and gradients were represented by 

continuous piece-wise linear functions with a parameter spacing of 2 and 24 hours, respectively. An 

elevation cut-off angle of 3° and an elevation-dependent weighting ( ) were applied. 

2.2 Water Vapor Radiometer (WVR) 

A Water Vapor Radiometer (WVR) infers the wet troposphere delay from measurements of the 

power of the thermal radiation from the atmosphere at microwave frequencies. Typically two 

frequencies are used; one more sensitive to water vapor (typically a frequency close to the 22.2 

GHz water vapor line) and one more sensitive to liquid water (usually around 30 GHz). By 

combining these measurements, the respective contributions from water vapor and liquid water to 
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the observed powers can be determined. The water vapor part can then be used to estimate the wet 

troposphere delay (Elgered, 1993). 

 

During CONT08 three WVRs were operated at VLBI sites: the Astrid radiometer at Onsala 

(Elgered and Jarlemark, 1998), as well as the Radiometrix radiometers at Wettzell and Tsukuba. 

The radiometers at Onsala and Wettzell were operated in sky mapping mode, thus providing 

measurements of the slant wet delays in several different directions. These were used in a least-

squares fit in order to estimate the ZWDs and the gradients, using an approach similar to what is 

presented by Davis et al. (1993). In the least-squares fit, the ZWDs and the gradients were modelled 

as piece-wise linear functions. The estimation intervals were 30 min for the ZWDs and 2 hours for 

the gradients, i.e. the same as for VLBI-VieVS. The Tsukuba radiometer only measured in the 

zenith direction, thus only ZWD estimates from this radiometer were available. 

 

One problem with WVRs is, that they do not provide reliable results when it is raining. 

Consequently, all data from rainy periods have been removed (identified by the liquid water content 

being larger than 0.7 mm). However, it should be noted that since the removal of rain observations 

was done a posteriori, the remaining observations could still be somewhat affected by rain since all 

observations were used for e.g. the tip-curve calibrations. Another problem is, that they cannot 

measure at low elevation angles (<20°) in order to avoid picking up radiation from the ground. 

Thus, the gradients estimated from the WVRs will be very sensitive to noise, since the effect of 

gradients is mostly seen for low elevation angles. 

2.3 Numerical Weather Models (NWMs) 

2.3.1 European Centre for Medium-Range Weather Forecasts (ECMWF) 

Operational pressure level data with a 6 hour time resolution were used at 21 levels from 1000 hPa 

up to 1 hPa (extended up to 136 km with a normal temperature field) with information about the 

geopotential, temperature, and specific humidity. In particular, four vertical profiles with a 

horizontal resolution of 0.25° around each station were retrieved and simply the closest profile was 

used for the determination of the zenith delay. The description of the algorithm for the numerical 

integration can be found in Böhm (2004; Appendix). For the calculation of north and east gradients, 

horizontal refractivity gradients were derived between the four profiles and again used for 

numerical integration (Böhm and Schuh, 2007). 
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2.3.2 High Resolution Limited-Area Model (HIRLAM) 

The High Resolution Limited-Area Model (HIRLAM) is a numerical weather model for short-range 

forecasting, that is used by several European national meteorological services (Undén et al., 2002). 

It is a limited area forecasting model that uses ECMWF as boundary conditions. Different spatial 

resolution is available, horizontally 22 km, 11 km or 5 km, and vertically between 16 and 60 levels. 

The temporal resolution is 6 hours in analysis mode, and predictions are available, e.g. with 3 and 6 

hours resolution. 

 

HIRLAM files with 22 km horizontal resolution and 40 vertical levels and combined analysis and 

forecast data were used to achieve a temporal resolution of 3 hours. This was done by correcting the 

3 hour forecast data by corrections based on a comparison of the 6 hour forecast data with the 

corresponding analysis data. So-called hybrid-level data of humidity and temperature together with 

surface pressure and geopotential data were extracted for the four nearest grid points around each 

station for each 6 hour epoch during CONT08. Based on these data vertical profiles of pressure, 

temperature and humidity were constructed for each station and finally vertical integration was used 

to calculate zenith wet delays.  

2.3.3 Japan Meteorological Agency-Kashima Ray-Tracing Tools (JMA-KARAT) 

At the National Institute of Information and Communications Technology (NICT) the so-called 

KAshima RAy-tracing Tools (KARAT, Hobiger et al., 2008a) have been developed, which allow to 

obtain troposphere slant delays in real-time. Such ray-traced delays can be used as corrections for 

space geodetic observations (Hobiger et al., 2008b) and remote sensing applications. The Japanese 

Meteorological Agency (JMA) provides a variety of weather models, whereas the meso-scale 4D-

Var model (Meso-scale Analysis Data, MANAL, JMA, 2002; Ishikawa, 2001) with its horizontal 

resolution of about 10 km is usually taken for KARAT processing. This model covers huge parts of 

the East Asian region, including Japan, Korea, Taiwan, and East China. The 3 hour time resolution 

of the datasets makes the appliance of this model for positioning applications feasible.  

2.3.4 Cloud Resolving Storm Simulator (CReSS) 

Other than regional numerical weather models, fine-mesh models allow to study smallest structures 

in the atmosphere and some models even try to resolve clouds. Thereby, the model space is limited 

to a few hundred kilometres, which requires some modifications of the ray-tracing code (Hobiger et 

al., 2010), in order to ensure that rays are not leaving the model domain laterally. Dedicated model 

runs of the Cloud Resolving Storm Simulator (CReSS; Tsuboki and Sakakibara, 2002) at the 

National Research Institute for Earth Science and Disaster Prevention (NIED) provided 1 km fine-
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mesh model data with a temporal resolution of one hour during the CONT08 period, which were 

used for the ray-tracing. Thereby, the CReSS model is embedded within the 10 km JMA MANAL 

field to ensure that rays at lower elevations are not cut off due to the spatial limitations of the fine-

mesh model. 

 

The gradients of JMA/KARAT and CReSS numerical weather model solutions were calculated as 

follows: The mean ray-traced slant delays, one for each elevation angle, were calculated from 3° to 

90° elevation angle for the case of JMA/KARAT and 4° to 90° for the case of CReSS. I.e., for each 

elevation angle the mean values over the 360 ray-traced slant delays (every degree in azimuth) were 

determined, which were then subtracted from the individual ray-traced slant delays at all azimuths 

and elevation angles. The north and east gradients every 3 hours for JMA/KARAT and every hour 

for CReSS were estimated by a classical least-squares adjustment fitting the gradient model 

suggested by MacMillan (1995). 

3 Data analysis 

This section includes the analyses and comparisons of the estimated parameters by means of 

descriptive statistics. Before the comparisons "troposphere ties" were introduced with respect to a 

reference height, which was chosen as the height of the VLBI reference point.  

3.1 Agreement criteria for the comparisons 

In order to assess the agreement between the estimated troposphere ZTDs and gradients basic 

statistics were applied. We used mean biases of the difference vectors between time series, the 

standard deviations as well as the Pearson correlation coefficients.  As statistical test for the 

correlation coefficients, p-values with a critical value of 0.05 were computed. Strictly speaking, the 

p-value is the probability of making a Type 1 error (the error of rejecting a null hypothesis when it 

is actually true) where a null hypothesis is formed with no correlation between two datasets 

(Schervish, 1996). 

3.2 Troposphere ties 

The atmosphere in the layer between two instruments causes biases of the troposphere ZTDs which 

can be called "troposphere ties". Troposphere tie corrections were introduced to account for the 

height differences between the antennas of geodetic techniques at the co-located sites before 

determining the difference vectors ( ), and they were derived as the sum of the hydrostatic 

(Saastamoinen, 1972, 1973) and the wet part (Brunner and Rüeger, 1992), as shown in Equations 

(3) to (5). 
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 (3) 

 (4) 

 (5) 

 denotes the reference height (in our case the height of the VLBI reference point) in meters. The 

parameters , , and  are the water vapor pressure in hPa, total pressure in hPa, and 

temperature in Kelvin, at the reference height, and they are derived from data of the ECMWF;  

and  are the height and total pressure at the co-located site. The other parameters are the average 

temperature lapse rate  K m-1, the gravity g in m s-2 at the site, and  m2s-

2K-1 is the specific gas constant. 

In Table 3, the height differences between VLBI, GPS, DORIS antennas as well as WVRs are 

shown. The troposphere ZTD ties were calculated at each common epoch from the Equations (3) to 

(5) based on the meteorological parameters , , and  from the ECMWF, interpolated linearly 

to the ZTD epochs of the corresponding techniques. Since the variability of the ZTD ties is 

significant − especially for the sites where the weather is humid − we reduced ZTD ties calculated 

for each common epoch from the ZTDs of the techniques before comparisons. In Figure 2, the 

troposphere ties between the GPS antenna TSKB and the VLBI antenna TSUKUB32 during 

CONT08 are shown. Red and black dotted lines illustrate total and hydrostatic ties, respectively, 

and the negative sign of the ties is due to the fact that the lower GPS antenna TSKB has more 

troposphere above the station than the VLBI antenna TSUKUB32. As can be seen in Figure 2, the 

ZHD ties vary only slightly around the value of -4.5 mm at Tsukuba within the 15 days, but after 

adding the ZWD ties, the ZTD ties have significantly more variability, which is due to the fact that 

the atmosphere at Tsukuba is very humid in August. 

 
Figure 2 Troposphere ties between the GPS antenna TSKB and the VLBI antenna TSUKUB32 during CONT08, 
calculated for all common epochs. Red and black dotted lines illustrate total and hydrostatic ties, respectively. 
 

In Table 3, the mean ZTD, ZHD, and ZWD ties of the whole CONT08 duration are shown. The 

ZHD ties of the WVRs are zero since the ZHDs from VLBI were used (Table 3). 

 

The mean ZTD biases between the VLBI antennas and the DORIS beacons at Ny-Ålesund (HVLBI – 

HDORIS=34.70 m) and at Hartebeesthoek (HVLBI – HDORIS= -143.88 m) were reduced to 0.79 mm 
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(from -9.98 mm) and to 4.62 mm (from 41.80 mm), respectively, after introducing the mean 

troposphere ties. At the IGS site HARB (HVLBI – HGPS= -145.02 m) the mean ZTD bias of 37.52 

mm was reduced to 0.14 mm after introducing the ZTD tie (37.39 mm), whereas at the DORIS co-

located site at Kokee Park (HVLBI – HDORIS= 9.62 m) the mean bias increased from 2.32 mm to 5.16 

mm after introducing the mean troposphere tie (-2.84 mm); however, this difference is comparably 

small. It should also be mentioned here that the distances between VLBI antennas and the DORIS 

beacons are rather large so that the DORIS signals (in particular at 2 GHz) do not disturb the VLBI 

observations. This can also be a reason for the worse agreement. 

 

Table 3 Height differences and troposphere ties between the co-located VLBI, GPS, and DORIS antennas, and the 
WVRs involved in CONT08. 
 

3.3 Data types and epochs for comparisons 

In order to ensure a predicative comparison similar geophysical models were used for the analyses 

of space geodetic data, whereas the parameterization for the least-squares adjustment of the space 

geodetic techniques was optimized for each solution. In Table 4, an overview of the solutions, types 

of the estimates, and intervals for both zenith delays and gradients are listed. GPS-IGS and 

HIRLAM solutions do not provide gradients. All gradients from the techniques except WVR are 

total gradients. 

 
Table 4 Summary of the data used for the comparisons. 

 

The total number of common epochs of ZTDs (first line) and of gradients (second line) between 

VieVS and the other techniques during CONT08 can be found in Table 5. The reliability of the 

mean biases, standard deviations, and correlations increases and the vulnerability to outliers 

decreases directly proportional with the total number of ZTDs and gradients available (degrees of 

freedom). Due to the small number of gradients provided by CODE and DORIS solutions (16 

estimates at maximum for the whole 15 days duration) biases, standard deviations, and correlations 

involving these solutions have to be interpreted with care. 

 

The estimates from DORIS correspond to distinct epochs of actual measurements during the 

DORIS satellite passes. For the whole CONT08 campaign, the DORIS station at Ny-Ålesund 

(SPJB) provided 243 ZTDs with a gap (no observation) every day between 2 to 5 UT. The DORIS 

station KOLB at KOKEE Park provided in total 82 ZTDs, and each day is observed in two separate 

intervals between 7 to 10 and 20 to 23 UT. HBMB at Hartebeesthoek provided in total 77 ZTDs in 



Preprint

14 

CONT08 observed between 6 to 10 and 19 to 22 UT. In a first step, the zenith delays from DORIS 

were linearly interpolated to adjacent 2 hour intervals at UT integer hours. This interpolation was 

only performed for those integer hours when the time differences between the last observation 

before and the first observation after the integer hours is less than 6 hours. This is not optimum for 

DORIS ZTDs, as DORIS data are scarce and DORIS troposphere solutions are then provided using 

some interpolation. Bock et al. (2010) did a reverse approach interpolating the dense GPS data to 

the epochs of the DORIS passes. This provides a more realistic estimation of the DORIS 

performances. However, in this study, the current capability of all techniques was tested, so it is 

important to know the performances of all techniques over the complete period of observations and 

not only during DORIS satellite passes. 

 
Table 5 ZTDs (first line) and troposphere gradients (second line) common epochs of VieVS with the other techniques 
during CONT08. 
 

3.4 ZTD comparisons 

3.4.1 Intra-technique comparisons of ZTDs 

The intra-technique biases at the co-located sites between VieVS and the IVS combined solution are 

between -1.6 mm and 1.9 mm with standard deviations between 2.3 mm (Wettzell) and 5.7 mm 

(Zelenchukskaya). This is similar to what is found for the differences between the CODE and the 

IGS solution, where the standard deviations are between 2.4 mm (Hartebeesthoek, HRAO) and 4.9 

mm (Medicina). The biases between the GPS solutions are slightly larger with values between -4.5 

(Wettzell, WTZR) and 2.9 (Medicina) mm, but it has to be clearly stated that the VieVS series is 

part of the IVS combined solution, whereas the IGS Kalman filter solution differs from the CODE 

solution in many aspects, e.g. PPP vs. network approach, NMF vs. VMF1, or different frames.  

 

At Wettzell, we have IGS ZTD solutions for three different receivers from three different 

manufacturers which are only separated by a few meters and thus observe the same troposphere 

(WTZA, WTZJ, and WTZR). The mean biases between the ZTD series are -1.1 mm (WTZA - 

WTZJ) or smaller, and all standard deviations are at about 1.5 mm, which is significantly smaller 

than the standard deviation between the IGS and the CODE solution for WTZR (3.4 mm). Similar 

results are found at Ny-Ålesund, where we have two solutions from CODE (NYAL and NYA1) 

with no bias and a standard deviation of 1.0 mm. The standard deviation between the ZTDs at 

NYA1 between CODE and IGS is 2.7 mm. This discrepancy shows that the choice of analysis 

strategies is critical for the estimation of ZTDs whereas the hardware (antenna, receiver) or effects 

like multipath or antenna phase center variations only add a smaller fraction to the total uncertainty 
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of ZTDs. This is also confirmed by the fact that at many sites the standard deviations between IGS 

and CODE is nearly as large as the standard deviations between VLBI and GPS solutions. 

 

At Tsukuba, the best agreement of two weather models is between JMA and CReSS. This can be 

expected because the high-resolution CReSS model is embedded in and initialized with the JMA 

model. On the other hand, this agreement is slightly worse than between ECMWF and HIRLAM for 

European stations, but it has to be mentioned, that the latter stations are not as humid as Tsukuba. 

More details about biases and standard deviations can be found in Table 6 and the electronic 

supplement. 

 

In order to find out the amount of shared variances (degree of linear relationship) between the 

estimates/products of each pair of techniques, correlation coefficients were calculated. In Table 10, 

the correlations of gradients between VieVS and other solutions (and their p-values in parentheses) 

are shown. Correlation coefficients with p>0.05 are assumed to be statistically insignificant and are 

written in italic. The intra-technique correlations of ZTDs between VieVS and the IVS combined 

solution are between 0.96 and 1.00, between CODE and the IGS solution between 0.99 and 1.00, 

and between ECMWF and HIRLAM they range from 0.55 (Zelenchukskaya) to 0.96 (Ny-Ålesund, 

and Svetloe). The correlations between the weather models ECMWF, JMA, and CReSS at Tsukuba 

are at about 0.9. More details on the correlations of gradients can be found in Table 10 and all 

correlations including ZTDs in the electronic supplement. 

3.4.2 Inter-technique comparisons of ZTDs 

As an example Figure 3 shows the ZTDs at Wettzell during CONT08. Inter-technique ZTD biases 

and standard deviations w.r.t. the VieVS and the CODE solutions can be found in Table 6 and the 

mean values are also shown in Figure 4. (Statistics about all combinations of sites and techniques 

are in the electronic supplement to this paper). The biases between different space geodetic 

techniques are mostly smaller than 5 mm after the application of troposphere ties, with the largest 

value remaining between the IVS combined and the CODE solution at Medicina (Italy) with 6.2 

mm. In terms of standard deviation, the best inter space geodetic technique agreement of ZTDs is 

found between the IVS combined solution and the IGS Kalman filter solution, in particular at Ny-

Ålesund with 2.7 mm. Slightly worse is the agreement between VieVS and the IGS Kalman filter 

solution, between CODE and the IVS combined solution, and between CODE and VieVS. 

 

Generally, the median standard deviation of all sites between ZTDs from GPS and VLBI is about 4 

to 5 mm. The agreement of ZTDs from DORIS with those from GPS and VLBI is rather good at 
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Ny-Ålesund with a standard deviation of about 6 mm (there is a large number of common epochs), 

but it is worse at Kokee Park and Hartebeesthoek with more than 12 mm. Inter-technique 

correlations can be found in the electronic supplement, confirming the findings for the standard 

deviations. 

  
Figure 3 Troposphere ZTDs of the co-located site Wettzell during CONT08. 
 

As far as the standard deviation of ZTDs from WVRs w.r.t. those from space geodetic techniques is 

concerned, the best agreement can be found at Onsala with about 5 mm. This is significantly better 

than for Wettzell (~11 mm) or Tsukuba (~20 mm). Also the biases of ZTDs from WVRs are larger 

at Tsukuba. It should be noted, that during CONT08 rainy weather mostly contaminates the 

measurements of the WVR (Robs) at Tsukuba although obvious outlier observations due to rain 

were eliminated.  

 

The standard deviations of ZTDs from numerical weather models compared to ZTDs from space 

geodetic techniques are between ~6 mm at Ny-Ålesund and ~20 mm at Tsukuba. It seems that 

CReSS data is closer to the space geodetic results than the JMA (e.g. around August 19, see 

electronic supplement). The CReSS model sometimes has differences w.r.t. VLBI at 0 UT similar to 

the JMA model. This comes from the fact that the CReSS model is initialized with the JMA model 

and needs some time to settle to its own physics. From Table 6 and the electronic supplement no 

conclusions can be drawn whether ECMWF or HIRLAM agrees better with ZTDs from space 

geodetic techniques, because this varies w.r.t. station and solution. 

 

As a general trend, the standard deviations of the ZTDs decrease with the latitude, i.e., the 

minimum standard deviations are at the site Ny-Ålesund. On the other hand, the low latitude sites 

like Kokee Park and Tsukuba have significantly larger standard deviations of ZTDs. All 

correlations between the ZTDs of different techniques are larger than 0.9 and statistically 

significant.  

 
Table 6 Mean biases and standard deviations of the ZTD difference vectors between VLBI-VieVS and GPS-CODE 
with the other solutions for the co-located sites during CONT08. The zenith hydrostatic delays from VLBI were added 
to the zenith wet delays of WVR and HIRLAM. 
 
Figure 4 Mean biases and standard deviations of all ZTDs during CONT08 w.r.t. VLBI-VieVS (bias: dark grey, std. 
dev.: light grey) and GPS-CODE (bias: dark red, std. dev.: light red). 
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3.4.3 Comparison with CONT02 

Comparing the level of agreement of ZTDs in this study (CONT08) with the findings for CONT02 

by Snajdrova et al. (2006) the following conclusions can be drawn (see also Table 7): The biases 

between VLBI and GPS slightly decrease for CONT08. This might be due to a better agreement of 

underlying models like the terrestrial reference frames used for the analyses and improved 

troposphere ties. On the other hand the standard deviations between VLBI and GPS increase for all 

stations except Hartebeesthoek (South Africa). This is certainly caused by the fact that CONT08 

was observed in August which corresponds to northern hemisphere summer, which is a more humid 

period for stations in the northern hemisphere compared to October when CONT02 was observed. 

A similar increase in standard deviations for CONT08 (except for Hartebeesthoek) can be found for 

the comparison of ZTDs between ECMWF and space geodetic techniques, probably caused by the 

same reason. On the other hand, there is a better agreement between DORIS and GPS/VLBI for 

CONT08, which is due to improved DORIS data processing for this investigation. 

 
Table 7 Comparison of mean biases and standard deviations of the ZTD difference vectors from CONT02 (Snajdrova et 
al., 2006) and CONT08 (this study) for the common sites. At those sites, where more than one IGS antenna was situated 
the following antennas were used for the comparison: NYAL, WTZR, and HRAO. 
 

3.5 Troposphere gradients comparisons 

Unlike the ZTDs, there are not as many north and east gradient series from the individual 

techniques available for comparison. We do not have gradients from the IGS Kalman filter solution, 

nor do we have gradients from HIRLAM or the WVR at Tsukuba. It has to be stressed again, that 

the gradients from the WVRs at Wettzell and Onsala are wet-only gradients and do not contain 

hydrostatic parts. All other gradients are gradients of the total delays. Exemplarily, the troposphere 

east gradients at Onsala are shown in Figure 5 and the most important features of the gradient 

comparison can already be seen there: The best agreement of gradients is found between VieVS and 

the IVS combined series which was expected because VieVS is part of the IVS combination 

(Heinkelmann et al., this issue). There are no biases and the mean standard deviation is at the level 

of 0.3 mm. (See also Tables 8 and 9 and the electronic supplement.) The gradients provided by 

CODE only have a daily resolution which makes the comparison difficult and vague: Whereas the 

gradients from VLBI describe the mean asymmetry over two hours, the gradients from GPS 

(CODE) are averaged over 24 hours. However, the general agreement of north and east gradients 

from the CODE solution with gradients from VLBI is quite good (~0.5 mm). Only at Tsukuba and 

Kokee Park, standard deviations larger than 1 mm occur (see electronic supplement with plots for 

all stations). 
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Figure 5 Troposphere east gradients of the co-located site Onsala during CONT08. 
 

The standard deviations of DORIS gradients w.r.t. gradients from VieVS are rather large, in 

particular at Hartebeesthoek (South Africa) with 1.8 mm and 0.9 mm in the east and north direction, 

and at Kokee Park (Hawaii, U.S.A.) with 1.2 mm in east and 0.9 mm in north direction. It can also 

be noted here, that there is a large north gradient bias of ~1 mm for the DORIS station at 

Hartebeesthoek with respect to VLBI. This could come from the fact that, at this high latitude, the 

tracks of the DORIS satellites (all sun-synchronous, as we did not use Jason-2) are mostly east-west 

oriented, i.e. perpendicular to the north gradient. Willis et al. (2010a) see a similar problem for the 

other stations (equatorial or mid-latitude), when the tracks are north-south oriented and the east-

west gradient is only loosely determined. However, since the standard deviation is of about the 

same size, this bias is not very significant. 

 

There is a large standard deviation of more than 1 mm for the gradients from the WVR at Wettzell, 

which might be due to a tilting of the instrument (see station-wise plots with gradients in the 

electronic supplement). In general the wet gradients from WVRs are noisier because they are only 

derived from slant delays above 20° elevation (Figure 5). On the other hand, the biases should be 

disregarded because they might be caused from the neglected hydrostatic part. 

 

The best intra-NWM agreement of north and east gradients is found between JMA and CReSS, 

which could be expected because the CReSS model is initialized with the data from the larger JMA 

model. One has to keep in mind that the gradients from the weather model are a snap-shot of the 

troposphere at a certain epoch, whereas the gradients from the space geodetic techniques are 

averaged over a certain period, which is related to the way how the temporal resolution of the 

gradients is parameterized. The gradients from VLBI are estimated from very sparse spatial 

sampling, i.e. one direction at a given epoch. Scan lengths are between 20 seconds to a few minutes 

(depending on the source flux density) for CONT08 but there are also several minutes slew times 

between on-source times. Thus, VLBI scans the sky with only about 25 scans per hour.  

 

In order to find out the amount of shared variances (degree of linear relationship) between the 

gradients of each pair of techniques, Pearson correlation coefficients were calculated. In Table 10, 

the correlations of gradients between VieVS and the other solutions (and their p-values in 

parentheses) are shown. Correlation coefficients with p>0.05 are assumed to be statistically 

insignificant and are written in italic. The correlation coefficients of north and east gradients 
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between VieVS and the IVS combined solutions are above 0.85 except for the east gradient at 

Hartebeesthoek (0.70), and all are significant. The correlation coefficients between the gradient 

estimates from VieVS and CODE are mostly below 0.7 and some of them are insignificant. 

 
Table 8 Mean biases and standard deviations of the troposphere east gradient difference vectors between VLBI-VieVS 
and other solutions for the co-located sites during CONT08. All the gradients except those derived from WVR (wet 
gradients) are total gradients. 
 
Table 9 Mean biases and standard deviations of the troposphere north gradient difference vectors between VLBI-VieVS 
and other solutions for the co-located sites during CONT08. All gradients except those derived from WVR (wet 
gradients) are total gradients. 
 
Table 10 Correlation coefficients and their p-values between the estimates* of VLBI-VieVS and other solutions for the 
co-located sites during CONT08. Correlations written in italic are statistically insignificant (p>0.05). (* troposphere 
north gradients (first line) and east gradients (second line)). 
 

4 Conclusions 

The space geodetic techniques VLBI, GPS, and DORIS, including co-located WVRs and the use of 

NWMs (ECMWF, HIRLAM, KARAT, CReSS during CONT08) allowed to perform a 

comprehensive comparison of simultaneously determined troposphere parameters. Due to the lack 

of space not all of the results could be provided in this paper (the supplementary material can be 

accessed online). The comparisons done in this study are essential before starting with any 

combination attempt in the sense of GGOS, the Global Geodetic Observing System of the IAG.  

 

These are the main findings of this study: Zenith total delay (ZTD) estimates of space geodetic 

techniques generally agree at the sub-centimetre level during CONT08. For ZTDs, the best 

agreement is found from the intra-technique comparisons between VieVS and the IVS combined 

solution as well as CODE and the IGS Kalman filter solution with median standard deviations of 3-

4 mm and 4-5 mm, respectively. The best inter space geodetic technique agreement of ZTDs during 

CONT08 is slightly worse and it can be found between IVS and IGS with a median standard 

deviation of about 5 mm over all sites. Since the standard deviation between ZTDs for co-located 

GPS receivers from one solution (IGS at Wettzell, CODE at Ny-Ålesund) is at about 1.0 to 1.5 mm 

and the standard deviation between IGS and CODE is nearly as large as w.r.t. VLBI solutions, it 

can be argued that the choice of the analysis options adds a major part to the total uncertainty of 

ZTDs from GPS. 

 

As far as the overall agreement of ZTDs is concerned between the techniques/solutions, two groups 

can be formed. GPS and VLBI form a group with the best agreement. The second group consists of 

the other models/techniques which are DORIS, ECMWF, HIRLAM, KARAT, CReSS, and WVR. 



Preprint

20 

Correlation coefficients of ZTDs are typically larger than 0.9 and all of the correlations are 

statistically significant. 

 

There is a latitude- and season-dependence of the standard deviations between the techniques. The 

standard deviations generally decrease with increasing northern and southern latitudes, which is due 

to the lesser amount of humidity at higher latitudes. Additionally, the comparison with the results 

from the CONT02 campaign in October 2002 showed, that standard deviations are generally larger 

during CONT08, which was observed in August 2008. In particular observations at Tsukuba are 

affected by the humid conditions in August. 

 

The best intra-technique agreement of north and east gradients are found between VieVS and the 

IVS combined solution, which was not surprising because VieVS was part of the IVS combination 

for CONT08. In general it has to be stressed, that the results of the comparison of gradients have to 

be used with care. Not only because of different time intervals but also due to basic differences in 

the observed quantities and setups, in the case of gradients the reader is rather referred to the 

station-wise plots in the electronic supplement than to the numbers in the tables. 

 

Organizing regular inter-technique comparison campaigns with consistent analysis models 

dedicated to the investigation of the troposphere would help to improve the data w.r.t. the 

weaknesses of the individual space geodetic techniques (e.g. low degrees of freedom, inadequacy of 

gradient models) and the weaknesses of NWMs in terms of conventions on data assimilation, time 

and spatial resolution of the profiles, and the ray-tracing technique. 
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Table 1 Geodetic instruments co-located at the VLBI sites during the CONT08 campaign. 

VLBI station IGS acronym and GPS 
Solutions 

IDS acronym WVR name (site) 

Ny-Ålesund NYA1 (CODE + IGS) 
NYAL (CODE only) 

SPJB - 

Svetloe SVTL (CODE + IGS) - - 
Onsala ONSA (CODE + IGS) - ASTRID 
Wettzell WTZR (CODE + IGS) 

WTZA (IGS only) 
WTZJ (IGS only) 

- RADIOMETRIX 

Medicina MEDI (CODE + IGS) - - 
Zelenchukskaya ZECK (IGS only) - - 
Westford WES2 (CODE + IGS) - - 
Tsukuba TSKB (CODE only) 

TSK2 (IGS only) 
- ROBS 

Kokee Park KOKB (CODE + IGS) KOLB - 
Hartebeesthoek HRAO (CODE + IGS) 

HARB (CODE only) 
HBMB - 

Tigo Concepcion CONZ (CODE + IGS) - - 
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Table 2 ITRF2005 ellipsoidal heights and approximate horizontal distances of the co-located VLBI, GPS, and DORIS 
antennas, and WVRs involved in CONT08. 
VLBI Station 
(order w.r.t. lat.) 

Country VLBI 
height  
(m) 

GPS phase center height (m) 
(reference point height + up 
eccentricity**) 

WVR 
height 
(m) 

DORIS height  
(m) 

VLBI-DORIS 
approximate 
horizontal 
distance (m) 

VLBI-GPS 
approximate 
horizontal 
distance (m) 

Ny-Ålesund  Norway 87.30 84.18 + 0.00 (1) 
78.45 + 5.22 (2) 

- 52.60 (SPJB) 1475 (SPJB) 106 (1) 
112 (2) 

Svetloe Russia 86.01 77.13* + 0.03 - - - 82 
Onsala60 Sweden 59.28 45.56 + 1.00 ~ 46.57  

(ASTRID) 
- - 78  

Wettzell Germany 669.13 666.03 + 0.07 (3) 
665.92* + 0.08 (4) 
665.91* + 0.07 (5) 

~ 667.56  
 

- - 139 (3) 
140 (4) 
137 (5) 

Medicina Italy 67.17 50.04 + 0.00 - - - 60 
Zelenchukskaya Russia 1175.43* 1167.27 + 0.05 - - - 65 
Westford USA 86.77 85.02 + 0.00 - - - 58 
Tsukuba Japan 84.72 67.25 + 0.00 (6) 

70.35* + 0.00 (7) 
25.20  
(ROBS) 

- - 302 (6) 
306 (7) 

Kokee Park USA 1176.60 1167.37 + 0.06 - 1166.98 (KOLB) 398 (KOLB) 45 
Hartebeesthoek South  

Africa 
1416.12* 1414.16 + 0.08(8) 

1558.09 + 3.05 (9) 
- 1560.00 (HBMB) * 2239 (HBMB) 164 (8) 

2212 (9) 
Tigo Concepcion Chile 170.95 180.69 + 0.06 - - - 120 
(1) NYA1, (2) NYAL, (3) WTZR, (4) WTZJ, (5) WTZA, (6) TSKB, (7) TSK2, (8) HRAO, (9) HARB. 
* Heights taken from the log file of the stations because not available in ITRF2005. 
** Antenna reference point eccentricities are provided in the station log files at the IGS web site. 
 



Preprint

27 

Table 3 Height differences and troposphere ties between the co-located VLBI, GPS, and DORIS antennas, and the 
WVRs involved in CONT08. 
VLBI Station VLBI-GPS  

height 
difference  
(m) 

Mean GPS  
troposphere ties  
ZTD = ZHD + ZWD 
(mm) 

VLBI-DORIS  
height 
difference  
(m) 

Mean DORIS  
troposphere ties  
ZTD = ZHD + ZWD 
(mm) 

VLBI-WVR 
height 
difference  
(m) 

Mean WVR  
troposphere ties 
ZTD = ZHD + ZWD 
(mm) 

Ny-Ålesund 3.12 (1) 
3.63 (2) 

-0.97 = -0.88 + (-0.09) 
-1.13 = -1.02 + (-0.11)  

34.70 -10.77 = -9.78 + (-0.99) - - 

Svetloe 8.85  -2.92 = -2.38 + (-0.54) - - - - 
Onsala60 12.72 -4.16 = -3.43 + (-0.73) - - ~12.71 -0.73 = 0.00 + (-0.73) 
Wettzell 3.03 (3) 

3.13 (4) 
3.15 (5) 

-0.94 = -0.79 + (-0.15) 
-0.97 = -0.82 + (-0.15) 
-0.97 = -0.82 + (-0.16) 

- - ~ 1.57 -0.08 = 0.00 + (-0.08) 

Medicina 17.13 -5.52 = -4.51 + (-1.01) - - - - 
Zelenchukskaya 8.11 -2.35 = -1.91 + (-0.44) - - - - 
Westford 1.75 -0.56 = -0.46 + (-0.10) - - - - 
Tsukuba 17.47 (6) 

14.37(7) 
-6.11 = -4.58 + (-1.52) 
-5.02 = -3.77 + (-1.25) 

- - 59.52 -5.30 = 0.00 + (-5.30) 

Kokee Park 9.17 -2.72 = -2.21 + (-0.52) 9.62 -2.84 = -2.30 + (-0.54) - - 
Hartebeesthoek 1.88 (8) 

-145.02 (9) 
-0.51 = -0.46 + (-0.05) 
37.39 = 33.40 + 3.99 

-143.88 37.18 = 33.19 + (3.99) - - 

Tigo Concepcion -9.80 3.07 = 2.66 + 0.40 - - - - 
(1) NYA1, (2) NYAL, (3) WTZR, (4) WTZJ, (5) WTZA, (6) TSKB, (7) TSK2, (8) HRAO, (9) HARB. 
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Table 4 Summary of the data used for the comparisons. 

Technique Zenith total/wet 
delay 

Estimation interval 
of zenith delay 

Estimation interval 
of gradients 

VLBI-VieVS ZWD, ZTD 30 minutes 2 hours (total gradients) 
VLBI-IVS ZWD, ZTD 1 hour 1 hour (total gradients) 
GPS/IGS ZTD 5 minutes - 
GPS/CODE ZTD 2 hours 1 day (total gradients) 
DORIS/IGN ZTD per satellite pass (but not all),  

using time constraints between passes 
1 day (total gradients) 

WVR ZWD 30 minutes 2 hours (wet gradients) 
ECMWF ZWD, ZTD 6 hours 6 hours (total gradients) 
JMA/KARAT ZTD 3 hours 3 hours (total gradients) 
CreSS ZTD 1 hour 1 hour (total gradients) 
HIRLAM ZWD 3 hours - 
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Table 5 ZTDs (first line) and troposphere gradients (second line) common epochs of VieVS with the other techniques 
during CONT08. 
 IVS IGS CODE IGN WVR ECMWF HIRLAM KARAT CReSS 
Ny-Ålesund 357 

179 
714 (1) 
- 

180 (1) 
16 (1) 

149 
15 

- 
- 

60 
60 

120 
- 

- 
- 

- 
- 

Svetloe 360 
180 

672 
- 

181 
16 

- 
- 

- 
- 

60 
60 

121 
- 

- 
- 

- 
- 

Onsala60 360  
180 

623 
- 

181 
16 

- 
- 

593 
181 

60 
60 

121 
- 

- 
- 

- 
- 

Wettzell 360  
 
 
180 

662 (3) 
616 (4) 
670 (5) 
- 

181 (3) 
 
 
16 (3) 

- 
 
 
- 

548  
 
 
169 

60 
 
 
60 

121 
 
 
- 

- 
 
 
- 

- 
 
 
- 

Medicina 360 
180 

720  
- 

181 
16 

- 
- 

- 
- 

60 
60 

121 
- 

- 
- 

- 
- 

Zelenchukskaya 326 
163 

552 
- 

- 
- 

- 
- 

- 
- 

55 
55 

110 
- 

- 
- 

- 
- 

Westford 360 
180 

672 
- 

169 
15 

- 
- 

- 
- 

60 
60 

- 
- 

- 
- 

- 
- 

Tsukuba 360 
180 

719 (7) 
- 

181 (6) 
16 (6) 

- 
- 

560 
- 

60 
60 

- 
- 

121 
61 

361 
181 

Kokee Park 360 
180 

720  
- 

181 
16 

66 
15 

- 
- 

60 
60 

- 
- 

- 
- 

- 
- 

Hartebeesthoek 360 
180 

720 (8) 
- 

181 (8) 
16 (8) 

60 
15 

- 
- 

60 
60 

- 
- 

- 
- 

- 
- 

Tigo Concepcion 242 
121 

192 
- 

122 
11 

- 
- 

- 
- 

39 
39 

- 
- 

- 
- 

- 
- 

(1) NYA1, (2) NYAL, (3) WTZR, (4) WTZJ, (5) WTZA, (6) TSKB, (7) TSK2, (8) HRAO, (9) HARB. 
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Table 6 Mean biases and standard deviations of the ZTD difference vectors between VLBI-VieVS and GPS-CODE with the other solutions for the co-located sites during CONT08. The zenith 
hydrostatic delays from VLBI were added to the zenith wet delays of WVR and HIRLAM. 
 Ny-Ålesund Svetloe Onsala Wettzell Medicina Zelenchukskaya Westford Tsukuba Kokee Park Hartebeesthoek Tigo Concepcion 

VLBI/VieVS–VLBI/IVS -1.6±2.8 0.3±3.3 -0.4±2.6 -0.4±2.3 -1.0±4.7 1.9±5.7 -0.2±3.1 -0.1±4.8 -0.2±4.7 -0.7±3.2 -1.0±4.0 

VLBI/VieVS–GPS/IGS -2.0±3.9 (NYA1) 1.2±5.5 1.0±4.5 2.2±4.1 (WTZR) 2.3±7.0 2.8±11.1 -4.5±6.1 -0.6±11.1 (TSK2) 0.8±8.3 -0.2±4.7 (HRAO) -4.0±5.1 

VLBI/VieVS–GPS/CODE 0.0±3.9 (NYAL) 1.0±6.1 3.1±5.0 -2.1±4.6 (WTZR) 5.1±7.9 - -3.7±6.4 1.4±11.6 (TSKB) 1.9±9.5 0.1±5.2 (HRAO) -4.5±5.0 

VLBI/VieVS–DORIS/IGN 0.8±6.4 - - - - - - - 5.2±14.7 4.6±12.7 - 

VLBI/VieVS–WVR - - -0.4±5.1 -14.3±10.3 - - - -24.8±22.2 - - - 

VLBI/VieVS–ECMWF -3.4±6.5 0.9±10.9 3.4±11.2 -2.1±11.8 -2.1±19.8 4.1±20.0 -3.8±16.6 -0.3±20.2 2.9±18.1 3.0±8.4 0.9±11.2 

VLBI/VieVS–JMA/KARAT - - - - - - - 7.8±25.7 - - - 

VLBI/VieVS–CreSS - - - - - - - 6.0±20.0 - - - 

VLBI/VieVS–HIRLAM 0.6±11.1 0.8±16.2 6.4±11.0 2.5±10.1 2.4±18.0 6.0±20.7 - - - - - 

GPS/CODE –VLBI/IVS -1.4±2.9 (NYA1) -0.7±5.1 -3.3±4.5 1.8±4.2 (WTZR) -6.2±8.7 - 3.7±5.5 -1.5±9.7 -2.0±7.3 -0.9±4.0 (HRAO) 2.4±7.3  

GPS/CODE–GPS/IGS -1.9±2.7 (NYA1) 0.5±4.1 -2.0±4.0 4.5±3.4 (WTZR) -2.9±4.9 - -0.3±4.7 - -1.0±4.5 -0.2±2.4 (HRAO) 1.2±2.6 

GPS/CODE–DORIS/IGN 0.7±5.4 (NYA1) - - - - - - - 3.2±13.0 4.1±13.1 (HRAO) - 

GPS/CODE–WVR - - -3.1±5.7 -12.5±11.6 (WTZR) - - - -26.1±20.2 - - - 

GPS/CODE–ECMWF -3.4±5.9 (NYA1) 0.1±10.6 -0.1±11.1 -0.8±11.5 (WTZR) -8.8±18.4 - -1.7±14.7 0.2±20.6 1.9±16.5 2.0±8.3 (HRAO) 4.4±9.7 

GPS/CODE–JMA/KARAT - - - - - - - 7.1±20.6 - - - 

GPS/CODE–CreSS - - - - - - - 5.3±18.9 - - - 

GPS/CODE–HIRLAM 1.2±10.2 (NYA1) 0.4±14.6 3.6±9.6 2.5±9.4 (WTZR) -3.2±16.7 - - - - - - 
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Table 7 Comparison of mean biases and standard deviations of the ZTDs difference vectors from CONT02 (Snajdrova et al., 2006) and CONT08 (this study) for the common sites. (The IGS antennas are 
NYAL, WTZR, and HRAO at sites with more than one antenna.) 
 Ny-Ålesund Onsala60 Wettzell Westford Kokee Park Hartebeesthoek 

 CONT02 CONT08 CONT02 CONT08 CONT02 CONT08 CONT02 CONT08 CONT02 CONT08 CONT02 CONT08 

VLBI*-GPS** 0.1±3.3 0.0±3.9 0.7±4.1 3.1±5.0 -2.1±4.5 -2.1±4.6 -6.5±3.5 -3.7±6.4 -5.7±6.6 1.9±9.5 -3.4±5.8 0.1±5.2 

VLBI*-ECMWF 7.1±4.7 -3.4±6.5 8.1±5.7 3.4±11.2 13.2±8.8 -2.12±11.8 -16.2±5.9 -3.8±16.6 -8.8±21.0 2.9±18.1 -4.8±19.4 3.0±8.4 

VLBI*-DORIS 1.5±7.9 0.8±6.4 - - - - - - -7.2±32.1 5.2±14.7 2.7±14.0 4.6±12.7 

VLBI*-WVR - - -2.8±6.7 -0.4±5.1 -17.2±9.0 -14.3±10.33 - - - - - - 

GPS**-ECMWF 6.6±3.5 -3.8±6.0 7.6±5.5 -0.1±11.1 15.1±7.8 -0.8±11.4 -9.1±7.1 -1.7±14.7 -1.9±17.4 1.9±16.5 -0.3±18.6 2.0±8.3 

GPS**-DORIS 1.2±8.1 0.5±5.2 - - - - - - 2.7±34.7 3.2±13.0 5.5±14.5 4.1±13.1 

GPS**-WVR - - -3.7±5.4 -3.1±5.7 -14.7±8.1 -12.5±11.6 - - - - - - 

ECMWF-DORIS -6.8±8.5 4.1±7.7 - - - - - - - - -  

ECMWF-WVR - - -11.7±10.2 -3.1±10.9 -26.2±7.5 -11.9±15.6 - - - - - - 

* VieVS solution 
** CODE solution 
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Table 8 Mean biases and standard deviations of the troposphere east gradient difference vectors between VLBI/VieVS and other solutions for the co-located sites during CONT08. All the gradients 
except those derived from WVR (wet gradients) are total gradients. 
 Ny-Ålesund Svetloe Onsala Wettzell Medicina Zelenchukskaya Westford Tsukuba Kokee Park Hartebeesthoek Tigo Concepcion 

VLBI/VieVS–VLBI/IVS 0.0±0.2 0.0±0.2 0.0±0.2 0.0±0.2 0.0±0.2 0.1±0.4 0.0±0.2 0.1±0.4 0.0±0.2 -0.1±0.3 0.1±0.3 

VLBI/VieVS–GPS/CODE 0.2±0.5 (NYA1) 0.2±0.5 -0.1±0.5 -0.3±0.6 (WTZR) 0.0±0.5 - -0.4±0.8 0.2±1.1 (TSKB) 0.1±0.7 0.0±0.5 (HRAO) 0.1±0.8 

VLBI/VieVS–DORIS/IGN 0.2±0.7 - - - - - - - -0.2±1.2 0.2±1.8 - 

VLBI/VieVS–WVR - - 0.3±0.8 0.0±1.3 - - - - - - - 

VLBI/VieVS–ECMWF 0.0±0.4 0.2±0.5 0.0±0.4 -0.1±0.6 0.0±0.5 0.1±0.7 0.0±0.5 -0.3±0.9 -0.2±0.6 0.1±0.4 0.2±0.5 

VLBI/VieVS–JMA/KARAT - - - - - - - 0.1±0.9 - - - 

VLBI/VieVS–CreSS - - - - - - - 0.1±0.9 - - - 
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Table 9 Mean biases and standard deviations of the troposphere north gradient difference vectors between VLBI-VieVS and other solutions for the co-located sites during CONT08. All gradients except 
those derived from WVR (wet gradients) are total gradients. 
 Ny-Ålesund Svetloe Onsala Wettzell Medicina Zelenchukskaya Westford Tsukuba Kokee Park Hartebeesthoek Tigo Concepcion 

VLBI/VieVS–VLBI/IVS 0.0±0.2 0.0±0.2 0.0±0.2 0.0±0.2 0.0±0.3 -0.2±0.4 0.0±0.2 0.0±0.4 0.0±0.3 0.3±0.4 0.0±0.3 

VLBI/VieVS–GPS/CODE 0.0±0.4 (NYA1) -0.2±0.5 0.3±0.6 -0.1±0.4 (WTZR) -0.1±0.8 - -0.5±0.5 0.3±1.1 (TSKB) 0.2±1.1 0.5±0.5 (HRAO) 0.3±0.5 

VLBI/VieVS– DORIS/IGN 0.4±0.7 - - - - - - - -0.3±1.2 1.2±0.9 - 

VLBI/VieVS–WVR - - -0.4±0.8 -0.6±1.1 - - - - - - - 

VLBI/VieVS–ECMWF 0.0±0.4 -0.1±0.5 0.0±0.5 -0.1±0.4 0.0±0.8 -0.7±1.0 0.0±0.4 0.5±1.0 -0.2±0.8 0.3±0.6 0.3±0.5 

VLBI/VieVS–JMA/KARAT - - - - - - - 0.2±1.0 - - - 

VLBI/VieVS–CreSS - - - - - - - 0.2±1.0 - - - 
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Table 10 Correlation coefficients and their p-values between the estimates* of VLBI/VieVS and other solutions for the co-located sites during CONT08. Correlations written in italic are statistically 
insignificant (p>0.05). (* troposphere north gradients (1st line) and east gradients (2nd line)). 
 Ny-Ålesund Svetloe Onsala Wettzell Medicina Zelenchukskaya Westford Tsukuba Kokee Park Hartebeesthoek Tigo Concepcion 

VLBI/VieVS–VLBI/IVS 0.93 (0.00) 
0.93 (0.00) 

0.94 (0.00) 
0.89 (0.00) 

0.93 (0.00) 
0.93 (0.00) 

0.89 (0.00) 
0.95 (0.00) 

0.91 (0.00) 
0.88 (0.00) 

0.86 (0.00) 
0.92 (0.00) 

0.93 (0.00) 
0.87 (0.00) 

0.92 (0.00) 
0.93 (0.00) 

0.89 (0.00) 
0.91 (0.00) 

0.87 (0.00) 
0.70 (0.00) 

0.86 (0.00) 
0.85 (0.00) 

VLBI/VieVS–GPS/CODE 0.74 (0.00) NYA1 
0.57 (0.02) NYA1 

0.75 (0.00) 
0.34 (0.20) 

0.69 (0.00) 
0.70 (0.00) 

0.39 (0.13) WTZR 
0.80 (0.00) WTZR 

0.54 (0.03) 
0.56 (0.02) 

- 
- 

0.64 (0.01) 
0.25 (0.34) 

0.49 (0.05) 
0.55 (0.03) 

-0.19 (0.48) 
0.34 (0.20) 

0.68 (0.00) HRAO 
0.25 (0.35) HRAO 

0.58 (0.06) 
0.23 (0.50) 

VLBI/VieVS–DORIS/IGN 0.19 (0.49) 
-0.16 (0.56) 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

-0.06 (0.83) 
0.41 (0.13) 

0.16 (0.57) 
0.40 (0.14) 

- 
- 

VLBI/VieVS–WVR - 
- 

- 
- 

0.49 (0.00) 
0.57 (0.00) 

0.31 (0.00) 
0.11 (0.14) 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

VLBI/VieVS–ECMWF 0.62 (0.00) 
0.61 (0.00) 

0.51 (0.00) 
0.21 (0.10) 

0.52 (0.00) 
0.76 (0.00) 

0.51 (0.00) 
0.31 (0.02) 

0.28 (0.03) 
0.48 (0.00) 

0.17 (0.20) 
0.42 (0.00) 

0.74 (0.00) 
0.51 (0.00) 

0.40 (0.00) 
0.28 (0.03) 

0.01 (0.94) 
0.10 (0.43) 

0.24 (0.06) 
0.14 (0.28) 

0.34 (0.04) 
0.60 (0.00) 

VLBI/VieVS–JMA/KARAT - 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

0.39 (0.00) 
0.50 (0.00) 

- 
- 

- 
- 

- 
- 

VLBI/VieVS–CreSS - 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

0.45 (0.00) 
0.41 (0.00) 

- 
- 

- 
- 

- 
- 
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Figure 1 IVS CONT08 stations. 
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Figure 2 Troposphere ties between the GPS antenna TSKB and the VLBI antenna TSUKUB32 during CONT08, 
calculated for all common epochs. Red and black dotted lines illustrate total and hydrostatic ties, respectively. 
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Figure 3 Troposphere ZTDs of the co-located site Wettzell during CONT08. 
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Figure 4 Mean biases and standard deviations of all ZTDs during CONT08 w.r.t. VLBI-VieVS (bias: dark grey, 
std. dev.: light grey) and GPS-CODE (bias: dark red, std. dev.: light red). 
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Figure 5 Troposphere east gradients of the co-located site Onsala during CONT08. 
 




