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Abstract— Previous results in the literature have shown that
derivation of the optimum maximum-likelihood (ML) receiver for
symbol-by-symbol (SBS) detection of an uncoded data sequence based
on all received signals in the presence of random phase noise is an
intractable problem. This is because it involves the computation
of the conditional probability distribution function (PDF) of the
phase noise process. In this paper, we seek to minimize symbol
error probability (SEP), which is achieved by SBS detection of
the sequence based on all received signals. We show that the ML
detector for this problem can be formulated as a weighted sum of
central moments of the conditional PDF of phase noise. Given that
the central moments of the conditional PDF of phase noise can be
estimated, this new optimal structure is tractable with respect to the
previously known optimal ML receiver. Furthermore, based on the
new receiver structure, we propose a simple approximate method for
SBS detection and investigate its scope and applicability. Simulation
results demonstrate that SEP performance close to optimality can
be obtained through the proposed method for a wide range of phase
noise variances and low signal-to-noise ratio (SNR).

I. INTRODUCTION

Local oscillator instabilities that result in random, time-varying
phase difference between the transmitter and receiver, have
been one of the major impediments towards realizing a reliable
coherent communication system [1]. This impairment, referred
to as phase noise can result in significant performance loss if not
compensated appropriately.

The problem of receiver design for uncoded data detection in
the presence of a random phase noise process has been studied
for decades, e.g., refer to [1] and references therein. One of the
earlier and important approaches to this problem was reported
in [2], which proposed simultaneous maximum-likelihood (ML)
estimation of the data sequence and phase noise. However, it
was not proved if the approach ensures optimality in terms of
achieving minimum symbol error probability (SEP). In [3], it
was shown that the simultaneous approach proposed in [2] is
optimal in the high signal-to-noise ratio (SNR) regime.

An optimum minimum SEP criterion receiver structure was
first derived in [4]. Specifically, it was illustrated that the opti-
mum symbol-by-symbol (SBS) receiver has a separable estimator-
detector structure, i.e., all the received signals are used to first
compute/estimate the posteriori or conditional probability density
function (PDF) of phase noise. The information in this posteriori
density function is then used to detect a data symbol. However, it
was observed that this optimum detector can only be realized if
the conditional PDF of phase noise has a closed-form expression.
In general, the problem of computing the conditional PDF of
phase noise given all the received signals has been demonstrated
to be an infinite dimensional problem [4], and the optimum
receiver structure is found to only be analytically tractable under
restrictive assumptions on the phase noise distribution and the
receiver structure.

The analytical intractability of the optimum receiver struc-
ture in [4], combined with limited scope of data-aided phase
estimation schemes, spurred interest in designing joint data
sequence detection and phase estimation algorithms, instead
of SBS detection. Some related examples are the per-survivor
processing algorithm (also a tree pruning algorithm) in [5],
and expectation maximization algorithm in [6]. A generalized-
likelihood based joint data sequence detection and phase noise
estimation algorithm of polynomial complexity was proposed
in [7]. For a constant phase offset model, the algorithm was
observed to achieve performance close to that of the optimal
ML receiver. Iterative methods based on factor-graphs for data
detection and phase noise estimation were proposed in [8]. In [9],
an adaptive ML sequence detection scheme based on the Viterbi
algorithm was proposed for uncoded data sequence detection in
the presence of a random phase noise process. However, it is well
known that sequence detection schemes in [5]–[9] do not achieve
optimal SEP performance in the presence of a random phase
noise process. Application of Monte Carlo sampling methods to
phase noise estimation and uncoded data detection was investi-
gated in [10], which incurs high computational complexity.

In this paper, motivated by the optimal receiver structure
derived in [4], we re-visit the problem of optimal detection of an
uncoded data sequence in the presence of phase noise. We seek to
minimize SEP, which is achieved by SBS detection of a sequence.
Detection of each symbol is based on the entire received signal,
corresponding to the entire data sequence, thereby accounting for
correlated phase distortion (memory) in the received signals. The
contributions and organization of this paper can be summarized
as follows:

• In Section II, the system model for optimal detection of an
uncoded data sequence in the presence of phase noise is
presented. This is similar to that in [4].

• In Section III, without making any assumptions on the PDF
of the phase noise process, we derive an alternative form
of the ML receiver that is analytically tractable with respect
to the original receiver in [4]. Specifically, the ML detector
is formulated as a weighted sum of the central moments of
the conditional PDF of the phase noise as opposed to the
convoluted conditional PDF computation in [4].

• Furthermore, in Section III, we present an analytical method
to approximate the alternative ML rule by truncating it to
a finite number of terms while still ensuring that its SEP
performance is close to optimal. Then, we truncate the
new optimal ML rule to two terms for SBS detection and
investigate its scope and applicability.

• In Section IV, we present our simulation results, which
demonstrates that performance close to that of the optimal
ML detector can be achieved for a wide range of phase noise



variances and low SNR through the proposed truncation
approach.

Notations: Expectation operator is denoted as E[·]. [·]T denotes
transpose and [·]H denotes Hermitian of a vector, and I denotes
the identity matrix. Re(·), Im(·), and arg(·) are the real, imaginary
part, and angle of a complex number respectively.

II. SYSTEM MODEL

Consider a system with the following received signal model in
the kth time slot

rk = mkejθk + nk, (1)

where, rk is the received signal, mk is the transmitted symbol,
θk is the unknown phase noise, and nk is complex Gaussian
noise in the kth time slot. r , [r0, . . . , rL−1]

T represents the
vector of all L received symbols in L time slots. We assume
transmission of uncoded data that are denoted in the vector
form as m , [m0, . . . ,mL−1]

T . Since the data is uncoded, we
assume that all elements in m are independent of each other, and
are transmitted with equal probability. In addition, mi, for i =
0, . . . , L − 1 can assume any point {Si, ∀ i ∈ {1, ..., C}} in the
signal constellation, where C is the size of the constellation. Let
θ, [θ0, . . . , θL−1]

T denote the vector of unknown phase noise
random variables, where no assumptions are made on its PDF.
It is assumed that m and θ are independent of each other. The
additive white Gaussian noise (AWGN) is n , [n0, . . . , nL−1]

T ,
i.e., it is a vector of independent identically distributed (i.i.d.)
complex Gaussian random variables with E[n] = [0, . . . , 0]T ,
and E[nnH ] = N0I, i.e., nk ∼ CN (0, N0).

We investigate the problem of optimum symbol detection based
on all received signals, r, such that the SEP is minimized. It
is known that optimum SBS detection of the kth symbol that
minimizes SEP is obtained by ML detection [11]. Thus, the
optimum receiver for the kth symbol is given by

max
i∈{1,...,C}

Li(k) = max
i∈{1,...,C}

p(r|mk = Si), (2)

In the case of optimum ML detection, in [4], it has been shown
that Li(k) reduces to the following

Li(k) =
∫ π

−π

p(rk|mk = Si, θ(k))p(θk|rk)dθk, (3)

where rk , [r0, . . . , rk−1, rk+1, . . . , rL−1]
T , refers to all signals

received outside the kth interval. The optimum ML detector first
involves the estimation of the conditional PDF of phase noise in
an interval using all signals received outside it. This conditional
PDF is then used to perform data detection using (3). As shown
in [4], the conditional PDF p(r|mk = Si) can be determined
only in special cases.

The detector in (3) reduces to the conventional receiver ap-
proach when the carrier phase is first recovered by a phase
estimator, followed by coherent detection of the symbols, i.e., the
recovered phase θ̂k is treated as the true value of θk. To illustrate
the aforementioned amenability, consider the conditional PDF of
θk to be a distribution with variance zero or equivalently a delta
function, i.e., p(θk|rk) = δ(θ − θ̂k). The ML data decision rule
is then derived from (2) and (3) as follows

max
i∈{1,...,C}

Li(k) = max
i∈{1,...,C}

e−
|rk−Siejθ̂k |2

2N0

(2πN0)1/2
. (4)

Thus, if the recovered θ̂k is treated as the true value of θk, the ML
decision rule in (3) becomes equivalent to the minimum distance
based coherent detection rule [12].

III. ALTERNATIVE FORM FOR ML DECISION RULE

In this section, we seek to derive alternative forms of the
optimum receiver for uncoded data in the presence of phase
noise. Particularly of interest are ML detector structures that
are tractable in their exact or approximate form. Adopting the
system model discussed above, consider the problem of data
detection in the kth time slot. Assume θk to be drawn from an
arbitrary probability distribution. Then, by performing Taylor
series expansion of f(θk) = p(rk|mk = Si, θk) about θk = θ̂k

in (3), it can be rewritten as

max
i∈{1,...,C}

Li(k) = max
i∈{1,...,C}

1
(2πN0)1/2

∫ π

−π

[
f(θ̂k)

0!
+

f{1}(θ̂k)
1!

×(θk − θ̂k) +
f{2}(θ̂k)

2!
(θk − θ̂k)2 + . . .

]
× p(θk|rk)dθk,

= max
i∈{1,...,C}

1
(2πN0)1/2

[
f(θ̂k)M0

0!
(5)

+
f{1}(θ̂k)M1

1!
. . . +

f{n}(θ̂k)Mn

n!
+ . . .

]
.

That is, the decision rule in equation (3) is equivalent to
the maximization of the weighted sum of Mj , j ∈ Z+ over
Si ∈ {1, . . . , C}. Here, Mj is the jth central moment of the
conditional PDF, p(θk|rk), and f{n}(θ̂k) is the nth derivative of
f(θk) given by

f(θk) =
e−

|rk−Siejθk |2
2N0

(2πN0)1/2
, (6)

and evaluated at θk = θ̂k. For the Taylor series expansion in (5)
to converge to f(θk) for all values of θk, it is required that f(θk)
be an entire function in θk, ∀θk ∈ R. The proof for this is given
in Appendix A.

In deriving (5) no restrictive assumptions are made on the
distribution of θk. In addition, we do not assume any form of
decision feedback or data-aided mode of operation at the receiver.
Thus, the problem of determining the optimum ML detector is
reduced to estimating the central moments of the conditional PDF
of θk, as opposed to estimating the PDF itself in [4]. The central
moments of a distribution can be estimated for a given data set
[15]. In its exact form, the new receiver structure incurs high
computational complexity on the receiver, thereby constraining
practical utility. As we shall see in the sequel, the parametric
form of the ML detection rule in (5) allows simple approximation
by using a finite number of terms and obtains performance close
to that of the original ML rule.

A. Truncation of the Sum-of-Central-Moments ML Rule

The alternative ML decision rule in (5) shows that the optimal
ML decision for achieving minimum SEP requires a knowledge
of all central moments of the conditional PDF, which is equivalent
to having complete knowledge of the distribution. In this section,
we present two techniques to truncate the rule in (5) to a finite
number of terms.

1) Determine the number of terms to be retained, n: We first
seek to determine the number of terms that are to be retained in
a truncated version of (5) such that the error of this approximate
rule, with respect to the original ML rule is very small. This
ensures that the SEP performance of the approximate ML rule is
close to that of the optimal ML rule. Consider an approximate



ML rule obtained by retaining n terms in the Taylor series as
follows

max
i∈{1,...,C}

Li(k) = max
i∈{1,...,C}

1
(2πN0)1/2

[
f(θ̂k)M0

0!

+
f{1}(θ̂k)M1

1!
+ . . . +

f{n}(θ̂k)Mn

n!

]
. (7)

The upper bound on the error for this approximation with respect
to the original ML rule is given as

εn+1 ≤ 1
(2πN0)1/2

(
|Im{r∗

kSie
jθ1}(θm−θ̂k)|
N0

)n+1

(n + 1)!
, (8)

where the proof for (8) is presented in Appendix B. Equation (8)
can be used to determine the number of terms to be retained in
the approximate ML rule, such that the error due to truncation of
(5) to a finite number of terms diminishes to a sufficiently small
value. This in turn ensures that the approximate rule is close to
the original ML rule. For the error to diminish to a sufficiently
small value, it is straightforward to see that we need n, such that

∣∣∣Im{r∗kSie
jθ1}

(
θm − θ̂k

)∣∣∣
N0

n+1

< (n + 1)!. (9)

Since an upper bound on the approximation error is used in
(9), numerically solving the inequality gives an upper bound on
the number of terms that are to be retained in the approximate
decision rule.

2) Fix the number of terms to be retained, n: Another ap-
proach to approximating the ML decision rule by truncation is
to fix the number of terms in the Taylor series expansion, n, and
investigate the various scenarios where the approximate decision
rule achieves SEP performance close to that of the ML decision
rule. Consider the case where the Taylor series is truncated to
n = 2; i.e., only the first three terms in the optimal decision rule
in (5) are considered. This case is particularly interesting as it
corresponds to scenarios where the conditional distribution of θk

is unknown except for its mean and variance. We first define an
approximate SBS detection rule for uncoded data over AWGN
channel as

max
i∈{1,...,C}

Ai(k) = max
i∈{1,...,C}

[
f(θ̂k)M0

0!
+

f{1}(θ̂k)M1

1!

+
f{2}(θ̂k)M2

2!

]
,

= max
i∈{1,...,C}

[
f(θ̂k)M0

0!
+

f{2}(θ̂k)σ2
p

2!

]
. (10)

The second-order approximate ML rule in (10) consists of two
terms; the first term is the zero-th order term from the Taylor
series and is identical to the minimum distance based coherent
symbol detection rule. The second term is the variance of the
conditional PDF of θk weighted by the second derivative of
f(θk) = p(rk|mk = Si, θk), which intuitively gives a measure of
sharpness or curvature of p(rk|mk = Si, θk) about rk = Sie

jθ̂k .
The most likely symbols result in high magnitude of sharpness
of p(rk|mk = Si, θk) about rk = Sie

jθ̂k . Thus, the objective
function in the optimization problem characterizing the decision
rule in (10) is intuitively appealing, in that it can be viewed
as a weighted combination of the distance based measure (as

from coherent detection) and the curvature of p(rk|mk = Si, θk)
weighted by the variance of the conditional distribution of θk.

The upper bound on the error of this approximation is given
as

ε3 ≤

∣∣∣∣∣∣∣
(
θm − θ̂k

)3

6(2πN0)1/2

∣∣∣∣∣∣∣
[∣∣∣∣∣−

(
Im{r∗kSie

jθ1}
N0

)3
∣∣∣∣∣ (11)

+
∣∣∣∣ Im{r∗kSie

jθ1}
N0

∣∣∣∣ +
3

∣∣Im{r∗kSie
jθ1}

∣∣ ∣∣Re{r∗kSie
jθ2}

∣∣
N2

0

]
The proof for the approximation error bound is presented in
Appendix B. From (11), we develop insight into the scenarios
where the approximate decision rule would be close to the ML
decision rule in SEP performance.

• The error in approximation is inversely proportional to
AWGN channel noise variance. Hence the error decreases
with increase in the variance of the AWGN channel or
equivalently with decreasing SNR for a given constellation
and phase noise variance.

• The error in approximation is directly proportional to the
magnitude of phase noise relative to the mean θ̂k of the
conditional PDF of θk.

• The error in approximation is directly proportional to the
magnitude of the symbol point in the constellation. This
implies that the error in the second-order approximated ML
rule increases with increase in the size of the constellation
for a given AWGN channel noise variance and phase noise
variance.

IV. SIMULATIONS AND DISCUSSION

By simulations, we first seek to investigate the number of
terms, n, required to diminish the error in the approximate
decision rule with respect to the optimal ML decision rule. It
is difficult to simulate the approximate decision rule when the
required number of terms, n, is large. Hence, we simulate the
performance of the decision rule given by the difference between
the original rule in (3), and the upper bound on the error in (8)
resulting from truncation of the ML rule to an arbitrary n terms.
The phase noise random variables are considered to be Gaussian
i.i.d. with variance σ2

p . This model is valid for a phase noise
process in the presence of a locked phase-locked loop (PLL)
with small loop bandwidth [16] or a Kalman/extended Kalman
filter [17]. We consider 16-QAM modulation scheme (C = 16),
a fixed SNR of 11 dB, and different conditional PDF variance
values, σ2

p = 10−1, 10−2, 10−3 rad2. This choice of variance of
phase noise error is motivated by a strong Wiener phase noise
process scenario, where variance of the process innovation is of
the order of 10−3 rad2 [18]. This inturn implies that the mean-
square error of the estimator of this process is at best of the
same order as shown in [18]. Fig. 1 illustrates the dependence
of SEP performance of the approximate rule on n, for different
values of σ2

p . For a given constellation and SNR, we observe
that the number of terms required increases as the phase noise
variance increases. Therefore, when σ2

p is large, higher number of
central moments of the conditional PDF of θk, and higher order
derivatives of f(θk) are required in the approximate decision rule.
Note that n in Fig. 1 is an upper bound on the number of terms to
be retained in the truncated ML rule. In the ensuing discussion,
we observe that the approximate ML rule with just two terms
approaches optimal SEP performance for cases of medium/high
phase noise variance and low SNR. This also includes the case
of σ2

p ≤ 10−2 rad2 considered above for 16-QAM.
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Fig. 1: Convergence of the approximate decision rule to the optimal ML with
increase in n for different σ2

p values.

We now discuss simulation results demonstrating SEP perfor-
mance versus SNR per bit using (10) as the decision rule for
detecting uncoded data. Two modulation schemes with relatively
different constellation order are considered for study: (i) A lower
order 16−QAM constellation, and (ii) a higher order 1024−QAM
constellation. This choice is motivated by the analytical obser-
vation that the error in approximation would depend on the size
of the constellation. The phase noise random variables are again
considered to be Gaussian i.i.d. with variance σ2

p.
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Fig. 2: Comparison of SEP performance between the Optimal ML decision rule,
approximate rule and coherent detection for 16 QAM, σp = 10−2 rad2.
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Fig. 3: Comparison of SEP performance between the Optimal ML decision rule,
approximate rule and coherent detection for 1024 QAM, σp = 10−4 rad2.

1) Dependence on AWGN variance: Fig. 2 presents results
for C = 16, σ2

p = 10−2 rad2 and SNR per bit up to 12
dB. It can be easily observed that the approximate rule in
(10) outperforms the coherent detector (4) till around 12 dB
SNR per bit. At 12 dB, a gain of 1 dB in SNR per bit is
observed for the approximate method when compared to the
case of coherent detection. Also, in this SNR regime, the
performance of the approximate decision rule is observed
to be close to that of the optimal ML. Similar observations
can be made for the case C = 1024, σ2

p = 10−4 rad2 in
Fig. 3, where a gain of around 1 dB is observed at around
28 dB SNR per bit. We observe that as AWGN variance is
decreased, the maximum variance of the conditional PDF of
phase noise for which the approximation gives performance
close to optimal SEP, decreases.

2) Dependence on phase noise variance: We observe that SEP
performance of the rule in (10) is close to that of the optimal
ML rule when σ2

p < 10−2 rad2 for C = 16, and SNR ≤ 12
dB. This is also observed when σ2

p ≤ 10−4 rad2 for C =
1024, and SNR ≤ 28 dB. In both the cases, a gain of around
1 dB can be observed when compared to the performance of
coherent detection. As σ2

p is increased, the maximum SNR
for which the SEP performance of the approximate rule is
close to the optimum, decreases.

3) Dependence on size of constellation: For a given SNR and
phase noise variance, the error in the second-order approx-
imated ML rule increases with increase in the distance
of a symbol point from the origin of the constellation.
With increase in the size of the constellation, the maximum
variance for which the approximation renders SEP close to
that of the optimal ML rule, decreases.

In general, we observe that the second order approximation of the
ML rule operates close to the original ML SEP in scenarios of
low/medium/high phase noise variance and high AWGN noise.
When the decision rule in (10) deviates significantly from the
original ML rule, higher number of terms needs to be included
in order to realize SEP performance that is close to optimum.
Note that no form of decision feedback or data aided schemes
have been employed at the receiver while implementing the ap-
proximate ML rule. The additional computation involved relates
to evaluating the function f(θk), its derivatives at θ̂k, and the
mean and variance of the conditional PDF of θk.

V. CONCLUSIONS

We show that the ML data detector for symbol by symbol
detection in the presence of phase noise can be formulated as
a weighted sum of central moments of the conditional PDF of
phase noise. We present an analytical method to determine the
number of terms to be retained in the approximate ML decision
rule that still ensures SEP performance close to optimum. Fur-
thermore, we approximate the optimal structure by truncating the
ML rule to two terms and observe that this approximation renders
SEP performance close to optimum for medium/high phase noise
variance and low SNR.

APPENDIX A

PROOF THAT f(θk) IS AN ENTIRE FUNCTION IN θk

Lemma 1: If f(θk) = 1
(2πN0)1/2 e−

|rk−Siejθk |2
2N0 , then the nth

derivative of f(θk) evaluated at any arbitrary point θk = θ̂k is of



the form

f{n}(θ̂k) = wn

(
Im{r∗kSie

jθ̂k}
N0

)n

, (A-1)

where
(

Im{rkSie
jθ̂k}

N0

)n

is the highest exponential power in

f{n}
(
θ̂k

)
, and wn is a function of rk, Si, e

jθ̂k , and N0.

Proof: For n = 1, it is trivial to see that f{1}(θ̂k) =
w1

Im{rkSie
jθ̂k}

N0
. Hence, we first prove that (A-1) holds for n = 2

as follows

f{2}(θ̂k) =
e−

|rk−Siejθ̂k |2
2N0

(2πN0)1/2

(
r∗kSie

jθ̂k − rkS∗
i e−jθ̂k

)2

4N2
0

×

−1 −
2N0

(
r∗kSie

jθ̂k + rkS∗
i e−jθ̂k

)
(
r∗kSiejθ̂k − rkS∗

i e−jθ̂k

)2

 ,

= w2

(
Im{r∗kSie

jθ̂k}
N0

)2

. (A-2)

Assume that (A-1) holds true for n ∈ N, i.e.,

f{n}(θ̂k) = wn

(
Im{rkSie

jθ̂k}
N0

)n

,

= w′
ne

−|rk−Siejθ̂k |2
2N0

(
Im{r∗kSie

jθ̂k}
N0

)n

.(A-3)

Now the (n + 1)th derivative is evaluated as in (A-4). Hence
result in (A-1) also holds for f{n+1}(θ̂k). Since both the basis
and the inductive steps have been proven, (A-1) holds true ∀n ∈
N.

Lemma 2: f(θk) is an entire function in θk, i.e., the Taylor
series expansion of f(θk) is equal to the function for all values
of θk ∈ R.

Proof: The function represented by f(θk) is a real function
in θk ∈ R, given that both its domain and range are real valued.
Hence it is analytic ∀θk ∈ R if, and only if, it is infinitely
differentiable and can be represented by a convergent power
series evaluated about any arbitrary point θ̂k ∈ R [13]. The power
series representation of f(θk) about θ̂k ∈ R is given as

f(θk) =
∞∑

n=0

f{n}(θ̂k)
n!

(
θk − θ̂k

)n

, (A-5)

where f{n}, n ∈ Z+ is the nth derivative of f(θk). f(θk) is a
function that is a composition of the exponential function in θk.
Given that the exponential function is infinitely differentiable;
any function that is a composition of an exponential function is
also infinitely differentiable [13].

The convergence of the power series (A-5) ∀θk ∈ R can be
proved by the ratio test. Let an denote the n-th term in the power

series given in (A-5), where

an =
f{n}(θ̂k)

n!

(
θk − θ̂k

)n

=
wn

(
Im{rkSie

jθ̂k}
N0

)n

n!

(
θk − θ̂k

)n

.

Here, f{n}(θk) at θk = θ̂k can be obtained from Lemma 1.
Hence by ratio test, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣
wn+1

Im{rkSie
jθ̂k}

N0

(
θk − θ̂k

)
wnn

∣∣∣∣∣∣∣ = 0.

The radius of convergence rconv of the series is evaluated as

rconv = lim
n→∞

∣∣∣∣∣∣ nwn

Im{rkSie
jθ̂k}

N0
wn+1

∣∣∣∣∣∣ . (A-6)

When n → ∞, the radius of convergence rconv → ∞ in (A-
6). Now we have that f(θk) is infinitely differentiable and can
be represented by a convergent power series for ∀θk ∈ R. It
remains to be shown that the Taylor series converges to the
original function f(θk),∀θk ∈ R. To prove this, consider a finite
Taylor series expansion of f(θk)

f(θk) =
n∑

n=0

f{n}(θ̂k)
n!

(
θk − θ̂k

)n

. (A-7)

The error in this truncated Taylor series with respect to the
original function is given by the remainder term in Taylor’s
theorem as

R{n+1}(θk) =
f{n+1}(θc)
(n + 1)!

(
θk − θ̂k

)n+1

. (A-8)

Here θc ∈
(
θk, θ̂k

)
if θk < θ̂k, or θc ∈

(
θ̂k, θk

)
if θk > θ̂k. In

the limit n → ∞, we have

lim
n→∞

R{n+1}(θk) = lim
n→∞

f{n+1}(θc)
(n + 1)!

(
θk − θ̂k

)n+1

,

= lim
n→∞

wn+1

((
θk − θ̂k

)
Im{rkSie

jθ̂k}
N0

)n+1

(n + 1)!
,

= 0. (A-9)

The limit n → ∞ in (A-9) evaluates to zero since in the limit,

n! grows faster than
(

Im{rkSie
jθ̂k}

N0

)n+1

×
(
θk − θ̂k

)n+1

, which

is an exponential function in n [14]. We thus prove that f(θk)
is an entire function in θk.

f{n+1}(θk) =
dw′

n

dθk
e

−|rk−Siejθk |2
2N0

(
Im{r∗kSie

jθk}
N0

)n

+

(
r∗kSie

jθk − rkS∗
i e−jθk

)
2N0

(
Im{r∗kSie

jθk}
N0

)n

wn

+
d

(
Im{r∗

kSie
jθk}

N0

)n+1

dθk
e

−|rk−Siejθk |2
2N0 w′

n = wn+1

(
Im{r∗kSie

jθk}
N0

)n+1

. (A-4)



APPENDIX B

PROOF FOR UPPER BOUND ON εn+1

Consider an approximate ML rule obtained by retaining n
terms in the Taylor series as follows

max
i∈{1,...,C}

Li(k) = max
i∈{1,...,C}

1
(2πN0)1/2

[
f(θ̂k)M0

0!

+
f{1}(θ̂k)M1

1!
+ . . . +

f{n}(θ̂k)Mn

n!

]
.

Then, the absolute value of the error of this approximation with
respect to the original ML rule is given

εn+1 =
∫ π

−π

∣∣∣∣f{n+1}(θc)
(n + 1)!

(
θk − θ̂k

)n+1
∣∣∣∣︸ ︷︷ ︸

,|τn+1|

p(θk|rk)dθk, (B-1)

where τn+1 is the error arising from the truncation of the Taylor
series [13]. The variable θc in τn+1 depends on both θ̂k and θk,
and cannot be explicitly determined. Note that we consider the
absolute value of τn+1, rather than its actual value, since it can
be positive or negative due to each θk value. Using (B-1), the
upper bound on εn+1 can be determined as follows

εn+1 ≈
∫ π

−π

e−
|rk−Siejθ̂k |2

2N0︸ ︷︷ ︸
,φ

∣∣∣Im{r∗kSie
jθc}

(
θk − θ̂k

)∣∣∣n+1

N0
N+1(2πN0)1/2(n + 1)!

×p(θk|rk)dθk, (B-2a)

≤ 1
(2πN0)1/2

(
|Im{r∗

kSie
jθ1}(θm−θ̂k)|
N0

)n+1

(n + 1)!
, (B-2b)

where (B-2a) is obtained by first using the approximation

f{n+1}(θc) ≈
e−

|rk−Siejθ̂k |2
2N0

(2πN0)1/2

(
Im{r∗kSie

jθc}
N0

)n+1

, (B-3)

for large values of Im{r∗
kSie

jθc}
N0

, which is verified in Lemma 1 in
Appendix A. We have Im{r∗kSie

jθc} = |r∗kSi| sin(θc+arg{r∗kSi})
that is maximum when θc + arg{r∗kSi} = π/2. Thus we set θc
as θ1 = π/2 − arg{r∗kSi} as in (B-2b). Though θk is drawn
from p(θk|rk) and can take any values between [−∞,∞], it can
be upper bounded to θm = kσp using the Chebyshev inequality
[11], where k ∈ R and σ2

p is the variance of p(θk|rk) such that

Pr
(
|θk − θ̂k| ≥ kσp = θm

)
≤ 1

k2
. (B-4)

In (B-2a), the term φ ∈ [0, 1] and is upper bounded to one to
finally obtain (B-2b).

A. Derivation of Upper Bound for ε3

The bound on the error for the approximate ML rule in (10)
is evaluated as

ε3 =
∫ π

−π

∣∣∣∣f{3}(θc)
(3)!

(
θk − θ̂k

)3
∣∣∣∣︸ ︷︷ ︸

,|τ3|

p(θk|rk)dθk, (B-5)

≤
∣∣∣f{UB}(θc, θk)

∣∣∣ ∫ π

−π

p(θk|rk)dθk =
∣∣∣f{UB}(θc, θk)

∣∣∣

Here f{UB}(θc, θk) refers to the upper bound of τ3, which is
given by

|τ3| ≤

∣∣∣∣∣∣∣
(
θk − θ̂k

)3

6(2πN0)1/2

∣∣∣∣∣∣∣
[∣∣∣∣∣−

(
Im{r∗kSie

jθc}
N0

)3
∣∣∣∣∣ (B-6a)

+
∣∣∣∣ Im{r∗kSie

jθc}
N0

∣∣∣∣ +
3

∣∣Im{r∗kSie
jθc}

∣∣ ∣∣Re{r∗kSie
jθc}

∣∣
N2

0

]

≤

∣∣∣∣∣∣∣
(
θm − θ̂k

)3

6(2πN0)1/2

∣∣∣∣∣∣∣
[∣∣∣∣∣−

(
Im{r∗kSie

jθ1}
N0

)3
∣∣∣∣∣ (B-6b)

+
∣∣∣∣ Im{r∗kSie

jθ1}
N0

∣∣∣∣ +
3

∣∣Im{r∗kSie
jθ1}

∣∣ ∣∣Re{r∗kSie
jθ2}

∣∣
N2

0

]
First, Triangle and Cauchy-Schwartz inequality [13] are applied
to |τ3| in order to obtain (B-6a). Equation (B-6a) is monotonically
increasing for all values of θk. Hence we let θk to be upper-
bounded by θm as in (B-4). Then, Im{r∗kSie

jθc} is upper
bounded by setting θc = θ1, where θ1 = π/2 − arg{r∗kSi}
as discussed before. Similarly, we have Re{r∗kSie

jθc} =
|r∗kSi| cos(θc + arg{r∗kSi}) and this becomes maximum when
θc + arg{r∗kSi} = 0. Hence, we upper bound Re{r∗kSie

jθc} by
setting θc = θ2, where θ2 = −arg{r∗kSi},
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