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Towards Fully Optimized BICM Transceivers
Md. Jahangir Hossain, Alex Alvarado, and Leszek Szczecinski

Abstract—Bit-interleaved coded modulation (BICM)
transceivers often use equally spaced constellations and a
random interleaver. In this paper, we propose a new BICM
design, which considers hierarchical (nonequally spaced)
constellations, a bit-level multiplexer, and multiple interleavers.
It is shown that this new scheme increases the degrees of freedom
that can be exploited in order to improve its performance.
Analytical bounds on the bit error rate (BER) of the system in
terms of the constellation parameters and the multiplexingrules
are developed for the additive white Gaussian Noise (AWGN)
and Nakagami-m fading channels. These bounds are then used
to design the BICM transceiver. Numerical results show that,
compared to conventional BICM designs, and for a target BER
of 10

−6, gains up to 3 dB in the AWGN channel are obtained.
For fading channels, the gains depend on the fading parameter,
and reach 2 dB for a target BER of 10

−7 and m = 5.

Index Terms—Bit-interleaved coded modulation, bit error rate,
interleaver design, multiple interleavers, L-values, nonequally
spaced constellations, pulse amplitude modulation, quadrature
amplitude modulation, trellis coded modulation.

I. I NTRODUCTION

Bit-interleaved coded modulation (BICM) [1]–[3] is used
in most of the existing wireless communication standards,
e.g., HSPA, IEEE 802.11a/g/n, DVB, etc. In BICM, the
channel encoder and the modulator are separated by a bit-
level interleaver which allows the designer to choose the code
rate and the constellation independently. BICM maximizes
the code diversity, and therefore, outperforms trellis coded
modulation (TCM) in fading channels. Compared to TCM,
BICM is suboptimal for the additive white Gaussian noise
(AWGN) channel because it decreases the minimum Euclidean
distance. Nevertheless, its simplicity and flexibility make it an
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attractive coded modulation scheme even when fading is not
present.

BICM appears as a simple out-of-the box coded modulation
scheme, however, its full potential is achieved when the design
is optimized. In particular, it has been shown in [4], [5] that
the interleaver and the code can be jointly designed to exploit
the so-called unequal error protection (UEP) caused by the
binary labeling of the equally spaced (ES) constellations.More
generally speaking, if the channel offers UEP to the coded bits,
gains in terms of bit error rate (BER) can be obtained, cf. [4,
Sec. I] and references therein. UEP can also be intentionally
introduced when designing the transceiver. For example, UEP
can be imposed by allowing unequal power allocation for dif-
ferent bits, by deleting bits using certain patterns (puncturing),
by changing the binary labeling of the constellation, or by
using nonequally spaced (NES) constellations or nonequally
probable symbols, known asgeometrical and probabilistic
shaping, respectively.

Shaping techniques for BICM have received some attention
in the literature (e.g., geometrical in [6]–[8] and probabilistic
in [9], [10, Sec. III-F]). All these works, however, are based
on capacity maximization arguments, and therefore, the gains
can be obtained if capacity-approaching codes are used. The
approach we adopt in this paper is different, i.e., we opt
for the joint optimization of the BICM building blocks: the
code, the modulator, and the interleaver. This approach offer
gains compared to previous designs because in practice, codes
are sensitive to UEP, which is an inherent feature of BICM.
Because of the UEP, the performance of BICM system will
depend, in general, on how the modulator inputs are “matched”
to the encoder’s outputs. In this paper, we use a well designed
interleaver to connect the modulator and the encoder, as
an alternative to the random interleaver postulated by [2]
which eliminates any code-modulator match. This matching
technique can be used, in general, for any code that is
UEP-sensitive, however, the analysis and the resulting design
depend on the type of code used. In this paper we consider
convolutional codes for which the analysis is tractable and
also because these codes are simple and popular (e.g., BICM
with convolutional codes is used in wireless standards such
as HSPA [11], IEEE 802.11a/g [12], and IEEE 802.11n [13]).
When convolutionally-encoded BICM is considered, capacity
arguments like the ones in [6]–[10] are less relevant, and thus,
in this paper we base our analysis on a different approach that
aims at the minimization of the BER for a given signal to
noise ratio (SNR).

In this paper, we propose not only to exploit the existing
UEP but also tocontrol it via geometrical shaping. We use the
so-called hierarchical constellations [14] which have received a
great deal of attention in many applications where independent
data streams with different qualities must be sent at the



2 IEEE TRANSACTIONS ONCOMMUNICATIONS, to appear, 2011.

same time, e.g., in multi-resolution image transmission [15],
[16], and simultaneous voice and multi-class data transmission
[17]. Hierarchical quadrature amplitude modulation (HQAM)
constellations are also used in QUALCOMM’s MediaFLO
[18] and have been standardized for the latest digital video
broadcasting-terrestrial (DVB-T2) [19], [20]. In MediaFLO,
the source encoder generates two information bit streams
known as base and enhancement layers. These two indepen-
dent streams are processed/coded independently and modu-
lated onto the same HQAM symbol. The base layer bits are
mapped to the more reliable bits of the constellation and the
enhancement layer bits are mapped to the less reliable bits of
the constellation. By doing this, the receivers with relatively
good channel quality can decode both layers correctly and
the receivers with relatively weak channel quality can decode
only the base layer. In this paper, we use HQAM constellations
in a different context than the one described above, i.e., we
use them to transmit only one data stream with improved
error performance. In particular, we consider that a single
bit stream, generated by the source encoder, is encoded by
the channel encoder. Then different coded bits are mapped to
the different bit positions of the HQAM constellation with a
particular assignment pattern. This allows to protect different
coded bits differently against the channel impairments andthe
coded BER of the single information bit stream is improved.

In order to exploit the UEP offered by the constellation, the
interleaver must be properly designed. The most commonly
interleaver considered in the literature is the single interleaver
(S-interleaver) of [2], which eliminates the UEP caused by
the binary labeling. UEP in BICM was in fact considered
an “undesired feature” in [2, Sec. II]. Recently, the the so-
called multiple interleavers (M-interleavers) [4] were shown
to improve the performance of the system by exploiting the
UEP caused by the modulator. In fact, the use of BICM with
M-interleavers (BICM-M) corresponds to the original BICM
configuration proposed by Zehavi in [1], as well as the original
BICM with iterative decoding (BICM-ID) scheme proposed by
Li and Ritcey in [21]. M-interleavers have also been shown to
outperform S-interleavers when BICM-ID is considered [5].

The BICM-M system in [4], [5] uses a random bit-level
multiplexing (R-MUX) that connects the encoder and the M-
interleavers, i.e., the M-interleavers assign the coded bits to
a particular bit position in the modulator in a pseudo-random
fashion (with predetermined probabilities). By doing this, the
dependency of adjacent coded bits is ignored. In this paper,
we propose an multiplexing/interleaving inspired by the well-
known puncturing strategy based on the periodic elimination
of the bits according to a prescribed pattern that matches
the temporal structure of the code, cf. [22]. We show that
such a deterministic multiplexing (D-MUX) of the coded bits
(followed by random interleaving) notably outperforms theR-
MUX used in [4].

The contributions of this paper can be summarized as
follows. We propose and study a BICM scheme for fading
and nonfading channels which considers the use of HQAM
constellations (HQAM-BICM), a periodic (and deterministic)
bit-level multiplexer, and M-interleavers. It is demonstrated
that the degrees of freedom of such a scheme can be exploited

to notably improve performance of the system in terms of
BER. Using a generalization of the so-called consistent model
(CoMod) introduced in [23], we develop closed-form expres-
sions for the probability density function (PDF) of the L-values
for HQAM-BICM, which are shown to be Gaussian mixtures
that depend on the constellation parameters. These PDFs are
used to develop union bounds (UB) on the BER of the system
for fading and nonfading channels, which in turn are then
used to optimize the transceiver’s design. Presented numerical
examples show that the proposed system offers gains over
previous BICM configurations (ES-QAM and S-interleavers
[2] or ES-QAM and M-interleavers [4]). For the particular
cases analyzed in this paper, the gains can be up to3 dB
for a BER target of10−6 in the AWGN channel, and for the
Nakagami-m fading channel, the gains can reach 2 dB for a
target of10−7 andm = 5.

II. PROPOSEDBICM TRANSCEIVER

Throughout this paper, we use boldface lettersct =
[c1,t, . . . , cN,t] to denote row vectors and capital boldface
letters C = [cT

1 , . . . , c
T
M ]T to denote a matrix ofM rows,

where (·)T denotes transposition. We denote probability by
Pr(·) and the PDF of a random variableX by pX(x). A
Gaussian distribution with mean valueµ and varianceσ2

is denoted byN (µ, σ2), the Gaussian PDF with the same
parameters byψ(λ;µ, σ) , 1√

2πσ
exp(− (λ−µ)2

2σ2 ), and the

Q-function byQ(x) , 1√
2π

∫ ∞
x

exp
(

−u2

2

)

du. The combi-
nations of i nonegative integers such that their sum isl is
denoted byWi(l), whereWi(l) , {[w1, . . . , wi] ∈ (Z+)i :
w1 + . . .+ wi = l}.

The HQAM-BICM system model under consideration is
shown in Fig. 1. In what follows, we describe functionalities
of various blocks of such transmission scheme.

A. Encoder, Multiplexing, and Interleaving

The kc vectors of information bitsil = [il,1, . . . , il,Nc
]

with l = 1, . . . , kc are encoded by a rateR = kc/n
convolutional encoder (ENC) yielding the vectors of coded
bits cp = [cp,1, . . . , cp,Nc

] with p = 1, . . . , n. These are
then fed to a deterministic multiplexing (D-MUX) unit which
bijectively mapsC = [cT

1 , . . . , c
T
n ]T ontoO = [oT

1 , . . . ,o
T
q ]T

with ok = [ok,1, . . . , ok,Ns
] and k = 1, . . . , q. Without loss

of generality, we assumeNsq = Ncn. The vector of bits
after the D-MUX are fed toq parallel interleaversπk. The q
interleavers are assumed to be independent and give randomly
permuted sequences of the bits, i.e.,uk = πk{ok}. Each
of the interleavers is connected to theqth bit positions in
the hierarchicalM -ary pulse amplitude modulation (HPAM)
constellation, whereq = log2M .

In general, the D-MUX can be defined as a one-to-
one mapping between the blocks ofnNc and qNs bits,
i.e.,{0, 1}nNc ↔ {0, 1}qNs. We define it via ann×Nc matrix
K̃, whose(p, t′)th entry is a pair(k, t) wherek ∈ {1, . . . , q}
and t ∈ {1, . . . , Ns}. The entry(k, t) indicates that the bit
cp,t′ is assigned to thekth D-MUX’s output at time instantt,
i.e., ok,t = cp,t′ .
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Fig. 1. Model of HQAM-BICM transmission: a channel encoder followed by the multiplexer (D-MUX), the interleavers (π1, . . . , πq), the hierarchical
M -PAM mapper, the channel, and the processing blocks at the receiver’s side.

The previous definition of the D-MUX is entirely general
but difficult to deal with, and thus, in this paper we only
consider D-MUX configurations that operate periodically over
blocks of nJ bits. We then represent̃K as a concatenation
of Nc/J matricesKτ , each of dimensionsn× J , i.e., K̃ =
[K0, . . . ,KNc/J−1], where the variableJ is called the period
of the D-MUX. The entries ofKτ are pairs(k, t + τnJ/q)
with k ∈ {1, . . . , q} and t ∈ {1, . . . , nJ/q}. Without loss
of generality, we assume that(Nc mod J) = 0 and that
(nJ mod q) = 0. To clarify these definitions, consider the
following example.

Example 1:Assumekc = 1 and n = 2 (R = 1/2), J =
3, and q = 3 (8-ary constellation). One possible D-MUX is
defined by

Kτ =

[

(1, 1 + 2τ) (2, 2 + 2τ) (2, 1 + 2τ)
(1, 2 + 2τ) (3, 2 + 2τ) (3, 1 + 2τ)

]

, (1)

which results in

K̃ =

[

(1, 1) (2, 2) (2, 1) (1, 3) (2, 4) (2, 3) . . .
(1, 2) (3, 2) (3, 1) (1, 4) (3, 4) (3, 3) . . .

]

.

The mapping betweenC andO is then

C =

[

c1,1 c1,2 c1,3 c1,4 c1,5 c1,6 . . .
c2,1 c2,2 c2,3 c2,4 c2,5 c2,6 . . .

]

⇐⇒ O =





c1,1 c2,1 c1,4 c2,4 . . .
c1,3 c1,2 c1,6 c1,5 . . .
c2,3 c2,2 c2,6 c2,5 . . .



 . (2)

Since a matrixKτ is simply a permutation of the set
{1, . . . , q}× {1, . . . , nJ/q}, (nJ)! different matricesKτ can
be generated. However, this number can be reduced since
trivial operations that do not affect the performance of the
system can be applied toKτ . For example, for the matrix in
(1) with τ = 0, consider the following two matrices:

K′
0 =

[

(1, 2) (2, 2) (2, 1)
(1, 1) (3, 1) (3, 2)

]

,

K′′
0 =

[

(2, 1) (1, 1) (2, 2)
(3, 1) (1, 2) (3, 2)

]

.

The matrixK ′
0 is obtained by permuting the elements ofK0

such that the first elements in the entries ofK0 are not altered.
Because M-interleavers are used after the D-MUX (cf. Fig. 1),
the temporal structure of the sequencesok is randomized,
and thus, the second elements of the entries are not (which
determines to which time the bitcp,t′ is assigned) relevant.

Consequently, the performance of the system usingK0 or K ′
0

will be the same. The matrixK′′
0 is obtained by cyclically

rotating the columns of the matrixK0, which will produce
K̃ with columns shifted to the left or right. For long coded
sequences, i.e.,J ≪ Nc, the original matrix and its shifted
version will yield the same performance.

It is worth mentioning that while in general we are able
to discard matrices that result from trivial operations, the
only way to determine which of the available (and non-
trivial) matricesKτ is the optimal one for a given code and
modulation, is via the BER-criterion we develop in Sec. IV-A.

B. HPAM Constellations

In this paper, we consider HQAM constellations labeled
by the binary reflected Gray code (BRGC) [24] presented in
[14]. In HQAM constellations, each symbol is a superposi-
tion of independently modulated real/imaginary parts, which
allows us to focus on the equivalent HPAM constellation,
cf. Fig. 1. At any time instantt, the coded and interleaved
bits [u1,t, . . . , uq,t] are mapped to an HPAM symbolxI(t) ∈
X = {xI

0, . . . , x
I
M−1} using a binary memoryless mapping

M : {0, 1}q → X . Since the mapper is memoryless, from
now on we drop the time indext.

We analyze HPAM constellations as the one shown in
Fig. 2 (M = 8), which are defined by the distancesdk with
k = 1, . . . , q. In this figure, theM constellation points are
shown with black circles, where the white squares/triangles
are “virtual” symbols that help to understand the construc-
tion of the HPAM constellation as explained below. We use
k = 1, . . . , q to denote the bit position of the binary labeling,
wherek = 1 represents the left most bit position. The bit value
of k = 1 selects one of the two squares in Fig. 2. Similarly,
for a given value of the first bit, the bit value for the next
position (k = 2) selects one of the two triangles that surround
the previously selected square. Finally, given the bit values for
k = 1 andk = 2, the bit value of bit positionk = 3 selects
one of the two black symbols that surround the previously
selected triangle. This selected symbol (black circle) is finally
transmitted by the modulator.

We denote the base-2 representation of the integer0 ≤ j ≤
M − 1 by the vectorb̂(j) = [b̂1(j), . . . , b̂q(j)], where b̂1(j)
is the most significant bit ofj and b̂q(j) the least significant.
This allows us to express the elementsxI

j ∈ X of the HPAM
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Fig. 2. HPAM (M = 8) constellation labeled with the BRGC.

constellation as

xI
j =

q
∑

k=1

(−1)b̂k(j)−1dk. (3)

We also define the normalized constellation parameters as

αk ,
dk+1

d1
, (4)

with k = 1, . . . , q−1. Using (3), and for equiprobable symbol
transmission, the average symbol energy is given byEs =
(1 +

∑q−1
k=1 α

2
k)d2

1 with αk is given by (4). Throughout this
paper, we consider that the constellation is normalized to have
unit energy, which translates into the relationd1 = (α2

1 +α2
2 +

. . .+ α2
q−1 + 1)−1/2.

If the constellation points move freely, it is possible thatthey
cross each other (by having for exampled3 < 0 in Fig. 2),
and therefore, the binary labeling is not the BRGC anymore.
Since in this paper we restrict the analysis to the BRGC, extra
constraints on the values ofαk must be added, namely,

αk ≥
q−1
∑

j=k+1

αj ,

q−1
∑

k=1

αk ≤ 1, andαq−1 ≥ 0, (5)

wherek = 1, . . . , q − 1. The inequalities in (5) are found by
solving (xj+1 − xj) ≥ 0 with j = 0, . . . ,M − 2.

Example 2 (Constellation parameters forM = 8): For
M = 8, the constellation optimization space is formed by
two variables,α1 = d2/d1 andα2 = d3/d1, cf. (4). From (5)
we have the following constrainsα1 ≥ α2, α1 + α2 ≤ 1, and
α2 ≥ 0, which result in a pair of constellation parameters
(α1, α2) shown in Fig. 3. In this figure, the evolution of
the constellation for different values of(α1, α2) are shown;
the shadowed region represents the values of(α1, α2) that
give a BRGC-labeled constellation. Particularly important
cases are the equally spaced 2-PAM, 4-PAM, and 8-PAM
constellations.

The result of the transmission of a complex symbolx =
xI + xQ is given by y = hx + z, whereh = hI + hQ

is the complex channel gain, andz is a complex Gaussian
noise with zero mean and varianceN0/2 in each dimension.
The amplitude of the channel gain|h| follows a Nakagami-m
distribution [25], and thus, the instantaneous SNR, definedas
γ ,

|h|2
N0

, follows a Gamma distribution, i.e., [26, eq. (2.21)],
[27, eq. (3)]

pΓ(γ; γ) =
γm−1

G(m)

(

m

γ

)m

exp

(

−mγ
γ

)

, (6)

where G(m) is the Gamma function,γ = EΓ[γ] is the
average SNR, andΓ is the random variable that represents
the instantaneous SNR. The AWGN channel is obtained when
|h| = 1.
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Fig. 3. Constellation parameters for an HPAM constellationwith M = 8.
The shadowed region shows the values of(α1, α2) that give a BRGC-labeled
constellation and the 13 filled squared some particular constellations (not at
scale). Any point outside this region corresponds to a non-BRGC constellation.

At the receiver’s side, the real part of the received signal is
normalized by the channel gainh (yI = ℜ{y/h}) and passed
to the demapper, which computes logarithmic likelihood ratios
(L-values) for each bit in the transmitted symbol. Thekth L-
value given the transmitted symbolxj and the channel gainh
(or equivalently,γ) can be written as [1]–[4]

l̃k(yI|xj , γ) , log
Pr(uk = 0|yI, γ)

Pr(uk = 1|yI, γ)
(7)

≈ γ

[

min
a∈Xk,1

{

(yI − a)2
}

− min
a∈Xk,0

{

(yI − a)2
}

]

,

(8)

where Xk,b is the set of symbols labeled with thekth bit
equal to b, and where we have used the so-called max-log
approximation [1], [2], [28].

The vectors of L-values calculated by the demapper are
then deinterleaved, generating the sequencelk = π−1

k (̃lk)
with k = 1, . . . , q, cf. Fig. 1. These L-values are reorganized
by the demultiplexer unit (DEMUX), defined aslinp,t′ = lk,t,
which simply inverts the process done by the D-MUX at
the transmitter. Finally, these L-values are passed to the the
channel decoder which produces an estimate of the transmitted
bits. In this paper, we consider convolutional codes and a soft-
input Viterbi decoder.

III. E QUIVALENT CHANNEL MODEL

In order to predict the coded BER performance of the
system, finding the PDF of the L-values passed to the chan-
nel decoder is crucial. In what follows, we develop closed-
form expressions for the PDF of L-values for HQAM-BICM
transmission as a function of the constellation parameters.
These expressions will later be used to compute bounds on
the BER of the systems, and then, used to optimize the design
of the system. From now on, all the analysis is made for the
constituent HPAM constellation (cf. Fig. 1), and thus, with
a slight abuse of notation, we usex andy to denote the real
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TABLE I
VALUES OFµk,j FOR HPAM WITH M = 8 IN (10).

xj µ1,j µ2,j µ3,j

x0 +4d2
1 +4d2

2 +4d2
3

x1 +4(d1 − d3)2 +4(d2 − d3)2 −4d2
3

x2 +4(d1 − d2)2 −4(d2 − d3)2 −4d2
3

x3 +4(d1 − d2 − d3)2 −4d2
2 +4d2

3

x4 −4(d1 − d2 − d3)2 −4d2
2 +4d2

3

x5 −4(d1 − d2)2 −4(d2 − d3)2 −4d2
3

x6 −4(d1 − d3)2 +4(d2 − d3)2 −4d2
3

x7 −4d2
1 +4d2

2 +4d2
3

part of the transmitted symbol and the real part of the received
signal, respectively, i.e., we skip the superscript(·)I.

The use of the max-log approximation in (8) transforms the
nonlinear relation between the received signal and the L-values
into a piecewise linear relation. Examples of this piece-wise
linear relation can be found in literature, see for example [23,
Fig. 3], [29, Fig. 2, Fig. 4], [30, Fig. 3], or [31, Table I].
This piece-wise linear relation has been used to develop
expressions for the PDF of the L-values in (8) using arbitrary
signal sets in [32] (based on an algorithmic approach), closed-
form expressions for ES-QAM constellations labeled with the
BRGC for the AWGN channel in [23], and for fading channels
in [33]. Recently, closed-form approximations for the PDF of
the L-values for arbitrary signal sets and binary labeling in
fading channels have been developed in [27].

For a given transmitted symbolxj and SNR γ, Y ∼
N (xj , 1/(2γ)). Using a generalization of the so-called con-
sistent model (CoMod) introduced in [23], the PDF of the
L-values in (8) can be approximated by

L̃k(xj ; γ) ∼ N (γµk,j , γσ
2
k,j), (9)

where

µk,j = (−1)2−b̃k,j (x̂k,j − xj)
2,

σ2
k,j = 2(x̂k,j − xj)

2 = 2|µk,j |,
(10)

b̃j = [b̃1,j, . . . , b̃q,j ] is the binary label of the symbolxj , and
x̂k,j is the closest symbol toxj with the opposite bit value
at bit positionk. The model in (10) fulfills the consistency
condition (σ2

k,j = 2|µk,j |), and thus, the Gaussian distribution
in (9) is completely determined byµk,j .

The results in (9)–(10) can be considered as a particular
case of the results in [27, “Case 1”, Fig. 2, Tab. 1]). In what
follows, we will develop generic expressions forµk,j in (10)
in terms of the distances defining the HPAM constellation.

In Table I, we present the values ofµk,j in (10) as a function
of the constellation distancesdk for M = 8. These values
are obtained by direct inspection of Fig. 2. From this table
we can see that the symmetry of the constellation is reflected
in the mean values. For example, fork = 1, µ1,3 = −µ1,4,
µ1,2 = −µ1,5, µ1,1 = −µ1,6, andµ1,0 = −µ1,7. If we analyze
the variances, cf. (10), we note that fork = 1 there are 4
different variances, fork = 2 two different variances, and
for k = 3 only one. This idea can be generalized, i.e., from

Table I, it is possible to infer that for a givenk, there are
Mk , M

2k different variances, which are determined by the
first Mk values ofj. This idea was previously used in [23].

The performance evaluation in Sec. IV is based on the
transmission of the all-zero sequence, and thus, here we only
need to consider positive values ofµk,j (from (10),µk,j > 0
if b̃k,j = 0). From the evolution ofµk,j in Table I, we can
write a generic closed-form expression forµk,j (for anyM )
in terms of constellation distance parameters as follows

µk,j = 4

(

dk −
q

∑

k′=k+1

b̌k′−k(j)dk′

)2

, (11)

where j = 0, 1, . . . ,Mk − 1, k = 1, 2, . . . , q, and b̌(j) =
[b̌q(j), . . . , b̌1(j)] is the binary representation of the integerj
whereb̌1(j) is the least significant bit.

Using the approximation for the PDF of the L-values given
in (9), it is possible to build an equivalent model for theBICM
channelshown in Fig. 1 [23], [27], [34]. This model considers
Mk virtual channels, each of them determined byµk,j in (11).
A given bit ok,t = 0 can be transmitted through thejth virtual
channel with a probability given byξk,j = 1

Mk
. Then, the PDF

of the L-values at the output of thekth interleaverLk can be
expressed as a Gaussian mixture with density given by

pLk
(λ; γ) =

Mk−1
∑

j=0

ξk,jψ(λ; γµk,j , 2γµk,j)

=
2k

M

M/2k−1
∑

j=0

ψ(λ; γµk,j , 2γµk,j). (12)

IV. PERFORMANCEANALYSIS

In this section, we develop union bounds (UBs) on the BER
of the HQAM-BICM system proposed in Sec. II using the PDF
of the L-values developed in Sec. III.

A. Union Bound

We define aremerging sequenceas a path in the trellis of the
code (ENC) that leaves the zero state and remerge with it after
certain number of trellis stages. The ENC and the D-MUX are
grouped into an “equivalent code” (as shown in Fig. 1) and
characterized by an equivalent weight distribution spectrum
(EWDS) βK(w) with w = [w1, . . . , wq] ∈ (Z+)q.1 We use
the notationβK(w) to emphasize that the EWDS depends
on the D-MUX configuration determined byK. This EWDS
counts the Hamming weights of all the input sequences that
generate remerging sequences with weightw at the D-MUX’s
output.

Using the previous definitions, we can express the (trun-
cated) UB on the BER as

BER ≤ UB ≈ 1

kc

ŵ
∑

w=wfree

∑

w∈Wq(w)

βK(w)PEP(w; γ),

(13)

1To alleviate the notation, from now on we will refer to the matrix Kτ as
K.
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where PEP(w; γ) is the pairwise error probability which
represents the probability that the decoder selects a codeword
with weight w instead of the transmitted all-zero codeword.
The PEP can be expressed in terms of the decision variable
D(w) as

PEP(w; γ) = Pr{D(w) > 0}, (14)

where

D(w) =

w1
∑

l=1

L
(l)
1 + . . .+

wq
∑

l=1

L(l)
q , (15)

and whereL(i)
k are independent samples of the random vari-

ables representing the L-values whose PDF is given by (12).
In the following subsections, we will show how to compute
βK(w) andPEP(w; γ) required to evaluate the UB in (13).

B. Equivalent Weight Distribution Spectrum

The vector w corresponds to the Hamming weights of
the rows of the matrixO generated by remerging sequences
represented by the matrixC. The correspondence betweenC

andO is determined by the matrixK (which defines the D-
MUX) as well as by the time at which the remerging sequence
starts to diverge. However, due to the periodic structure ofK̃,
only J time instants must be considered. Based on this, the
EWDS can be expressed as

βK(w) =
1

J

J
∑

j=1

β
(j)
K

(w), (16)

whereβ(j)
K

(w) represents the EWDS when the decoder starts
to diverge at timet + j with arbitrary t. We note that the
similarities between the EWDS in (16) and the computation of
the WDS of punctured convolutional codes [22]. The following
example clarifies the main principle behind (16), while more
details can be found in [22, Sec. II-B].

Example 3 (EWDS of the code(5, 7)8): Consider the con-
straint lengthK = 3 convolutional code with polynomial
generators(5, 7)8, with wfree = 5 and the D-MUX in
Example 1. For this code, there is one divergent sequence
generated by an input sequence with Hamming weight one and
output weightwfree. TheJ = 3 possible input sequences are
i
(1)
1 = [. . . , 0, 1, 0, 0, 0, 0, . . .], i

(2)
1 = [. . . , 0, 0, 1, 0, 0, 0, . . .],

andi
(3)
1 = [. . . , 0, 0, 0, 1, 0, 0, . . .], which result in the follow-

ing matricesC

C(1) =

[

. . . 1 0 1 0 0 . . .

. . . 1 1 1 0 0 . . .

]

,

C(2) =

[

. . . 0 1 0 1 0 . . .

. . . 0 1 1 1 0 . . .

]

,

C(3) =

[

. . . 0 0 1 0 1 . . .

. . . 0 0 1 1 1 . . .

]

,

which by using (2) yield

O(1) =





. . . 1 1 0 . . .

. . . 1 0 0 . . .

. . . 1 1 0 . . .



 ,

O(2) =





. . . 0 0 1 1 . . .

. . . 0 1 0 0 . . .

. . . 1 1 0 0 . . .



 ,

O(3) =





. . . 0 0 0 1 0 . . .

. . . 1 0 0 1 0 . . .

. . . 1 0 0 1 0 . . .



 .

If we consider only this event at minimum Hamming distance
(with input weight one), the final EWDS given by (16) is
obtained by computing the Hamming weights of the rows of
O(j) with j = 1, 2, 3, i.e.,

βK(w) =

{

2
3 , if w = [2, 1, 2]
1
3 , if w = [1, 2, 2]

.

The spectrumβK(w) can be numerically calculated using
a breadth-first search algorithm [35]. Clearly, the spectrum
must be truncated so that only diverging sequences with total
Hamming weightw1 + . . .+wq ≤ ŵ are considered, cf. (13).

C. Computation ofPEP(w; γ)

A common approach for computing the PEP in (14) is
through the use of the Laplace transform of the PDF of the
decision variable (see for example [27] and the references
therein). However, due to its simplicity and accuracy, the
saddlepoint approximation (SPA) [36] has recently attracted
considerable interest. In this subsection, we use a generaliza-
tion of the PEP computation based on the SPA used in [27],
[33], [36], and we apply it to BICM systems based on M-
interleavers and HQAM constellations.

Let ΦLk
(s; γ) be the two-sided Laplace transform of the

PDF of the L-valueLk in (12), and let Φ′
Lk

(s; γ) and
Φ′′

Lk
(s; γ) be its first and second derivative with respect to

s, respectively. Let also denote the so-called saddlepoint by ŝ,
whereŝ is the solution ofΦ′

Lk
(ŝ; γ) = 0.

Theorem 1:The PEP in (14) can be approximated using the
SPA as

PEP(w; γ) ≈ 1

ŝ
√

2π

[

q
∑

k=1

wk

Φ′′
Lk

(ŝ; γ)

ΦLk
(ŝ; γ)

]−1/2

·
q

∏

k=1

[ΦLk
(ŝ; γ)]

wk . (17)

Proof: The proof is given in Appendix A.
The PEP in Theorem 1 allows us to compute UBs on the

BER for the proposed HQAM-BICM for the AWGN and
Nakagami-m fading channels, as stated in the following two
theorems.

Theorem 2:The UB for HQAM-BICM for the AWGN
channel (γ = γ) using the SPA is given by (18) (shown at
the bottom of the page)

Proof: The proof is given in Appendix B.
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Theorem 3:The UB for HQAM-BICM for the Nakagami-
m fading channel using the SPA is given by (19) (shown at
the bottom of the page)

Proof: The proof is given in Appendix C.
The expressions in Theorems 2 and 3 explicitly show

the mean valuesµk,j (which depend on the constellation
parameters) and the EWDS of the code, and thus, they can be
used to optimize the performance of the system. Moreover, we
recognize that the PEP computation in (14) for both AWGN
and Nakagami-m fading channels can be done directly using
the PDF of the L-values in (12) (cf. [4] for the AWGN
channel). Nevertheless, we used the SPA because it results
in ready-to-use formulas, cf. (18) and (19).

We conclude this section by noting that the BICM models
in [4] and [2] can be regarded as a particular cases of the
model we introduced in this paper. The model in [4] can be
obtained using our model ifJ → Nc and the first elements
of the entries(k, t) of K̃, which represent the assignement
of the coded bits to a particular interleaver, are randomly
selected with predetermined probabilities. The BICM with S-
interleavers (BICM-S) configuration of [2] can be obtained by
letting J → Nc and by selecting a matrix̃K with elements
randomly permuted. By doing this, we assure that the coded
bits are uniformly assigned over time and also over the bit
positions.

V. NUMERICAL RESULTS

In this section, we present numerical examples that il-
lustrate the gains that can be obtained by using an opti-
mized HQAM-BICM system. In particular, we analyze two
practically relevant spectral efficiencies: 1 bit/dimension and
1.5 bit/dimension. We use a rateR = 1/2 optimum distance
spectrum convolutional code with constraint lengthK = 3
and generator polynomial(5, 7)8. The decoding is based on
the soft-input Viterbi algorithm without memory truncation,
and the block length used for simulation isNc = 24000. In
the following subsections, we use the names 2-PAM, 4-PAM,
and 8-PAM to refer to the ES-PAM constellations.

The UB depends on the average SNR, the constellation
parameter, the D-MUX configuration, andm (in fading chan-

nels). Therefore, to obtain the optimal design, one needs to
jointly optimizeK andα1, . . . , αq−1 for each value ofγ and
m (in fading channels), i.e., the optimal design is obtained by
selecting the constellation (viaα1, . . . , αq−1) and the MUX
(via K) that minimize the UB for a givenm and γ. The
values that minimize the UB for a givenγ are defined as
α∗

1(γ), . . . , α
∗
q−1(γ) andK∗(γ), i.e.,

[α∗
1(γ), . . . , α

∗
q−1(γ),K

∗(γ)] =

argmin
α1,...,αq−1,K

{UB(α1, . . . , αq−1,K)}, (18)

where UB is a function of the constellation parameter
α1, . . . , αq−1 and the MUXK.

Because of the nature of the UB, the bound is tight only
for BER below certain value (typically10−3 or 10−4), and
thus, the optimization will be valid only for BER below this
limit. The optimization of the UB presented in the following
subsections was carried out numerically via an exhaustive
search over the valid range of constellation parameter, with
a step size of 0.01. We note that the objective function (UB)
is potentially non-convex and the optimization space is one-
or two-dimensional. Because of this, an exhaustive seach is
a feasible and robust alternative compared to other (more
complex) optimization approaches.

A. Spectral efficiency 1 bit/dimension

For this particular case (n = q = 2) there is only one
constellation parameter, i.e.,α1. From Fig. 3 (withα2 = 0),
we observe three cases of particular interest:α1 = 0 gives a
2-PAM constellation,α1 = 1/2 gives a 4-PAM constellation,
andα1 = 1 gives a three-point constellation. We consider a
D-MUX with period J = 2 which result in only four different
matrices:

K(1) =

[

(1, 1) (1, 2)
(2, 1) (2, 2)

]

,K(2) =

[

(1, 1) (2, 1)
(1, 2) (2, 2)

]

,

K(3) =

[

(2, 1) (1, 1)
(1, 2) (2, 2)

]

, andK(4) =

[

(2, 1) (2, 2)
(1, 1) (1, 2)

]

.

UB(α1, . . . , αq−1,K) ≈ 1

kc

ŵ
∑

w=wfree

∑

w∈Wq(w)

βK(w)

[

πγ

q
∑

k=1

wk

∑Mk−1
j=0 ξk,jµk,j exp (−µk,jγ/4)
∑Mk−1

j=0 ξk,j exp (−µk,jγ/4)

]−1/2

·
q

∏

k=1





Mk−1
∑

j=0

ξk,j exp (−µk,jγ/4)





wk

. (18)

UB(α1, . . . , αq−1,K) ≈ 1

kc

ŵ
∑

w=wfree

∑

w∈Wq(w)

βK(w)






πγ

q
∑

k=1

wk

∑Mk−1
j=0 ξk,jµk,j

(

4m
4m+γµk,j

)(m+1)

∑Mk−1
j=0 ξk,j

(

4m
4m+γµk,j

)m







−1/2

q
∏

k=1





Mk−1
∑

j=0

ξk,j

(

4m

4m+ γµk,j

)m




wk

. (19)
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For this specific example, the D-MUX configurations given
by K(1), andK(4) are identical to the two possible R-MUX
configurations [4], i.e., when all the coded bits from one
encoder’s output are assigned to one modulator’s input.

In order to justify the requirement of joint optimization
of the D-MUX configuration and the signal constellation, we
first study the behavior of the UBs given by Theorem 2 and
Theorem 3, respectively2, as a function of the constellation
parameterα1. The UB is shown in Fig. 4 for the four different
D-MUX configurations and different values ofγ. This figure
shows that for a given constellation parameter, different D-
MUX configurations give different BER performances. In
particular, for all the 3 cases in Fig. 4, whenα1 = 1/2 (4-
PAM) is considered, the lowest UB performance is obtained
K = K(4) (but this changes if another value ofα is chosen).
This is equivalent to the R-MUX when all the bits from(7)8
are assigned tok = 1 and the coded bits from(5)8 to k = 2,
which was shown in [4] (only for the AWGN case). From
this figure, it is also clear that the 4-PAM constellation is
suboptimal, i.e., by selecting another value ofα1, gains are
obtained. More particularly, for the AWGN case, by changing
the value ofα1 fromα1 = 1/2 toα1 = 0.12, the UB decreases
from UB ≈ 0.8 · 10−6 to UB ≈ 0.7 · 10−7. The gains for the
Nakagami-m fading channel are smaller but still visible.

We performed a numerical optimization overK andα1 for
m = 1, m = 5, m = 20, and for the AWGN channel for the
values ofγ that give a BER of interest (BER ≤ 10−3). For
both the AWGN channel and Nakagami-m fading channels,
The results obtained showed that in such a case, the optimum
D-MUX is always given byK∗(γ) = K(4). The values of
α∗

1(γ) obtained in the optimization are shown in Fig. 5 (left).
This results show that when the fading is severe, the optimal
constellation is close to a 4-PAM constellation, and in fact
does not depend much on the value ofγ. On the other hand,
for the AWGN channel, the dependency on the average SNR is
notable and a 4-PAM constellation is far from the optimum. In
Fig. 5 (right), we show the behavior of the UB as a function of
α1 for a given average SNRγ = 9 dB and different channel
conditions. This figure shows how the valueα∗

1(γ) evolves
from α∗

1(γ) ≈ 0.5 (for m = 2) to α∗
1(γ) ≈ 0.16 for the

AWGN case.
We conclude this subsection by presenting the BER perfor-

mance obtained by using the proposed HQAM-BICM system,
where the constellation and the D-MUX are optimized for
each SNR. The results are presented in Fig. 6, where we
also show the results obtained by the conventional BICM-S
system of [2], and the one studied in [4] (R-MUX), both of
them using a 4-PAM constellation. The results in this figure
confirm the tightness of the UBs developed in this paper (for
BER ≤ 10−3)3. They also confirm that a joint optimization
of the D-MUX and the constellation outperforms the previous
designs. More particularly, for a BER target of10−7, the

2All the results presented in this subsection were obtained using ŵ =
125 for the AWGN channel and̂w = 30 for Nakagami-m fading channels,
cf. (13).

3We note a slight mismatch between the simulations and the bounds for
m = 1 (for the three configurations shown in Fig. 6). We conjecturethis
is caused by the approximation used to model the PDF of the L-values,
cf. Sec. III. A similar mismatch is observed in Fig. 8, cf. Sec. V-B.
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Fig. 6. UBs (lines) forn = q = 2 (1 bit/dimension), for Nakagami-m
fading channels and the AWGN channel given by Theorem 2 and Theorem 3,
respectively. Numerical simulations are also included (markers). The proposed
HQAM-BICM system uses the optimalK∗(γ) = K

(4) and α∗

1(γ) shown
in Fig. 5 (left). The BICM-S system of [2] with a 4-PAM constellation and
the BICM system with R-MUX and a 4-PAM constellation of [4] are shown
for comparison.

obtained gains are approximately 1 dB for the AWGN channel
and 0.4 dB form = 5. These gains decrease when the fading
in the channel increases, and form = 1 (Rayleigh fading
channel), they are marginal.

B. Spectral efficiency 1.5 bit/dimension

We consider 8-ary constellations (q = 3), which together
with the rateR = 1/2 code (n = 2) gives a spectral efficiency
of 1.5 bits/dimension. In this case, the constellation is defined
by the pair (α1, α2). From Fig. 3, we see that the 8-PAM
constellation is obtained withα2 = 1/4 andα1 = 1/2 and
that 4-ary constellations are obtained withα2 = 0 (4-PAM
with α1 = 1/2). We consider D-MUX configurations with
the shortest possible period, i.e.,J = 3, for which there will
be a total of thirty different D-MUX configurations. The UBs
presented in this subsection are evaluated forŵ = 30 for both
fading and the AWGN channel.

For the AWGN channel, and an average SNRγ [dB] ∈
{10, 11, . . . , 15} (which give a UB below10−3), we obtained
the optimal D-MUX configurationK∗(γ) and constellation
parameters (α∗

1(γ), α
∗
2(γ)) using Theorem 2 and an exhaustive

search. The optimal matrix for allγ [dB] ∈ {10, 11, . . . , 15}
was found to be

K∗(γ) =

[

(1, 1) (2, 1) (3, 1)
(3, 2) (2, 2) (1, 2)

]

(19)

and the optimal constellation parameters are

(α∗
1(γ),α

∗
2(γ)) = [(0.46, 0) (0.45, 0) (0.44, 0)

(0.43, 0) (0.43, 0) (0.43, 0)]. (20)

The results in (20) indicate that the optimal constellationis a
4-ary constellation (α2 = 0) with α1 ≈ 0.45, which translates
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and different values ofγ. The UBs are given by Theorem 2 and Theorem 3, respectively.
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Fig. 5. The optimal constellation parameterα∗

1(γ) versus average SNRγ for m = 1, m = 5, m = 20, and for the AWGN channel (left) and the UB
versusα1 for γ = 9 dB andm = 2, m = 7, m = 20 and the AWGN channel (right). The UBs are given by Theorem 2 and Theorem 3, respectively.

into a system where the third output of the D-MUX (cf. (19))
is completely eliminated.

Another way of interpreting the results in (19)–(20) is that
for this code, the minimum BER is obtained when the original
rate 1/2 code is punctured (giving a rateR = 3/4) and
transmitted with a 4-ary constellation (withα1 ≈ 0.45), and
a puncturing pattern given by

P =

[

1 1 0
0 1 1

]

, (21)

where following the notation of [22], the columns ofP have
a meaning of time and a0 denotes a puncture.

An intuitive explanation of the previous results is the

following. In a coded modulation system, and for high SNR
values, there is a trade-off between the minimum Euclidian
distance of the constellation and the minimum Hamming
distance of the code. By puncturing this code, its minimum
Hamming distancewfree = 5 will decrease. On the other
hand, by reducing the constellation size (from 8-ary to 4-ary),
the minimum Euclidian distance increases. For this particular
code, the improvement due to an increased minimum Euclidian
distance is larger than the degradation due to a decrease
minimum Hamming distance, and thus, the optimal solution
is given by (19)–(20). It is important to mention that, that in
general, a reduction of the constellation size (by completely



10 IEEE TRANSACTIONS ONCOMMUNICATIONS, to appear, 2011.

10 11 12 13 14 15 16

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

 

 
B

E
R

γ [dB]

BICM-S (ES-QAM) [2]
R-MUX (ES-QAM) [4]
R-MUX with HQAM

D-MUX with 4-PAM (ES)
Punct. BICM-S (ES-QAM)

Optimal HQAM-BICM

Fig. 7. UB (lines) for n = 2 and q = 3 (1.5 bit/dimension) for the
AWGN channel given by Theorem 2. The simulation results are shown with
markers. The proposed HQAM-BICM system uses the optimized parameters
in (19)–(20). The BICM-S system of [2] with an 8-PAM constellation and the
BICM system with R-MUX and an 8-PAM constellation of [4] are shown for
comparison. The R-MUX system of [4] with optimized constellation and the
BICM-S system with a (punctured) code withR = 3/4 as well as a BICM
system with the optimal D-MUX and a 4-PAM (ES) are also shown.

puncturing some output of the encoder) does not necessarily
lead to the optimal solution. The solution depends on the
spectral efficiency targeted, the SNR under consideration,and
the constraint length of the code.

In Fig. 7, we present the results obtained using the proposed
system based on the optimum parameters in (19)–(20) and we
compare them against five different BICM designs. The first
one is the BICM-S system of [2] with an 8-PAM constellation
and the second one the BICM system with R-MUX and an 8-
PAM constellation of [4]4. The other three will be explained
below. When comparing the proposed system and the BICM-S
system of [2], gains of about 3 dB are observed for a BER
target of10−6. The gains compared to the system in [4] are
about 2.75 dB.

The performance difference between the proposed system
and the BICM system with R-MUX and an 8-PAM constella-
tion of [4] are quite large (2.75 dB). However, the comparison
is unfair since our system allows HPAM constellations while
the results for the system in [4] are given for an 8-PAM
constellation. In order to make a fair comparison, we have
optimized the constellation for the system with R-MUX of [4],
i.e., we selected the optimum constellation for each average
SNR5. The obtained results are shown in Fig. 7, where we
see that the performance improves, however, the gap to the
entirely optimized design we proposed stays at 1.7 dB for a
BER of 10−6. We should not be surprised by this results as
the HPAM constellation after optimization degenerates to a4-

4The optimum R-MUX for this code is such that 2/3 of the coded bits form
the second encoder’s output are sent tok = 1, 1/3 of the bits from the first
and the second encoder’s outpus are sent tok = 2, and 2/3 of the bits from
the first encoder’s output tok = 3.

5We obtainedα∗

1(γ) = 0.49, and α∗

2(γ) = 0.0 for all γ [dB] ∈
{10, 11, . . . , 16}.

PAM constellation. Consequently, the resulting assignment of
the bits to the removed modulator’s input (i.e., puncturing) is
random, which is not the approach that should be used when
doing puncturing [22].

Since the puncturing seems to appear as the solution in
the case we study, we analyze also a BICM-S system with
a 4-PAM constellation and a puncturing pattern that yields a
rateR = 3/4. This configuration is simply another way of
obtaining an spectral efficiency of 1.5 bit/dimension usingthe
same encoder and decoder. While this may seem a “natural”
solution for the BICM design, we note that in general, it
cannot be assumed a priori that the puncturing combined with
low-order modulation is the best way to transmit with a high
spectral efficiency. We performed an exhaustive search over
puncturing patterns (with a puncturing period of three bits)
and found that for the SNR of interest, the optimal puncturing
pattern is the one given byP in (21). The results are shown
in Fig. 7. In this case, and for a target BER of10−6, the
proposed system still offers gains of about 0.4 dB, which
results uniquely from the fact that we use HQAM and D-
MUX.

To complete the analysis of the AWGN channel, in Fig. 7 we
also include the results obtained by a BICM system with the
D-MUX in (19) and an equally spaced 4-PAM constellation
(generated from an 8-PAM constellation withα1 = 1/2 and
α2 = 0). The rationale behind presenting these results is to try
to quantify the gains offered by the D-MUX compared to a
joint optimization of the D-MUX and the HQAM constellation
(“Optimal HQAM-BICM” in Fig. 7). The results in Fig. 7
show that approximately one third of the gap between “Best
punctured BICM-S (ES-QAM)” and “Optimal HQAM-BICM”
comes from the use of the D-MUX and two thirds from the
use of the optimized HQAM constellation.

Now we turn our attention to Nakagami-m fading channels.
Since the UB in Theorem 3 depends onK, (α1, α2),m, andγ,
in general, the optimization must be done jointly over all these
parameters. However, we have observed that for a given value
of m, the optimal constellation and D-MUX do not change
significantly for the SNR range of interest. Motivated by this
observation, we have found the optimal constellation for an
average SNR that gives a BER of approximately10−7, and
we have used these values for all the range of average SNR.
The obtained values are

K∗
m=1(γ) = K∗

m=2(γ) =

[

(2, 1) (3, 1) (3, 2)
(2, 2) (1, 1) (1, 2)

]

, (22)

K∗
m=5(γ) =

[

(1, 1) (2, 1) (3, 1)
(3, 2) (2, 2) (1, 2)

]

, (23)

and

(α∗
1(γ), α

∗
2(γ))|m=1 = (0.48, 0.20) (24)

(α∗
1(γ), α

∗
2(γ))|m=2 = (0.47, 0.17) (25)

(α∗
1(γ), α

∗
2(γ))|m=5 = (0.42, 0.01). (26)

We note that by selecting one set of parameters for the range
of average SNR and a givenm is relevant from a practical
point of view. This is simply because in practice it would be
more difficult to change the constellation parameters and the
MUX for each value ofγ.
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Fig. 8. UB (lines) forn = 2 andq = 3 (1.5 bit/dimension) for Nakagami-m
fading channels given by Theorem 3 form = 1, 2, 5. Numerical simulations
are also included (markers). The simulations for the proposed HQAM-BICM
system uses the values in (22)–(26). The BICM-S system of [2]with an
8-PAM constellation and the BICM system with R-MUX and an 8-PAM
constellation of [4] are shown for comparison.

In Fig. 8 we present the simulated BER obtained by
HQAM-BICM using (22)–(26) and the UB with optimized
parameters for each SNR. We compare the results obtained
by the proposed system against two previous BICM designs
(as in Fig. 6): the BICM-S system of [2] with an 8-PAM
constellation and the BICM system with an R-MUX in [4].
From this figure we observe that in fading channels, the
proposed HQAM-BICM again outperforms previous BICM
designs. When compared to BICM-S, the proposed system
offers gains up to 2 dB form = 5 and a BER target of10−7.
The gains compared to the configuration in [4] are less than
when compared to BICM-S, but still quite large. This figure
also shows that the achievable gains increase when the fading
is less severe (m increases).

VI. CONCLUSIONS

In this paper we proposed and studied a new BICM
transmission framework that uses HQAM constellations in
conjunction with a deterministic bit-level multiplexer and
M-interleavers. It was shown that a number of degrees of
freedom can be exploited, which in turn gives performance
improvements of a few decibels compared to previous BICM
designs. The gains were shown to depend on the fading
parameter, the BER target, and the spectral efficiency, and in
general, they increase when the fading is less severe.

There are a number of degrees of freedom that can be
exploited in BICM transmission which may improve its perfor-
mance even further. In particular, in this paper we only studied
HQAM constellations labeled by the BRGC. The performance
of BICM with other binary labelings and fully asymmetric
constellation is still unknown. Moreover, the period of the
MUX gives another degree of freedom not fully exploited in
this paper (only short periods were considered).

In this paper, we analyzed a new BICM configuration based
on convolutional codes. The gains offered by a similar BICM
system using capacity approaching codes (turbo or low-density
parity-check) are still unknown. The analysis for such a system
is indeed interesting but left for further investigation.

APPENDIX A
PROOF OFTHEOREM 1

The Laplace transform of the PDF of the decision variable
D(w) in (15) is

ΦD(w)(s; γ) =

q
∏

k=1

[ΦLk
(s; γ)]

wk , (27)

and its cumulant transformκD(w)(s; γ) is

κD(w)(s; γ) = log[ΦD(w)(s; γ)]

=

q
∑

k=1

wk log [ΦLk
(s; γ)] . (28)

The PEP can be approximated using the saddlepoint ap-
proximation [36] as

PEP(w; γ) ≈ 1

ŝ
√

2πκ′′D(w)(ŝ; γ)
exp(κD(w)(ŝ; γ)), (29)

where ŝ is the saddlepoint that can be found by solving
κ′D(w)(ŝ; γ) = 0. κ′′D(w)(ŝ; γ) is the second derivative of the
cummulant generating function evaluated at the saddlepoint ŝ
and can be expressed as

κ′′D(w)(ŝ; γ) =

q
∑

k=1

wk

[

Φ′′
Lk

(ŝ; γ)

ΦLk
(ŝ; γ)

]

. (30)

Using (28) and (30) in (29) completes the proof.

APPENDIX B
PROOF OFTHEOREM 2

The two-sided Laplace transform ofpLk
(λ; γ) in (12), can

be written as

ΦLk
(s; γ) =

∫ ∞

−∞
e−sλ

Mk−1
∑

j=0

ξk,jψ(λ;µk,jγ, 2|µk,j |γ) dλ

(31)

=

Mk−1
∑

j=0

ξk,j exp
(

µk,jγ(s
2 − s)

)

, (32)

where to pass from (31) to (32) we used the transform pair
N (λ;µ, 2µ) ⇔ exp(µ(s2 −s)). The saddlepoint can be found
by solving κ′D(w)(ŝ; γ) = 0 (equivalently,Φ′

Lk
(s; γ) = 0) ,

which from (32) giveŝs = 1/2.
From (32), the second derivative ofΦLk

(s; γ) with respect
to s at the saddlepoint (̂s = 1/2) is

Φ′′
Lk

(1/2; γ) =

Mk−1
∑

j=0

2ξk,jµk,jγ exp (−µk,jγ/4) . (33)

Substituting (32) and (33) in (17), the PEP over the AWGN
channel is given by (34) (shown at the bottom of the page).
Using (34) in (13) completes the proof.
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APPENDIX C
PROOF OFTHEOREM 3

Due to the linearity property of the Laplace transform, we
have

ΦLk
(s; γ) =

∫ ∞

0

pΓ(γ; γ)ΦLk
(s; γ) dγ. (35)

Using (6) and (32) in (35), we obtain

ΦLk
(s; γ) =

Mk−1
∑

j=0

ξk,j

(

m

m− γµk,j(s2 − s)

)m

. (36)

From (36), the saddlepoint iŝs = 1/2, and the second
derivative of ΦLk

(s; γ) with respect tos at the saddlepoint
can be written as

Φ′′
Lk

(1/2; γ) =

Mk−1
∑

j=0

2ξk,jγµk,j

(

4m

4m+ γµk,j

)(m+1)

.

(37)
Substituting (36) and (37) in (17), the PEP over Nakagami-m
fading is given by (38) (shown at the bottom of the page).
Using (38) in (13) completes the proof.

REFERENCES

[1] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,”IEEE Trans.
Commun., vol. 40, no. 3, pp. 873–884, May 1992.

[2] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleavedcoded modula-
tion,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 927–946, May 1998.
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[9] A. Guillén i Fàbregas and A. Martinez, “Bit-interleaved coded mod-
ulation with shaping,” inIEEE Information Theory Workshop (ITW),
Dublin, Ireland, Aug.–Sep. 2010.

[10] E. Agrell and A. Alvarado, “Optimal signal sets and binary labelings for
BICM at low SNR,” IEEE Trans. Inf. Theory, 2011 (to appear), available
at http://arxiv.org/abs/1001.4548.

[11] 3GPP, “Universal mobile telecommunications system (UMTS); multi-
plexing and channel coding (FDD),” 3GPP, Tech. Rep. TS 125.212,
V7.11.0 Release 7, Sep. 2009.

[12] IEEE 802.11, “Part 11: Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications: High-speed physical layer in
the 5GHz band,” IEEE Std 802.11a-1999(R2003), Tech. Rep., July 1999.

[13] IEEE 802.11n, “Part 11: Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications. Amendment 5: Enhancements
for higher throughout,” IEEE Std 802.11n-2009, Tech. Rep.,Oct. 2009.

[14] P. K. Vitthaladevuni and M.-S. Alouini, “A recursive algorithm for the
exact BER computation of generalized hierarchical QAM constella-
tions,” IEEE Trans. Inf. Theory, vol. 49, no. 1, pp. 297–307, Jan. 2003.

[15] M. Morimoto, M. Okada, and S. Komaki, “A hierarchical image trans-
mission system in fading channel,” inIEEE International Conference
on Universal Personal Communications (ICUPC), Tokyo, Japan, Oct.
1995.

[16] Md. J. Hossain, M.-S. Alouini, and V. K. Bhargava, “Hierarchical
constellation for multi-resolution data transmission over block fading
channels,”IEEE Trans. Wireless Commun., vol. 5, no. 4, pp. 849–857,
Apr. 2006.

[17] Md. J. Hossain, P. K. Vitthaladevuni, M.-S. Alouini, V.K. Bhargava, and
A. J. Goldsmith, “Adaptive hierarchical constellations for simultaneous
voice and multi-class data transmission over fading channels,” IEEE
Trans. Veh. Technol., vol. 55, no. 4, pp. 1181–1194, July 2006.

[18] M. R. Chari, F. Ling, A. Mantravadi, R. Krishnamoorthi,R. Vijayan,
G. K. Walker, and R. Chandhok, “FLO physical layer: an overview,”
IEEE Trans. Broadcast., vol. 53, no. 1, pp. 107–145, Mar. 2007.

[19] ETSI, “Digital video broadcasting (DVB); Frame structure channel cod-
ing and modulation for a second generation digital terrestrial television
broadcasting system (DVB-T2),” ETSI, Tech. Rep. ETSI EN 302755
V1.1.1 (2009-09), Sep. 2009.

[20] ——, “Digital video broadcasting (DVB); framing structure, channel
coding and modulation for digital terrestrial television,” ETSI, Tech.
Rep. ETSI EN 300 744 V1.6.1 (2009-01), Jan. 2009.

[21] X. Li and J. Ritcey, “Bit-interleaved coded modulationwith iterative
decoding using soft feedback,”Electronic Letters, vol. 34, no. 10, pp.
942–943, May 1998.

[22] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC
codes) and their applications,”IEEE Trans. Commun., vol. 36, no. 4,
pp. 389–400, Apr. 1988.

[23] A. Alvarado, L. Szczecinski, R. Feick, and L. Ahumada, “Distribution of
L-values in Gray-mappedM2-QAM: Closed-form approximations and
applications,” IEEE Trans. Commun., vol. 57, no. 7, pp. 2071–2079,
July 2009.

[24] E. Agrell, J. Lassing, E. G. Ström, and T. Ottosson, “Onthe optimality
of the binary reflected Gray code,”IEEE Trans. Inf. Theory, vol. 50,
no. 12, pp. 3170–3182, Dec. 2004.

[25] M. Nakagami, “Them-distribution—A general formula of intensity
distribution of rapid fading,” inStatistical Methods in Radio Wave
Propagation, W. G. Hoffman, Ed. Oxford, U.K.: Pergamon, 1960.

[26] M. K. Simon and M. S. Alouini,Digital Communications over fading
channels: A unified approach to perfomance analysis, 1st ed. New
York, NY: John Wiley & Sons, 2000.

[27] A. Kenarsari-Anhari and L. Lampe, “An analytical approach for perfor-
mance evaluation of BICM over Nakagami-m fading channels,”IEEE
Trans. Commun., vol. 58, no. 4, pp. 1090–1101, Apr. 2010.

[28] A. J. Viterbi, “An intuitive justification and a simplified implementation
of the MAP decoder for convolutional codes,”IEEE J. Sel. Areas
Commun., vol. 16, no. 2, pp. 260–264, Feb. 1998.

[29] M. Benjillali, L. Szczecinski, and S. Aissa, “Probability density func-
tions of logarithmic likelihood ratios in rectangular QAM,” in Twenty-
Third Biennial Symposium on Communications, Kingston, ON, Canada,
May 2006.

[30] K. Hyun and D. Yoon, “Bit metric generation for Gray coded QAM
signals,” IEE Proc.-Commun., vol. 152, no. 6, pp. 1134–1138, Dec.
2005.

PEP(w; γ) =

[

πγ

q
∑

k=1

wk

∑Mk−1
j=0 ξk,jµk,j exp (−µk,jγ/4)
∑Mk−1

j=0 ξk,j exp (−µk,jγ/4)

]−1/2 q
∏

k=1





Mk−1
∑

j=0

ξk,j exp (−µk,jγ/4)





wk

. (34)

PEP(w; γ) =






πγ

q
∑

k=1

wk

∑Mk−1
j=0 ξk,jµk,j

(

4m
4m+γµk,j

)(m+1)

∑Mk−1
j=0 ξk,j

(

4m
4m+γµk,j

)m







−1/2

q
∏

k=1





Mk−1
∑

j=0

ξk,j

(

4m

4m+ γµk,j

)m




wk

. (38)



IEEE TRANSACTIONS ONCOMMUNICATIONS, to appear, 2011. 13

[31] M. S. Raju, R. Annavajjala, and A. Chockalingam, “BER analysis of
QAM on fading channels with transmit diversity,”IEEE Trans. Wireless
Commun., vol. 5, no. 3, pp. 481–486, Mar. 2006.

[32] L. Szczecinski, R. Bettancourt, and R. Feick, “Probability density func-
tion of reliability metrics in BICM with arbitrary modulation: Closed-
form through algorithmic approach,”IEEE Trans. Commun., vol. 56,
no. 5, pp. 736–742, May 2008.

[33] L. Szczecinski, A. Alvarado, and R. Feick, “Distribution of max-
log metrics for QAM-based BICM in fading channels,”IEEE Trans.
Commun., vol. 57, no. 9, pp. 2558–2563, Sep. 2009.

[34] A. Alvarado, E. Agrell, L. Szczecinski, and A. Svensson, “Unequal
error protection in BICM with QAM constellations: Interleaver and code
design,” in IEEE International Conference on Communications (ICC),
Dresden, Germany, June 2009.

[35] J. Belzile and D. Haccoun, “Bidirectional breadth-first algorithms for
the decoding of convolutional codes,”IEEE Trans. Commun., vol. 41,
no. 2, pp. 370–380, Feb. 1993.
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