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On BICM receivers for TCM transmission
Alex Alvarado, Leszek Szczecinski, and Erik Agrell

Abstract—Recent results have shown that the performance
of bit-interleaved coded modulation (BICM) using convolutional
codes in nonfading channels can be significantly improved when
the interleaver takes a trivial form (BICM-T), i.e., when it does
not interleave the bits at all. In this paper, we give a formal
explanation for these results and show that BICM-T is, in fact,
the combination of a TCM transmitter and a BICM receiver.
To predict the performance of BICM-T, a new type of dis-
tance spectrum for convolutional codes is introduced, analytical
bounds based on this spectrum are developed, and asymptotic
approximations are presented. It is shown that the free Hamming
distance of the code is not the relevant optimization criterion
for BICM-T. Asymptotically optimal convolutional codes for
different constraint lengths are tabulated and BICM-T is shown
to offer asymptotic gains of about 2 dB over traditional BICM
designs based on random interleavers. The asymptotic gainsover
uncoded transmission are found to be the same as those obtained
by Ungerboeck’s one-dimensional trellis-coded modulation (1D-
TCM), and therefore, in nonfading channels, BICM-T is shown
to be as good as 1D-TCM.

Index Terms—Bit-interleaved Coded Modulation, Binary Re-
flected Gray Code, Coded Modulation, Convolutional Codes,
Interleaver, Quadrature Amplitude Modulation, Pulse Ampl itude
Modulation, Set Partitioning, Trellis Coded Modulation.

I. I NTRODUCTION

UNGERBOECK’S trellis coded modulation (TCM) [1]
and Imai and Hirakawa’s multilevel coding [2] are prob-

ably the most popular coded modulation (CM) schemes for
the AWGN channel. Bit-interleaved coded modulation (BICM)
[3]–[5] appeared in 1992 as an alternative for CM in fading
channels. One particularly appealing feature of BICM is that
all the operations are done at the bit-level, and thus, at the
transmitter’s side, off-the-shelf binary codes are connected to
the modulator via a bit-level interleaver. At the receiver’s side,
reliability metrics for the coded bits (L-values) are calculated
by the demapper, de-interleaved, and then fed to a binary
decoder. This structure gives the designer the flexibility to
choose the modulator and the encoder independently, which
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in turn allows, for example, for an easy adaptation of the
transmission to the channel conditions (adaptive modulation
and coding). This flexibility is arguably the main advantage
of BICM over other CM schemes, and also the reason of why
it is used in almost all of the current wireless communications
standards, e.g., HSPA, IEEE 802.11a/g/n, and DVB-T2/S2/C2.

Bit-interleaving before modulation was introduced in Ze-
havi’s original paper [3] on BICM. Bit-interleaving is indeed
crucial in fading channels since it guarantees that consecutive
coded bits are sent over symbols affected by independent
fades. This results in an increase (compared to TCM) of the
so-called code diversity (the suitable performance measure
in fading channels), and therefore, BICM is the preferred
alternative for CM in fading channels. BICM can also be
used in nonfading channels. However, in this scenario, and
compared with TCM, BICM gives a smaller minimum Eu-
clidean distance (the proper performance metric in nonfading
channels), and also a smaller constraint capacity [4]. Despite
that, if a Gray labeling is used, the capacity loss is small, and
therefore, BICM is still considered as a valid option for CM
over nonfading channels.

The use of a bit-level interleaver in nonfading channels
has been inherited from the original works on BICM by
Zehavi [3] and Caireet al. [4]. It simplifies the performance
analysis of BICM and is implicitly considered mandatory
in the literature. However, the reasons for its presence are
seldom discussed. Previously, we have shown in [6] how the
performance of BICM can be improved in nonfading channels
by using multiple interleavers. Recently, however, it has been
shown in [7] that in nonfading channels, considerably larger
gains (a few decibels) can be obtained if the interleaver
is completely removedfrom the tranceiver’s configurations,
i.e., BICM without an interleaver performs better than the
conventional configurations of [3], [4]. The results presented
in [7] are only numerical and an explanation behind such an
improvement is not given (although some intuitive explana-
tions and a bit labeling optimization are presented).

In this paper, we present a formal study of BICM with trivial
interleavers (BICM-T) in nonfading channels, i.e., the BICM
system introduced in [7] where no interleaving is performed.
We recognize BICM-T as the combination of a TCM transmit-
ter and a BICM receiver and we develop analytical bounds that
give a formal explanation of why BICM-T with convolutional
codes (CCs) performs well in nonfading channels. We also
introduce a new type of distance spectrum for the CCs which
allows us to analytically corroborate the results presented
in [7]. Moreover, we search and tabulate optimum CCs for
BICM-T, and we show that the asymptotic gains obtained
by BICM-T are the same obtained by Ungerboeck’s one-
dimensional TCM (1D-TCM) demonstrating that a properly
designed BICM-T system performs asymptotically as well as
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1D-TCM. The main contribution of this paper is to present
an analytical model for BICM-T which is used to explain the
results presented in [7] and also to design an asymptotically
optimum BICM-T system in nonfading channels.

Throughout this paper, we use boldface lettersc to denote
length-L row vectorsct = [ct,1, . . . , ct,L] and also to denoted
matricesc = [cT

1, . . . , c
T
N ], where(·)T denotes transposition.

The distinction between a matrix and a vector is clear from
the context in which they are used. Random variables are
denoted by capital lettersC and random vectors/matrices
by capital boldface lettersC. We usedH(c) to denote the
total Hamming weight of the binary matrixc. We denote
probability byPr(·) and the probability density function (pdf)
of a random variableΛ by pΛ(λ). The convolution between
two pdfs is denoted bypΛ1

(λ) ∗ pΛ2
(λ) and {pΛ(λ)}∗w

denotes thew-fold self-convolution of the pdfpΛ(λ). The
Gaussian pdf with mean valueµ and varianceσ2 is denoted by
ψ(λ;µ, σ) , 1√

2πσ
exp(−(λ − µ)2/2σ2), and the Q-function

by Q(x) , 1√
2π

∫∞
x

exp
(

−u2/2
)

du. Sets are denoted using
calligraphic lettersC. All the polynomial generators of the CC
are given in octal notation and following the notation of [8],
the constraint length of the codesK is defined such that the
number of states in the trellis of the code is2K−1.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

The BICM system model under consideration is presented in
Fig. 1. We use a constraint lengthK, rateR = 1

2 convolutional
code, connected to a 16-ary quadrature amplitude modulation
(16-QAM) labeled by the binary reflected Gray code (BRGC)
[9]. This configuration is indeed very simple, yet practical,
yielding a spectral efficiency of two information bits per
complex channel use. This example simplifies the presentation
of the main ideas related to the fact that the interleaver is
removed. The generalization to other modulations and coding
rates is possible but would increase the complexity of nota-
tion potentially hindering the main concepts of the analysis
presented in this paper.

The input sequence ofN bits i = [i1, . . . , iN ] is fed to
the encoder (ENC) which at each time instantt = 1, . . . , N
generates two coded bitsct = [c1,t, c2,t]. We use the matrix
c = [cT

1 , . . . , c
T
N ] of size 2 by N to represent the transmitted

codeword. These coded bits are interleaved byΠ, yielding
cπ = Π(c), where the different interleaving alternatives will
be discussed in detail in Sec. II-B. The coded and interleaved
bits are then mapped to 16-QAM symbols, where the 16-QAM
constellation is formed by the direct product of two 4-ary
pulse amplitude modulation (4-PAM) constellations labeled
by the BRGC. Therefore, we analyze the real part of the
constellation only, i.e., one of the constituent 4-PAM constel-
lations. The mapper is defined asΦ : {[11], [10], [00], [01]}→
{−3∆,−∆,∆, 3∆}, where

∆ ,
1√
5

(1)

so that the PAM constellation normalized to unit average
symbol energy, i.e.,Es = 1.

A quick inspection of the BRGC for 4-PAM (cf. Fig. 3)
reveals that the BRGC offers unequal error protection (UEP)to
the transmitted bits depending on their position. In particular,
the bit at the first position (k = 1) receives higher protection1

than the bit at the second positionk = 2. More details
about this can be found in [6]. Moreover, fork = 2 a bit
labeled by zero (inner constellation points) will receive a
lower protection than a bit labeled by one transmitted in the
same bit position (outer constellation points), and therefore,
the binary-input soft-output (BISO) channel fork = 2 is
nonsymmetric. To simplify the analysis, we “symmetrize” the
channel by randomly inverting the bits before mapping them
to the 4-PAM symbol, i.e.,̃cπ = cπ ⊕ s = [c̃π

1 , . . . , c̃
π
N ],

where⊕ represents modulo-2 element-wise addition and the
elements of the matrixs = [sT

1 , . . . , s
T
N ] ∈ {0, 1}2×N , with

st = [s1,t, s2,t], are randomly generated vectors of bits. Such
a scrambling symmetrizes the BISO channel but it does not
eliminate the UEP. We note that the scrambling is introduced
only to simplify the analysis, and therefore, it is not shownin
Fig. 1 nor used in the simulations. This symmetrization was in
fact proposed in [4], and as we will see in Sec. IV, the bounds
developed based on this symmetrization perfectly match the
numerical simulations.

We consider transmissions over an additive white Gaussian
noise (AWGN) channel. Assuming an ideal matched filter and
perfect synchronization, the equivalent discrete-time baseband
received signal is given byyt = xt + zt, wherezt is a zero-
mean Gaussian noise with varianceN0/2 (with N0/2 being
the power spectral density of the continuous-time AWGN),
xt represents the transmitted symbol, andyt, xt, zt ∈ R. At
each discrete timet = 1, . . . , N , the coded, interleaved, and
scrambled bits̃cπ

t are mapped to a symbolxt, wherext =
Φ(c̃π

t ) ∈ X andX is the 4-PAM constellation. The signal-to-
noise ratio is defined asγ , Es/N0 = 1/N0.

At the receiver’s side, reliability metrics for the bits are
calculated by the demapperΦ−1 in the form of logarithmic-
likelihood ratios (L-values) as

l̃πk,t = log
pYt

(

yt|C̃π
k,t = 1

)

pYt
(yt|C̃π

k,t = 0)
, (2)

which allows us to write

pYt
(yt|C̃π

k,t = u) =
exp
(

ul̃πk,t

)

1 + exp
(

l̃πk,t

) , (3)

with u ∈ {0, 1}. Sincec̃πk,t = cπk,t ⊕ sk,t, it can be shown that
lπk,t passed to the deinterleaver (cf. Fig. 1) can be written as

lπk,t = (−1)sk,t l̃πk,t, (4)

i.e., after “descrambling”, the sign of the L-values is changed
using (−1)sk,t . These L-values are deinterleaved byΠ−1

yielding the matrixl = Π−1(lπ) of size 2 byN , which is
then passed to the decoder which calculates an estimate of the
information sequencêı.

1The protection may be defined in different ways, where arguably the
simplest one is the bit error probability per bit position atthe demapper’s
output.
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BICM Code BICM Decoder
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c cπ

Π Φ
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z
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Φ−1 Π−1

lπ l
DEC

ı̂

Fig. 1. Model of BICM transmission.

B. The Interleaver

Throughout this paper, three interleaving alternatives (cf. Π
in Fig. 1) will be discussed: BICM with a single interleaver
(BICM-S), BICM with multiple interleavers (M-interleavers,
BICM-M), and BICM with a trivial interleaver (BICM-T). A
brief description of the three interleaving alternatives is given
below. This paper focuses on BICM-T.

• BICM-S was introduced in [4] and is the most common
configuration analyzed in the literature. It corresponds to
an interleaver that randomly permutes the bits inc prior
to modulation, where the permutation is random in two
dimensions, i.e., it permutes the bits over the bit positions
and over time.

• BICM-M can be seen as a particularization of BICM-
S with the following additional constraint: bits from the
encoder’skth output must be assigned to the modulator’s
kth input. BICM-M was formally analyzed in [6] and
in fact corresponds to the original model introduced by
Zehavi in [3] (BICM) and Li in [10] (BICM with iterative
decoding, BICM-ID). Recently, M-interleavers have also
been proven to be asymptotically optimum for BICM-ID
[11].

• BICM-T was introduced in [7]. In this configuration, the
interleaverΠ in Fig. 1 is not present, i.e.,cπ = c and
lπ = l.

When BICM-T is considered, the resulting system is the
one shown in Fig. 2. A careful examination of Fig. 2 reveals
that the structure of the transmitter of BICM-T is the same
as the transmitter of Ungerboeck’s 1D-TCM [1] or the TCM
transmitter in [12, Fig. 4.17]. The transmitter of BICM-T can
also be considered a particular case of the so-called general
TCM [13, Fig. 18.11] whenk = k̃ (using the notation of
[13]) and when the BRGC is used instead of Ungerboeck’s set-
partitioning (SP). The transmitter of BICM-T is also equivalent
to the simplest configuration of the so-called pragmatic TCM
[14, Ch. 8] [15] (see also [16], [17, Sec. 9.2.4]), i.e., when
two bits per symbol are considered.

The receiver of BICM-T in Fig. 2 corresponds to a conven-
tional BICM receiver, where L-values for each bit are com-
puted and fed to a soft-input Viterbi decoder (VD). The dif-
ference between this receiver’s structure and a TCM receiver
(one-dimensional or pragmatic) is that bit-level processing is
used instead of a symbol-by-symbol VD. In conclusion, the
BICM-T system introduced in [7] is a simple TCM transmitter
used in conjunction with a BICM receiver. Nevertheless,
throughout this paper, we use the name BICM-T to reflect the
fact that this transmitter/receiver structure can be considered
as a particular case of BICM-S, where the interleaver takes a

it
ENC

c1,t

c2,t Φ
xt

zt

yt
Φ−1

l1,t

l2,t DEC
ı̂t

Fig. 2. BICM-T system analyzed in this paper for any time instant t.

trivial form. Moreover, the concept behind BICM-T might be
useful in adaptive modulation schemes where the interleaver
design is adapted to the channel conditions, i.e., if fadingis
present, BICM-S is used, and if fading is not present, the
interleaver is dropped (BICM-T).

As explained above, the main difference of the system in
Fig. 2 and pragmatic TCM is the receiver used. Also, it is
important to note that if BICM-T with larger constellations
(e.g., 8-PAM) is considered, the binary labeling will stillbe
the BRGC, which is different than the one used in pragmatic
TCM, cf. [14, Fig. 8-30]. A detailed analysis/comparison
of BICM-T and pragmatic TCM for larger constellations is,
however, out of the scope of this paper.

C. The Decoder and the decoding errors

A maximum likelihood (ML) sequence decoder chooses the
most likely coded sequencec using the vector of channel
observationsy = [y1, . . . , yN ] (cf. Fig. 1), i.e.,

ĉ
ML = argmax

c∈C
{log pY (y|C = c)} (5)

= argmax
c∈C

{log pY (y|Π(C) = Π(c))} (6)

= argmax
c∈C

{

log

N
∏

t=1

pYt
(yt|Cπ

1,t = cπ1,t, C
π
2,t = cπ2,t)

}

,

(7)

whereC is the transmitted codeword,C is the code, to pass
from (5) to (6) we use the fact that the interleaver is a bijective
mapping, and to pass from (6) to (7) we used the fact that the
noise sampleszt affectingyt are mutually independent.

The striking feature of the BICM decoder shown in Fig. 1
is that it replaces the decoding metric used in (7) with the
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metric calculated at the bit-level, i.e.,

ĉ
BICM = argmax

c∈C

{

log

N
∏

t=1

pYt
(yt|Cπ

1,t = cπ1,t)

· pYt
(yt|Cπ

2,t = cπ2,t)

}

(8)

= argmax
c∈C

{

N
∑

t=1

2
∑

k=1

log pYt
(yt|Cπ

k,t = cπk,t)

}

. (9)

The optimal metric used in (7) is not the same as the one used
in (9), and thus, it is sometimes referred to as a mismatched
metric [18, Sec. II-B.2].

Using an expression analogous to (3), (9) can be expressed
as

ĉ
BICM = argmax

c∈C

{

N
∑

t=1

2
∑

k=1

cπk,tl
π
k,t

−
N
∑

t=1

2
∑

k=1

log(1 + exp(lπk,t))

}

(10)

= argmax
c∈C

{

N
∑

t=1

2
∑

k=1

cπk,tl
π
k,t

}

, (11)

where the second term in (10) being independent ofc is
irrelevant to the decision of the decoder.

The decision of the decoder based on the rule (11) is
erroneous if it detects a codewordĉ instead of the transmitted
codeword c. The probability of this event, the so-called
pairwise error probability(PEP), is defined by

PEP(c → ĉ) , Pr

{

N
∑

t=1

(ĉ1,tl1,t + ĉ2,tl2,t)

≥
N
∑

t=1

(c1,tl1,t + c2,tl2,t)

}

(12)

= Pr

{

N
∑

t=1

(e1,tl1,t + e2,tl2,t) ≥ 0

}

, (13)

whereek,t are the elements of the “error” codeworde = ĉ−c.
The PEP in (13) depends on2N L-values l1, l2, . . . , lN

and its evaluation is, in general, difficult because this sequence
contains pairs of dependent L-values that were calculated from
the same channel outcome (same noise realization). However,
when convolutional codes are considered, the most relevant
events are those involving a relatively small number of errors
et, t0 ≤ t ≤ t0 + T − 1, which means that PEP is affected
by the consecutive L-valueslt0 , lt0+1, . . . , lt0+T−1. These2T
L-values will be independent if we ensure that all the bits
ct0 , ct0+1, . . . , ct0+T−1 are transmitted in2T different time
instants (and thus, affected by different noise realizations)
after interleaving. This condition oflocal independencecan
be obtained by an appropriate design of the interleaver, and
is very likely to be satisfied when BICM-S or BICM-M are
used.

When BICM-T is considered, for eacht = 1, . . . , N , two
bitsct will be transmitted using the same symbolxt, and thus,
the two corresponding L-valueslt will be mutually dependent

(because they were obtained from the same observationyt).
In the following subsection, we show how to analyze the
performance of such a system.

III. PERFORMANCEEVALUATION

A. BER Analysis

Because of the symmetrization of the channel, we can,
without loss of generality, assume that the all-zero codeword
was transmitted. We defineE as the set of codewords cor-
responding to paths in the trellis of the code diverging from
the zero-state at the arbitrarily chosen instantt = t0, and
remerging with it afterT trellis stages. We also denote these
codewords ase , [eT

1 , . . . , e
T
T ], whereet = [e1,t, e2,t]. Then,

the bit error rate (BER) can be upper-bounded using a union
bound (UB) as

BER ≤ UB ,
∑

e∈E
PEP(e)dH(ie), (14)

wheredH(ie) is the Hamming weight of the input sequence
ie corresponding to the codewordc = e, and the pairwise
error probability (PEP) is given by (cf. (13))

PEP(e) = Pr

{

t0+T−1
∑

t=t0

(

e1,tl1,t + e2,tl2,t

)

> 0

}

. (15)

The general expression for the PEP in (15) and the UB in (14)
reduce to well-known cases if simplifying assumptions for the
distribution oflk,t are adopted. To clarify the main differences
between BICM-T and BICM-S/BICM-M, in the following, we
briefly analyze these well-known cases.

1) Independent and identically distributed L-values (BICM-
S): In BICM-S, and because of the interleaver, the L-
values lk,t passed to the decoder are locally independent
(cf. Sec. II-C) and identically distributed (i.i.d.). Theycan be
described using the conditional pdfpL(λ|B) with B ∈ {0, 1}
and where the pdf is independent ofk and t. In this case,
the PEP in (15) depends only on the Hamming weight of the
codeworde, i.e., the PEP is given by (16) (at the bottom of
next page). The UB in (14) can be expressed as

UBS =
∑

w

PEPS(w)
∑

e∈Cw

dH(ie) (17)

=
∑

w

PEPS(w)βCw , (18)

where Cw represents the set of codewords with Hamming
weightw, i.e.,Cw , {e ∈ E : dH(e) = w}, andC denotes the
convolutional code used for transmission. To pass from (17)to
(18) we group the codewordse that have the same Hamming
weight and add their contributions, which results in the well-
known (input-output) weight distribution spectrum of the code
βCw. The expression in (18) is the most common expression for
the UB for BICM, cf. [4, eq. (26)], [5, eq. (4.12)].

2) Independent but not identically distributed L-values
(BICM-M): In BICM-M, the L-values passed to the each
decoder’s input are locally independent, however, their dis-
tributions depend on the bit’s positionk = 1, 2. Therefore, we
need to use the conditional pdfspL1

(λ|B1) and pL2
(λ|B2),

whereL1 andL2 are the random variables representing the
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L-values at the decoder’s inputs. The PEP in this case is given
by (19) (shown at the bottom of the page), wherewe,k is the
Hamming weight of thekth row of e. The UB in (14) can be
expressed as

UBM =
∑

w1,w2

PEPM(w1, w2)
∑

e∈Cw1,w2

dH(ie)

=
∑

w1,w2

PEPM(w1, w2)β
C
w1,w2

, (20)

whereCw1,w2
is the set of codewords withgeneralizedHam-

ming weight [w1, w2] (wk in its kth row), i.e., Cw1,w2
,

{e ∈ E : w1 = we,1, w2 = we,2}, and βCw1,w2
is the

generalized weight distribution spectrum of the code that takes
into account the errors at each encoder’s output separately. The
UB in (20) was shown in [6] to be useful when analyzing the
UEP introduced by the binary labeling and also to optimize
the interleaver and the code.

3) BICM without bit-interleaving (BICM-T):For BICM-T,
yet a different particularization of (15) must be adopted. Let
Λe be the metric associated to the codeworde and assume
without loss of generality thatt0 = t, cf. (15). This metric is
a sum of independent random variables, i.e.,

Λe , Λ(t) + Λ(t+1) + Λ(t+2) + . . . , (21)

whereΛ(t) = e1,tl1,t + e2,tl2,t which corresponds to the L-
values defining the PEP in (15). Because the interleaver is
removed,lk,t = lπk,t, and thus, by using (4), we express each
of these metrics as

Λ(t) ≡ Λ(et, st) =



















0, if et = [0, 0]

(−1)s1,t l̃π1,t, if et = [1, 0]

(−1)s2,t l̃π2,t, if et = [0, 1]
∑2

k=1(−1)sk,t l̃πk,t, if et = [1, 1]

,

(22)

where we useΛ(et, st) to show thatΛ(t) depends on the
scrambling’s outcomest (through l̃πk,t) and the error pattern
at time t, et.

Since l̃πk,t are random variables (that depend onk andxt),
we need three pdfs:pΛ1

(λ|B1), pΛ2
(λ|B2), and pΛΣ

(λ|B),
for the three relevant cases defined in (22). We note that
pΛΣ

(λ|B) is conditioned not only on one bit, but on the pair of
transmitted bitsB = [B1, B2], whereB1, B2, andB represent
the bitsCπ

1,t, C
π
2,t, andCπ

t , respectively. From (21), and due to
the independence of the individual L-values, the PEP in (15)
can be expressed as (23) (shown at the bottom of the page)
wherewe,1, we,2, andwe,Σ are, respectively, the number of

columns ine being equal toet = [1, 0]T, et = [0, 1]T, and
et = [1, 1]T.2 Then, the UB expression in (14) becomes

UBT =
∑

w1,w2,wΣ

PEPT(w1, w2, wΣ)
∑

e∈Cw1,w2,wΣ

dH(ie)

=
∑

w1,w2,wΣ

PEPT(w1, w2, wΣ)βCw1,w2,wΣ
, (24)

whereCw1,w2,wΣ
, {e ∈ E : w1 = we,1, w2 = we,2, wΣ =

we,Σ} and βCw1,w2,wΣ
is a new weight distribution spectrum

of the codeC that takes into account the generalized weight
[w1, w2, wΣ] of the codewords, i.e., it considers separately the
case whenet = [1, 1]. This is different fromβCw1,w2

, where
such a case will increasew1 andw2 in the generalized weight
[w1, w2]. Clearly, the following relationships hold

dH(e) = we,1 + we,2 + 2we,Σ (25)

we,1 = we,1 + we,Σ (26)

we,2 = we,1 + we,Σ. (27)

Example 1:Consider the constraint lengthK = 3 optimum
distance spectrum convolutional code (ODSCC) with polyno-
mial generators(5, 7) [19, Table I]. The free distance of the
code isdfree

H = 5, andβC5 = 1, i.e., there is one divergent path
at Hamming distance five from the all-zero codeword, and the
Hamming weight of that path isdH(ie) = 1. Moreover, it is
possible to show that this codeword is given by

e =

[

1 0 1
1 1 1

]

,

i.e., dH(e) = 5, we,1 = 0, we,2 = 1, andwe,Σ = 2. If BICM-
M is considered,we,1 = 2 andwe,2 = 3.

B. PDF of the L-values

In order to calculate the PEP for BICM-T in (23) we
need to compute the conditional pdfspΛ1

(λ|B1), pΛ2
(λ|B2),

and pΛΣ
(λ|B). In this subsection we show how to find

approximations for these PDFs.
The L-values in (2) can be expressed as

l̃πk,t = log

∑

x∈Xk,1
pYt

(yt|Xt = x)
∑

x∈Xk,0
pYt

(yt|Xt = x)
, (28)

whereXk,b is the set of constellation symbols labeled withb at
bit positionk. Using the fact that the channel is Gaussian and if

2We note that the three argumentswe,1 we,2 andwe,Σ are a consequence
of the code rateR = 1/2 considered in this paper. For other code rates, more
arguments will be needed.

PEP(e) = PEPS(dH(e)) =

∫ ∞

0

{pL(λ|b = 0)}∗dH(e) dλ. (16)

PEP(e) = PEPM(we,1, we,2) =

∫ ∞

0

{pL1
(λ|B1 = 0)}∗we,1 ∗ {pL2

(λ|B2 = 0)}∗we,2 dλ, (19)

PEP(e) = PEPT(we,1, we,2, we,Σ) =

∫ ∞

0

{pΛ1
(λ|B1 = 0)}∗we,1 ∗ {pΛ2

(λ|B2 = 0)}∗we,2 ∗ {pΛΣ
(λ|B = [0, 0])}∗we,Σ dλ,

(23)
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the so-called max-log approximationlog(exp(a) + exp(b)) ≈
max{a, b} is used, the L-values can be expressed as3

l̃πk,t(yt|st) ≈ γ

[

min
x∈Xk,0

(yt − x)2 − min
x∈Xk,1

(yt − x)2
]

, (29)

where from now on we use the notationl̃k,t(yt|st) to empha-
size that the L-values depend on the received signal and the
scrambler’s outcomest. In fact, the L-values depend on the
transmitted symbolxt, however, since the all-zero codeword
is transmitted([cπ1,t, c

π
2,t] = [0, 0]) and no interleaving is

performed,xt is completely determined byst, i.e., xt =
Φ(c̃π

t ) = Φ(st).
The L-value in (29) is apiece-wise linearfunction of yt.

Moreover, the L-valuesΛ(et, st) in (22) are linear combina-
tions of l̃πk,t(yt|st) in (29), and therefore, they are also piece-
wise linear functions ofyt. Two cases are of particular interest,
namely, whenet = [1, 0] or et = [0, 1], and whenet = [1, 1].
The piece-wise linear relationships for the first case are shown
in Fig. 3 a). In this figure we also show the constellation
symbols (or equivalently,st) with their binary labelings and
we use the notationst = [0/1, :] and st = [:, 0/1] to show
that for et = [1, 0] andet = [0, 1] the L-valuesΛ(et, st) are
independent ofs2,t ands1,t, respectively. In Fig. 3 b), the four
possible cases whenet = [1, 1] are shown.

For a given scrambler outcomest (or equivalently, a given
transmitted symbolxt), the received signalyt is a Gaussian
random variable with meanxt and varianceN0/2. Therefore,
each L-valueΛ(et, st) in (22) is a sum of piece-wise Gaussian
functions.4 In order to obtain expressions that are easy to work
with, we use the so-called zero-crossing approximation of the
L-values proposed in [21, Sec. III-C] which replaces all the
Gaussian pieces required in the max-log model of L-values
by a single Gaussian function. Intuitively, this approximation
states that

Λ(yt|et, st) ≈ â(et, st)yt + b̂(et, st), (30)

where â(et, st) and b̂(et, st) are the slope and the intercept
of the closest linear piece to the transmitted symbolxt.

In Table I we show the values of̂a(et, st) and b̂(et, st)
defining (30) for 4-PAM, where for notation simplicity we
have defined

α , 4γ∆2. (31)

To clarify how these coefficients are obtained, consider for
exampleet = [0, 1]. In this case, forst = [1, 1], which
corresponds toxt = −3∆, the closest linear piece intersecting
the x-axis is the left-most part of the curve labeled in Fig. 3
by et = [0, 1] andst = [:, 1] (dashed-dotted line). This gives
â([0, 1], [1, 1]) = +α/∆ (slope) andb̂([0, 1], [1, 1]) = +2α
(intercept), as shown in Table I. If for exampleet = [0, 1] and

3The max-log metric in (29) is suboptimal in terms of BER, however, it
is very popular in practical implementations because of itslow complexity.
Moreover, when low order constellations are used, the use ofthis simplifica-
tion results in a negligible impact on the receiver’s performance [20, Fig. 9].
The impact of this approximation, however, becomes more important when
higher order constellations are considered, as shown in [20, Fig. 9].

4Closed-form expressions for the pdfs ofΛ(et, st) whenet = [1, 0] and
et = [0, 1] (cf. Fig. 3 a)) were presented in [21].

st = [0, 0] (xt = ∆), the closest linear piece is the right-most
piece labeled byet = [0, 1] andst = [:, 0] (dashed line), which
gives â([0, 1], [0, 0]) = +α/∆ and b̂([0, 1], [0, 0]) = −2α. All
the other values in Table I can be found by a similar direct
inspection of Fig. 3.

Using the approximation in (30), the conditional L-values
(conditioned onst) can be modeled as Gaussian random
variables where their mean and variance depend onst, γ, and
et, i.e.,

pΛ(λ|St = st) = ψ
(

λ; µ̂(et, st), σ̂
2(et, st)

)

, (32)

where the mean value and variance are given by

µ̂(st) = xtâ(et, st) + b̂(et, st) (33)

σ̂2(et, st) = [â(et, st)]
2N0

2
. (34)

In Table II we show the mean values and variances in (33)–
(34) for the same cases presented in Table I.

To obtain the (unconditional) pdf ofΛ in (22), we average
(32) over the scrambling outcomesst (cf. Table II), which
are assumed to be equiprobable. This results in the following
expression

pΛ(λ) =











1
2

[

ψ
(

λ;−3α, 2α
)

+ ψ
(

λ;−α, 2α
)]

, if et = [1, 0]

ψ
(

λ;−α, 2α
)

, if et = [0, 1]

ψ
(

λ;−4α, 8α
)

, if et = [1, 1]

.

(35)

IV. D ISCUSSION ANDAPPLICATIONS

In the previous section, we developed approximations for
the pdf of the L-values passed to the decoder in BICM-T,
cf. (35). In this section we use them to quantify the gains
offered by BICM-T over BICM-S, to define asymptotically
optimum CCs, and to compare BICM-T with Ungerboeck’s
1D-TCM.

A. Performance of BICM-T

Theorem 1:The UB for BICM-T is

UBT =
∑

w1,w2,wΣ

βCw1,w2,wΣ

(

1

2

)w1 w1
∑

j=0

(

w1

j

)

·Q
(
√

(w1 + w2 + 4wΣ + 2j)2

(w1 + w2 + 4wΣ)

2γ

5

)

. (36)

Proof: Using the pdf of the L-values in (35), the elements
in the integral defining the PEP in (23) can be expressed as

{pΛ1
(λ|B1 = 0)}∗w1 =

(

1

2

)w1 w1
∑

j=0

(

w1

j

)

·

ψ
(

λ;−α(2j + w1), 2αw1

)

(37)

{pΛ2
(λ|B2 = 0)}∗w2 =ψ

(

λ;−αw2, 2αw2

)

(38)

{pΛΣ
(λ|B = [0, 0])}∗wΣ =ψ

(

λ;−4αwΣ, 8αwΣ

)

, (39)

where we usedψ(λ;µ1, σ
2
1) ∗ . . . ∗ ψ(λ;µJ , σ

2
J ) =

ψ(λ;
∑J

j=1 µj ,
∑J

j=1 σ
2
j ) and where the binomial coefficient

in (37) comes from the sum of the two Gaussian functions in
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e
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s
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=
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=
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]
st = [0, 0]

st = [1, 1]

st = [1, 0]

st = [0, 1]

ytyt

Λ(et, st)Λ(et, st)

1111 1010 0000 0101

Fig. 3. Piece-wise relation between the L-valuesΛ(et, st) in (22) and the received signalyt for 4-PAM for all the possible values ofet and st. The
relation for the case whenet = [1, 0] or et = [0, 1] is shown in a) and the relation whenet = [1, 1] is shown in b). The transmitted symbols and their
corresponding binary labelings are shown with black squares. The notationst = [0/1, :] is used to show that foret = [1, 0] the L-valuesΛ(et, st) are
independent ofs2,t.

TABLE I
VALUES OF â(et, st) AND b̂(et, st) IN (30) FOR 4-PAM FOUND BY DIRECT INSPECTION OFFIG. 3.

st = [1, 1] st = [1, 0] st = [0, 0] st = [0, 1]

â(et, st) b̂(et, st) â(et, st) b̂(et, st) â(et, st) b̂(et, st) â(et, st) b̂(et, st)

et = [1, 0] +α/∆ 0 +α/∆ 0 −α/∆ 0 −α/∆ 0

et = [0, 1] +α/∆ +2α −α/∆ −2α +α/∆ −2α −α/∆ +2α

et = [1, 1] +2α/∆ +2α +2α/∆ −2α −2α/∆ −2α −2α/∆ +2α

TABLE II
VALUES OF µ̂(et, st) AND σ̂2(et, st) GIVEN IN (33) AND (34) FOR 4-PAM.

st = [1, 1] st = [1, 0] st = [0, 0] st = [0, 1]

µ̂(et, st) σ̂2(et, st) µ̂(et, st) σ̂2(et, st) µ̂(et, st) σ̂2(et, st) µ̂(et, st) σ̂2(et, st)

et = [1, 0] −3α 2α −α 2α −α 2α −3α 2α

et = [0, 1] −α 2α −α 2α −α 2α −α 2α

et = [1, 1] −4α 8α −4α 8α −4α 8α −4α 8α

(35) whenet = [1, 0]. Using the relations (37)–(39) in (23)
gives

PEPT(w1, w2, wΣ) =

∫ ∞

0

(

1

2

)w1 w1
∑

j=0

(

w1

j

)

· ψ
(

λ;µ1,2,Σ,j , σ
2
1,2,Σ

)

dλ, (40)

where

µ1,2,Σ,j = −(w1 + w2 + 4wΣ + 2j)α (41)

σ2
1,2,Σ = 2(w1 + w2 + 4wΣ)α. (42)

By using the definition ofα in (31) and∆ in (1), and (41)
and (42) in (40), as well as the UB expression in (24), the

expression (36) is obtained.

In Fig. 4, numerical results for BICM-T with 4-PAM labeled
with the BRGC and using the ODSCCs(5, 7) (K = 3) and
(247, 371) (K = 8) [19, Table I] are shown. For BICM-M,
two configurations exist for each code. The first one is when
all the bits from the first encoder’s output are interleaved and
then assigned to the first modulator’s input (k = 1) and all
the bits from the second encoder’s output are interleaved and
then assigned to the second modulator’s input (k = 2). The
second alternative corresponds to the opposite, i.e., all the bits
from the first encoder’s output are sent overk = 2 and the
bits from the second encoder’s output are sent overk = 1.
This is equivalent to defining the code by swapping the order
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Fig. 4. BER for BICM using the(5, 7) and (247, 371) ODSCCs [19]
and 4-PAM labeled with the BRGC, and for BICM-S [4], BICM-M [6], and
BICM-T. The simulations are shown with markers and the UB with solid
lines. The asymptotic UB is shown with dashed lines.

of the polynomial generators. For these two particular codes,
the configuration that minimizes the BER for medium to high
SNR is the second one, i.e., when all the bits generated by the
polynomial(7) or (371) are sent overk = 1 and all the bits
generated by the polynomial(5) or (247) are sent overk = 2.5

We denote the configuration that minimizes (or maximizes) the
BER by “Best” (or “Worst”). In Fig. 4, we show BICM-T with
the best and worse configurations, however, for BICM-M, we
only show the best configuration.

To compute the UB for BICM-S and BICM-M, we use the
expressions in [6, eq. (22)–(23)], and for BICM-T we use The-
orem 1. All the UB computations were carried out considering
a truncated spectrum of the code, i.e.,{w,w1, w2, wΣ} ≤ 30
which is calculated numerically using a breadth-first search
algorithm [22]. The results in Fig. 4 show that the UBs
developed in this paper for BICM-T predict well the simulation
results. The gains by using BICM-T instead of BICM-S for
a BER target of10−7 are approximately 2 dB forK = 3
and 1 dB forK = 8. Moreover, these gains are obtained by
decreasing the complexity of the system, i.e., by not doing
interleaving/de-interleaving.

B. Asymptotic Performance

In this subsection, we analyze the performance of BICM-T
for asymptotically high SNR and we compare it with BICM-S.

Theorem 2:For a given codeC and asymptotically high
SNR, the leading term of th UB for BICM-T is

UB′
T = MCQ(√2γAC

5

)

, (43)

5These configurations were found in [6] based on a UB for BICM-Msimilar
to (20). It was shown in [6] that different configurations result in different
BER performance because of the UEP introduced by the binary labeling.

where

AC , min
w1,w2,wΣ

βCw1,w2,wΣ
6=0

(w1 + w2 + 4wΣ) (44)

MC =
∑

w1,w2,wΣ

w1+w2+4wΣ=AC(1

2

)w1

βCw1,w2,wΣ
. (45)

Proof: The UB in (36) is a sum of weighted Q-functions,
and thus, for high SNR, only the Q-functions with the smallest
argument should be considered. For each(w1, w2, wΣ) there
is a Q-function that dominates the inner sum in (36), which
is obtained forj = 0.

For comparison purposes, we present here the performance
of BICM-S at asymptotically high SNR. This can be obtained
from [4, eqs. (55) and (64)] (or alternatively from [6, eq. (25)]),
which gives

UB′
S =

(

3

4

)dfree

H

βC
dfree

H

Q

(
√

2dfree
H γ

5

)

, (46)

wheredfree
H is the free Hamming distance of the code which

can be expressed asdfree
H = wfree

1 +wfree
2 +2wfree

Σ , cf. (25). The
expression (46) shows that the ODSCCs are the optimal choice
for BICM-S because they have maximum free Hamming
distance, cf. [19, Sec. I]. More details are given in Sec. IV-C.

In Fig. 4, we show asymptotic UBs forK = 3. For BICM-T
we used Theorem 2, for BICM-S we use (46), and for BICM-
M we use [6, eq. (25)]. All of them are shown to follow the
simulation results quite well. Similar results can be obtained
for the code withK = 8, however, we do not show these
results not to overcrowd the figure.

The asymptotic gain (AG) provided by using BICM-T
instead of BICM-S is obtained directly from Theorem 2 and
(46), as stated in the following corollary.

Corollary 3: The AG provided by BICM-T with a given
codeC with respect to BICM-S using an ODSCC is

AGS→T = 10 log10

(

AC
d̂free
H

)

, (47)

whered̂free
H is the free Hamming distance of the ODSCC.

Example 2 (AG for the(5, 7) code): For the particular
code (5, 7), it is possible to see that the solution of (44)
corresponds to the event at free Hamming distance6,
i.e., d̂free

H = 5, we,1 = 0, we,2 = 1, we,Σ = 2
(cf. Example 1), and therefore,AC = 9. This result in
an AG of 10 log10

(

9
5

)

≈ 2.55 dB, cf. (47). Moreover,
since the input sequence that generates the codeword at free
Hamming distance has Hamming weight one (βC0,1,2 = 1),
we obtainMC

0,1,2 = 1 for the configuration “Worst”. If the
polynomials are swapped (which corresponds to swapping
the rows ofe), i.e., if we consider the code(7, 5), we obtain
we,1 = 1, we,2 = 0, we,Σ = 2 and the sameAC (sinceAC
does not depend on the order of the polynomials). However,
in this caseMC

1,0,2 = 1/2. These two asymptotic bounds are
shown in Fig. 4, where the influence of the coefficientMC

6However, this is not always true for other codes.
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(MC
0,1,2 = 1 for (5, 7) andMC

1,0,2 = 1/2 for (7, 5)) can be
observed as a weighting coefficient applied to the Q-function
in (43) (this is also visible in the simulation results).

Corollary 4: The AG provided by BICM-T with respect to
BICM-S is bounded as

AGS→T ≤ 3 dB. (48)

Proof: For any constraint lengthK, and any codeC, we
have

AC = min
w1,w2,wΣ

βCw1,w2,wΣ
6=0

(w1 + w2 + 4wΣ)

≤ wfree
1 + wfree

2 + 4wfree
Σ (49)

≤ 2wfree
1 + 2wfree

2 + 4wfree
Σ , (50)

where we use[wfree
1 , wfree

2 , wfree
Σ ] to denote the generalized

weight of the event(s) at free Hamming distance. The in-
equality in (49) holds because the event(s) at free Ham-
ming distance belong to the elements in the minimization.
The inequality in (50) holds becausewfree

1 + wfree
2 ≥ 0.

Recognizing2wfree
1 + 2wfree

2 + 4wfree
Σ in (50) as twice the

free Hamming distance of the codeC, cf. (25), we obtain
2wfree

1 + 2wfree
2 + 4wfree

Σ < 2d̂free
H , where d̂free

H is the free
Hamming distance of the ODSCC. Thus,AC ≤ 2d̂free

H , which
combined with (47) completes the proof.

C. Asymptotically Optimum Convolutional Codes

Optimum CCs—in the sense of minimizing the BER for
asymptotically high SNR—are usually defined in terms of
free Hamming distance, i.e., good CCs are those, which for
a given rate and constraint length, have the maximum free
distance (MFD) [23, Sec. 8.2.5]. The MFD criterion can be
refined if the multiplicities associated to the different weights
are considered [19], [13, Sec. 12.3]. Based on this refined
optimality criterion, the ODSCCs were defined, which are
optimal in both binary transmission and in BICM-S, cf. (46).
For BICM-M, we have shown in [6] thatdfree

H is still a
good indicator of the optimality of the code. If BICM-T
is considered, and as a direct consequence of Theorem 2,
asymptotically optimum convolutional codes (AOCCs) can be
defined.

Definition 1 (Asymptotically optimum CCs for BICM-T):
For a givenK andR, a CC is said to be an AOCC if it has
the lowest multiplicityMC among the codes with the highest
AC.

We have performed an exhaustive numerical search for
AOCCs based on Definition 1, which from now on we denote
by C∗. We considered for constraint lengthsK = 3, 4, . . . , 8
and all codes with free distance0 < dfree

H ≤ d̂free
H . The

spectrum was truncated asw1 + w2 + 4wΣ ≤ d̂free
H + 8 and

the search was performed in lexicographic order. The results
are shown in Table III, where for comparison we also include
the ODSCCs (with their respective coefficientsAC andMC).
If there is more than one AOCC for a givenK, we present
the first one in the list. These results show that in general the
free Hamming distance of the code is not the proper criterion
in BICM-T, i.e., codes that are not MFD codes perform better

than the ODSCCs, cf.K = 6, 7. In fact, only forK = 3
the ODSCC is also optimum for BICM-T7. The results in
Table III also show that the gains offered by the AOCCs in
four out of six cases come from a reduced multiplicityMC,
i.e., both AOCCs and ODSCCs have the sameAC. In these
cases, BICM-T with an AOCC and BICM-T with an ODSCC
will give a similar BER performance.

In Table III, we also present the AG that BICM-T withC∗

offers with respect to BICM-S with an ODSCC, cf. (47). The
values obtained are around 2 dB, which are consistent with
Corollary 4.

D. BICM-T vs. TCM

As mentioned in Sec. II-B, the transmitter of BICM-T is
identical to the transmitter of Ungerboeck’s 1D-TCM and to
pragmatic TCM. In this subsection we compare the asymptotic
performance of BICM-T and Ungerboeck’s 1D-TCM.

We have previously defined in (47) the AG of BICM-T
over BICM-S. It is also possible to define the AG of BICM-
T compared to uncoded transmission with the same spectral
efficiency (uncoded 2-PAM). Since the minimum squared
Euclidean distance of the 2-PAM constellation (normalizedto
Es = 1) is 4, the AG is given by

AGUC→T = 10 log10

(

AC
5

)

. (51)

The AG in (51) is shown in Table III. ForK = 3, AGUC→T

is equal to2.55 dB, which is the same asAGS→T. This is
because BICM-S withK = 3 does not offer any AG compared
to uncoded 2-PAM. Analyzing the values ofAGUC→T in
Table III, we find that they are the same as those obtained
by 1D-TCM, cf. [1, Table I]. This states that if BICM-T is
used with the correct CC, it performs asymptotically as well
as 1D-TCM, and therefore, it should be considered as good
alternative for CM in nonfading channels (however, this is not
the case if BICM-S is used, or if BICM-T is used with the
ODSCCs). While this asymptotic equivalence between BICM-
T and 1D-TCM is very interesting, a systematic comparison of
their performance when changing the constellation size coding
rate or binary labeling requires a deeper analysis.

For completeness, in Table III, we also show the AG
offered by BICM-S over uncoded transmission, defined as
AGUC→S = AGUC→T − AGS→T. The performance of un-
coded transmission does not depend onK, but on the other
hand, the performance of BICM-T and BICM-S in general
increases whenK increases. This is reflected in an increase
of the AGs AGUC→T and AGUC→S in Table III whenK
increases.8 Finally, we also note that forK = 7, the use of
BICM-S with the ODS results in an asymptotic gain of 3.01 dB
compared to uncoded transmission (cf.AGUC→S in Table III).
Moreover, for the same code,AGUC→T is the same as the one
obtained by pragmatic TCM [15, Table II].

7For K = 4 the AOCC (13, 17) has, in fact, the same spectrum
βCw1,w2,wΣ

as the ODSCC(15, 17). The AOCC appears in the list because
of the lexicographic order search.

8The fact thatAGUC→S is the same forK = 7 and K = 8 can
be explained from the fact that the corresponding ODSCCs have the same
d̂free

H
= 10.
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TABLE III
COEFFICIENTSAC AND MC FOR AOCCS AND ODSCCS IN BICM-T. THE ASYMPTOTIC GAINS AND THEHAMMING FREE DISTANCES ARE ALSO SHOWN.

K
AOCCs ODSCCs AG [dB]

(g1, g2) dfree

H AC∗ MC∗ (g1, g2) d̂free

H AC MC AGS→T AGUC→T AGUC→S

3 (7, 5) 5 9 0.50 (7, 5) 5 9 0.50 2.55 2.55 0

4 (13, 17) 6 10 0.50 (15, 17) 6 10 0.50 2.22 3.01 0.79

5 (23, 33) 7 11 0.38 (23, 35) 7 11 0.88 1.96 3.42 1.46

6 (45, 55) 7 13 1.62 (53, 75) 8 12 0.50 2.11 4.15 2.04

7 (107, 135) 9 14 0.50 (133, 171) 10 14 3.09 1.46 4.47 3.01

8 (313, 235) 10 16 8.02 (371, 247) 10 15 0.61 2.04 5.05 3.01

V. CONCLUSIONS

In this paper, we formally explained why the recently
proposed BICM-T system offers gains over regular BICM
in nonfading channels. BICM-T was shown to be a TCM
transmitter used with a BICM receiver. An analytical model
was developed and a new type of distance spectrum for the
code was introduced, which is the relevant characteristic to
optimize CCs for BICM-T. The analytical model was used to
validate the numerical results and to show that the use of the
ODSCCs, which rely on the regular free Hamming distance
criterion, is suboptimal.

The model presented in this paper was also used to analyze
the asymptotic behavior of BICM-T. Optimal convolutional
codes for BICM-T were tabulated and it was shown that a
properly designed BICM-T system performs asymptotically as
well as Ungerboeck’s TCM. Moreover, it was shown that the
asymptotic loss caused by using BICM-S instead of BICM-T
in nonfading channels is never larger than 3 dB.

For notation simplicity and to have a concise explanation
of the mechanisms behind BICM-T, the analysis presented in
this paper was done only for a simple BICM configuration
(R = 1/2 and 4-PAM). A more general analysis is possible,
and very interesting indeed. For example, it is still unknown
what the performance gains will be in a more general setup,
e.g., for different code rates, when the number of encoder
outputs is not the same as the number of modulator inputs,
or for different spectral efficiencies. Also, it is unclear what
the gains offered by the AOCCs for finite SNR values are.
All these questions, as well as a general comparison between
BICM-T and pragmatic TCM, are left for further investigation.
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[5] A. Guillén i Fàbregas, A. Martinez, and G. Caire, “Bit-interleaved
coded modulation,”Foundations and Trends in Communications and
Information Theory, vol. 5, no. 1–2, pp. 1–153, 2008.

[6] A. Alvarado, E. Agrell, L. Szczecinski, and A. Svensson,“Exploiting
UEP in QAM-based BICM: Interleaver and code design,”IEEE Trans.
Commun., vol. 58, no. 2, pp. 500–510, Feb. 2010.

[7] C. Stierstorfer, R. F. H. Fischer, and J. B. Huber, “Optimizing BICM
with convolutional codes for transmission over the AWGN channel,” in
International Zurich Seminar on Communications, Zurich, Switzerland,
Mar. 2010.

[8] S. B. Wicker, Error Control Systems for Digital Communication and
Storage. Prentice Hall, 1995.

[9] E. Agrell, J. Lassing, E. G. Ström, and T. Ottosson, “On the optimality
of the binary reflected Gray code,”IEEE Trans. Inf. Theory, vol. 50,
no. 12, pp. 3170–3182, Dec. 2004.

[10] X. Li and J. Ritcey, “Bit-interleaved coded modulationwith iterative
decoding using soft feedback,”Electronic Letters, vol. 34, no. 10, pp.
942–943, May 1998.

[11] A. Alvarado, L. Szczecinski, E. Agrell, and A. Svensson, “On BICM-
ID with multiple interleavers,”IEEE Commun. Lett., vol. 14, no. 9, pp.
785–787, Sep. 2010.

[12] S. H. Jamali and T. Le-Ngoc,Coded-Modulation Techniques for Fading
Channels. Kluwer Academic Publishers, 1994.

[13] S. Lin and D. J. Costello, Jr.,Error Control Coding, 2nd ed. Englewood
Cliffs, NJ, USA: Prentice Hall, 2004.

[14] G. C. Clark Jr. and J. B. Cain,Error-correction coding for digital
communications, 2nd ed. Plenum Press, 1981.

[15] A. J. Viterbi, J. K. Wolf, E. Zehavi, and R. Padovani, “A pragmatic
approach to trellis-coded modulation,”IEEE Commun. Mag., vol. 27,
no. 7, pp. 11–19, July 1989.

[16] J. K. Wolf and E. Zehavi, “p2 codes: Pragmatic trellis codes utilizing
punctured convolutional codes,”IEEE Commun. Mag., vol. 33, no. 2,
pp. 94–99, Feb. 1995.

[17] R. H. Morelos-Zaragoza,The Art of Error Correcting Coding, 2nd ed.
John Wiley & Sons, 2002.
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