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On BICM receivers for TCM transmission

Alex Alvarado, Leszek Szczecinski, and Erik Agrell

Abstract—Recent results have shown that the performance
of bit-interleaved coded modulation (BICM) using convoluional
codes in nonfading channels can be significantly improved wén
the interleaver takes a trivial form (BICM-T), i.e., when it does
not interleave the bits at all. In this paper, we give a formal
explanation for these results and show that BICM-T is, in fat,
the combination of a TCM transmitter and a BICM receiver.
To predict the performance of BICM-T, a new type of dis-
tance spectrum for convolutional codes is introduced, angtical
bounds based on this spectrum are developed, and asymptotic
approximations are presented. It is shown that the free Hamring
distance of the code is not the relevant optimization criteion
for BICM-T. Asymptotically optimal convolutional codes for
different constraint lengths are tabulated and BICM-T is shown
to offer asymptotic gains of about 2 dB over traditional BICM
designs based on random interleavers. The asymptotic gairer
uncoded transmission are found to be the same as those obtauh
by Ungerboeck’s one-dimensional trellis-coded modulatio (1D-
TCM), and therefore, in nonfading channels, BICM-T is shown
to be as good as 1D-TCM.

Index Terms—Bit-interleaved Coded Modulation, Binary Re-
flected Gray Code, Coded Modulation, Convolutional Codes,
Interleaver, Quadrature Amplitude Modulation, Pulse Amplitude
Modulation, Set Partitioning, Trellis Coded Modulation.

I. INTRODUCTION
NGERBOECK'S trellis coded modulation (TCM) [1]

and Imai and Hirakawa’s multilevel coding [2] are prob
ably the most popular coded modulation (CM) schemes fi
the AWGN channel. Bit-interleaved coded modulation (BICM
[3]-[5] appeared in 1992 as an alternative for CM in fadin

channels. One particularly appealing feature of BICM ig th

all the operations are done at the bit-level, and thus, at t

transmitter’s side, off-the-shelf binary codes are cotew:to
the modulator via a bit-level interleaver. At the receigeside,
reliability metrics for the coded bits (L-values) are cédtad
by the demapper, de-interleaved, and then fed to a bin
decoder. This structure gives the designer the flexibildty

choose the modulator and the encoder independently, whi%ﬂ
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in turn allows, for example, for an easy adaptation of the
transmission to the channel conditions (adaptive modarati
and coding). This flexibility is arguably the main advantage
of BICM over other CM schemes, and also the reason of why
it is used in almost all of the current wireless communiagzio
standards, e.g., HSPA, IEEE 802.11a/g/n, and DVB-T2/S2/C2

Bit-interleaving before modulation was introduced in Ze-
havi’'s original paper [3] on BICM. Bit-interleaving is ingd
crucial in fading channels since it guarantees that corisecu
coded bits are sent over symbols affected by independent
fades. This results in an increase (compared to TCM) of the
so-called code diversity (the suitable performance measur
in fading channels), and therefore, BICM is the preferred
alternative for CM in fading channels. BICM can also be
used in nonfading channels. However, in this scenario, and
compared with TCM, BICM gives a smaller minimum Eu-
clidean distance (the proper performance metric in nonfadi
channels), and also a smaller constraint capacity [4]. Desp
that, if a Gray labeling is used, the capacity loss is small, a
therefore, BICM is still considered as a valid option for CM
over nonfading channels.

The use of a bit-level interleaver in nonfading channels
has been inherited from the original works on BICM by
Zehavi [3] and Caireet al. [4]. It simplifies the performance
analysis of BICM and is implicitly considered mandatory
in the literature. However, the reasons for its presence are
Eldom discussed. Previously, we have shown in [6] how the
erformance of BICM can be improved in nonfading channels
y using multiple interleavers. Recently, however, it hasrb
hown in [7] that in nonfading channels, considerably large
§ins (a few decibels) can be obtained if the interleaver
is completely removedrom the tranceiver’'s configurations,
i.e., BICM without an interleaver performs better than the
conventional configurations of [3], [4]. The results presen
r[y[7] are only numerical and an explanation behind such an
rovement is not given (although some intuitive explana-
s and a bit labeling optimization are presented).

In this paper, we present a formal study of BICM with trivial
interleavers (BICM-T) in nonfading channels, i.e., the BIC
system introduced in [7] where no interleaving is performed
We recognize BICM-T as the combination of a TCM transmit-
ter and a BICM receiver and we develop analytical bounds that
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codes (CCs) performs well in nonfading channels. We also
introduce a new type of distance spectrum for the CCs which
allows us to analytically corroborate the results presgnte
in [7]. Moreover, we search and tabulate optimum CCs for
BICM-T, and we show that the asymptotic gains obtained
by BICM-T are the same obtained by Ungerboeck’s one-
dimensional TCM (1D-TCM) demonstrating that a properly
designed BICM-T system performs asymptotically as well as
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1D-TCM. The main contribution of this paper is to present A quick inspection of the BRGC for 4-PAM (cf. Fig. 3)
an analytical model for BICM-T which is used to explain theeveals that the BRGC offers unequal error protection (UEP)
results presented in [7] and also to design an asymptaticalhe transmitted bits depending on their position. In pafég
optimum BICM-T system in nonfading channels. the bit at the first positioni(= 1) receives higher protectién
Throughout this paper, we use boldface letter® denote than the bit at the second position = 2. More details
lengthL row vectorse, = [¢y1, - .., ¢ 1] and also to denoted about this can be found in [6]. Moreover, fér = 2 a bit
matricesc = [c],...,ck ], where(-)T denotes transposition. labeled by zero (inner constellation points) will receive a
The distinction between a matrix and a vector is clear frotower protection than a bit labeled by one transmitted in the
the context in which they are used. Random variables aame bit position (outer constellation points), and tremesf
denoted by capital letter§’ and random vectors/matricesthe binary-input soft-output (BISO) channel fér = 2 is
by capital boldface letter€. We usedy(c) to denote the nonsymmetric. To simplify the analysis, we “symmetrizeé th
total Hamming weight of the binary matrix. We denote channel by randomly inverting the bits before mapping them
probability by Pr(-) and the probability density function (pdf)to the 4-PAM symbol, i.e.¢" = ¢ @& s = [¢],...,CN],
of a random variable\ by ps()\). The convolution between where & represents modulo-2 element-wise addition and the
two pdfs is denoted bypa, (M) * pa,(N) and {pa(N\)}** elements of the matrix = [s],...,s\] € {0,1}**V, with
denotes thew-fold self-convolution of the pdfpa()\). The s, = [s14,s2,], are randomly generated vectors of bits. Such
Gaussian pdf with mean valyeand variance? is denoted by a scrambling symmetrizes the BISO channel but it does not

P\ p,0) = ﬁ exp(—(A — p)?/20?), and the Q-function eliminate the UEP. We note that the scrambling is introduced

by Q(z) £ - foo exp (_u2/2) du. Sets are denoted usingonly to simplify the analysis, and therefore, it is not shawn
calligraphicﬁ/eitterf. All the polynomial generators of the CCFig. 1 nor used in the simulations. This symmetrization was i
are given in octal notation and following the notation of,[g]fct proposed in [4], and as we will see in Sec. IV, the bounds
the constraint length of the codés is defined such that the developed based on this symmetrization perfectly match the

number of states in the trellis of the code2i& . numerical simulations. - _ _
We consider transmissions over an additive white Gaussian

noise (AWGN) channel. Assuming an ideal matched filter and

perfect synchronization, the equivalent discrete-timeeband

A. System Model received signal is given by, = x; + z;, wherez, is a zero-
The BICM system model under consideration is presentedritean Gaussian noise with variandg/2 (with No/2 being

Fig. 1. We use a constraint lengfh, rate R = % convolutional the power spectral density of the continuous-time AWGN),

code, connected to a 16-ary quadrature amplitude modulatia represents the transmitted symbol, apdzx;, z; € R. At

(16-QAM) labeled by the binary reflected Gray code (BRG@ach discrete time = 1,..., N, the coded, interleaved, and

[9]. This configuration is indeed very simple, yet practicascrambled bitscf are mapped to a symbal;, wherez; =

yielding a spectral efficiency of two information bits pe®(¢) € X and X’ is the 4-PAM constellation. The signal-to-

complex channel use. This example simplifies the presentathoise ratio is defined ag = E, /Ny = 1/Nj.

of the main ideas related to the fact that the interleaver isAt the receiver’s side, reliability metrics for the bits are

removed. The generalization to other modulations and gpdigalculated by the demappér— in the form of logarithmic-

rates is possible but would increase the complexity of nottkelihood ratios (L-values) as

tion potentially hindering the main concepts of the analysi .

presented in this paper. i, — log 2 (ytpk»t - 1)7 ?)
The input sequence oV bits i = [iy,...,ix] is fed to " Py, (y|CF, = 0)

the encoder (ENC) which at each time instant 1,..., N

generates two coded bits = [¢1,4, c2]. We use the matrix

c=|[cl,...,c}] of size2 by N to represent the transmitted -

codeword. These coded bits are interleavedIhyyielding Py (4:|Ce = )

c™ = II(e), where the different interleaving alternatives will

be discussed in detail in Sec. II-B. The coded and interéaveith u € {0,1}. Sincec] , = ¢} , @ sy, it can be shown that

bits are then mapped to 16-QAM symbols, where the 16-QAN , passed to the deinterleaver (cf. Fig. 1) can be written as

constellation is formed by the direct product of two 4-ary ~

pulse amplitude modulation (4-PAM) constellations lakele e = (=1 15 4 4)

by the BRGC. Therefore, we analyze the real part of the B - . .

constellation only, i.e., one of the constituent 4-PAM dehs .e., after "descrambling, the sign of the L-values is chea

: . ' : L
lations. The mapper is defined @s: {[11], [10], [00], [01]} — using (-1)*'. These L-values are deinterleaved by

II. SYSTEM MODEL AND PRELIMINARIES

which allows us to write

exp (u[};t)

=, 3
1+ exp(lg,t) 3

B B yielding the matrixl = I1-1(I") of size 2 by N, which is
{=34, -4, 4,34}, where then passed to the decoder which calculates an estimate of th
1 information sequencé
AL — v M q
V5

. . . 1The protection may be defined in different ways, where aryusite
so that the PAM constellation normalized to unit averagﬁnplest one is the bit error probability per bit positionthé demapper’s

symbol energy, i.e.Fs = 1. output.
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Fig. 1. Model of BICM transmission.

B. The Interleaver Ztl
. Cit N , b R
Throughout this paper, three interleaving alternativésiic —“w ENC |e,, | & P »D-L»| o1 [, | DEC K
in Fig. 1) will be discussed: BICM with a single interleaver > >

(BICM-S), BICM with multiple interleavers (M-interleaver
BICM-M), and BICM with a trivial interleaver (BICM-T). A Fig. 2. BICM-T system analyzed in this paper for any time anst.
brief description of the three interleaving alternativegiiven

below. This paper focuses on BICM-T.

o BICM-S was introduced in [4] and is the most common
configuration analyzed in the literature. It corresponds tgvial form. Moreover, the concept behind BICM-T might be
an interleaver that randomly permutes the bitg:iprior useful in adaptive modulation schemes where the interteave
to modulation, where the permutation is random in tweesign is adapted to the channel conditions, i.e., if fading
dimensionsi.e., it permutes the bits over the bit positionpresent, BICM-S is used, and if fading is not present, the
and over time. interleaver is dropped (BICM-T).

« BICM-M can be seen as a particularization of BICM- A5 explained above, the main difference of the system in
S with the following additional constraint: bits from therjg. 2 and pragmatic TCM is the receiver used. Also, it is
encoder'sith output must be assigned to the modulatorignportant to note that if BICM-T with larger constellations
kth input. BICM-M was formally analyzed in [6] and (e g., 8-PAM) is considered, the binary labeling will stilé
in fact corresponds to the original model introduced bje BRGC, which is different than the one used in pragmatic
Zehaviin [3] (BICM) and Liin [10] (BICM with iterative TCwm, cf. [14, Fig. 8-30]. A detailed analysis/comparison
decoding, BICM-ID). Recently, M-interleavers have alsgf BICM-T and pragmatic TCM for larger constellations is,
been proven to be asymptotically optimum for BICM-1Dhowever, out of the scope of this paper.

[11].

o BICM-T was introduced in [7]. In this configuration, the
interleaverII in Fig. 1 is not present, i.e¢™ = ¢ and
" =1.

When BICM-T is considered, the resulting system is the. The Decoder and the decoding errors

one shown in Fig. 2. A careful examination of Fig. 2 reveals

that the structure of the transmitter of BICM-T is the same . L

as the transmitter of Ungerboeck’s 1D-TCM [1] or the TCM A maximum likelihood (ML) sequence decoder chooses the
transmitter in [12, Fig. 4.17]. The transmitter of BICM-Trca most Ilkgly coded sequence using the _vector of channel
also be considered a particular case of the so-called gen&%servatlonsy =y, yn] (cf. Fig. 1), i.e.,

TCM [13, Fig. 18.11] whenk = k (using the notation of

[13]) and when the BRGC is used instead of Ungerboeck’s set-,,

partitioning (SP). The transmitter of BICM-T is also equerat ¢ = 4r80ax {log py (y|C = ¢} ®)

to the simplest configuration of the so-called pragmatic TCM

X = 1 In(Cc) =1 6
[14, Ch. 8] [15] (see also [16], [17, Sec. 9.2.4]), i.e., when ar%éncax‘[ ogpy (y[I(C) =T1(e))} (©)
two bits per symbol are considered. N

The receiver of BICM-T in Fig. 2 corresponds to a conven- = argmax {1og Hth (Y|CT, =14, Cq, = cgt)} ,
tional BICM receiver, where L-values for each bit are com- ceC t=1
puted and fed to a soft-input Viterbi decoder (VD). The dif- ()

ference between this receiver’s structure and a TCM receive

(one-dimensional or pragmatic) is that bit-level procegss , ) )
used instead of a symbol-by-symbol VD. In conclusion, thwhereC' is the transmitted codeword, is the code, to pass

BICM-T system introduced in [7] is a simple TCM transmittef®™M (5) to (6) we use the fact that the interleaver is a biyect
used in conjunction with a BICM receiver. NeverthelesdN@PPing, and to pass from (6) to (7) we used the fact that the
throughout this paper, we use the name BICM-T to reflect tfi@iS€ samples; affectingy, are mutually independent.

fact that this transmitter/receiver structure can be awmred The striking feature of the BICM decoder shown in Fig. 1
as a particular case of BICM-S, where the interleaver takegsathat it replaces the decoding metric used in (7) with the
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metric calculated at the bit-level, i.e., (because they were obtained from the same observatjon
N In the following subsection, we show how to analyze the
eBIcM _ argnéax{log Hth (4e|CT, = ¢f ) performance of such a system.
c€ t=1

IIl. PERFORMANCEEVALUATION
Py (We|C3y = 3,) (8) A. BER Analysis

N 2 Because of the symmetrization of the channel, we can,
= argmax Z ngpyt (WlCE, =cE) e (9) without loss of generality, assume that the all-zero coddwo
ceC =1 1 was transmitted. We defin€ as the set of codewords cor-

The optimal metric used in (7) is not the same as the one udggPonding to paths in th_e trgllls of the c_ode diverging from
in (9), and thus, it is sometimes referred to as a mismatchillf Zero-state at the arbitrarily chosen instant to, and

metric [18, Sec. II-B.2] remerging with it afterl” trellis stages. We also denote these
' : <l AT T _
Using an expression analogous to (3), (9) can be expresggge\(vords ag = [er,. .., er], wheree, = [e1, e2,]. Then,
as the bit error rate (BER) can be upper-bounded using a union
N 9 bound (UB) as
eBeM — argmax {Z > err, BER < UB £ ) " PEP(e)dn(ie), (14)
ce t=1 k=1 ece

i corresponding to the codeword = e, and the pairwise
error probability (PEP) is given by (cf. (13))
CZ,tlﬁ,t} )

(12) to+T—1
PEP(e) = Pr{ Z (erslie +eailay) > 0} . (15)

t=to

_Zilog(l + exp( z,t))} (10) wheredy (i) is the Hamming weight of the input sequence

where the second term in (10) being independenica
irrelevant to the decision of the decoder. The general expression for the PEP in (15) and the UB in (14)
The decision of the decoder based on the rule (11) risduce to well-known cases if simplifying assumptions fa t
erroneous if it detects a codewotdnstead of the transmitted distribution ofi;, , are adopted. To clarify the main differences
codeword c. The probability of this event, the so-callecbetween BICM-T and BICM-S/BICM-M, in the following, we

pairwise error probability(PEP), is defined by briefly analyze these well-known cases.
N 1) Independent and identically distributed L-values (BICM
PEP(c — &) £ Pr {Z (1.4l1.0 + o4lay) S): In BICM-S, and because of the interleaver, the L-
=1 values [, ; passed to the decoder are locally independent
(cf. Sec. 1I-C) and identically distributed (i.i.d.). Thepan be

>

N
t=

(c1el1e + 02,t127t)} (12) described using the conditional pgf (A|B) with B € {0,1}
1 and where the pdf is independent bfand ¢. In this case,
N the PEP in (15) depends only on the Hamming weight of the
=Pr {Z (e1el1 +eatlas) > 0} , (13) codeworde, i.e., the PEP is given by (16) (at the bottom of
t=1 next page). The UB in (14) can be expressed as
whereey, ; are the elements of the “error” codewasd= ¢—c.

The PEP in (13) depends dhV L-valuesiy,ls, ... Ix UBs = ZPEPS(“’) Z du(ic) (17)
and its evaluation is, in general, difficult because thisisege v eclu
contains pairs of dependent L-values that were calculated f = Z PEPg(w)8y, (18)
the same channel outcome (same noise realization). However w

when convolutional codes are considered, the most relevartere C,, represents the set of codewords with Hamming
events are those involving a relatively small number of esroweightw, i.e.,C,, £ {e € £ : du(e) = w}, andC denotes the
e, to <t < ty+ T — 1, which means that PEP is affectecconvolutional code used for transmission. To pass from{d.7)

by the consecutive L-valuds,, l;,+1,...,l;,+7—1. These2T  (18) we group the codewordsthat have the same Hamming
L-values will be independent if we ensure that all the bitweight and add their contributions, which results in thelwel
Ciyy Clo+1, - - -, Cto+T—1 are transmitted i7" different time known (input-output) weight distribution spectrum of thede

instants (and thus, affected by different noise realizefjo 3S. The expression in (18) is the most common expression for

after interleaving. This condition dbcal independencean the UB for BICM, cf. [4, eq. (26)], [5, eq. (4.12)].

be obtained by an appropriate design of the interleaver, an®) Independent but not identically distributed L-values

is very likely to be satisfied when BICM-S or BICM-M are(BICM-M): In BICM-M, the L-values passed to the each

used. decoder’s input are locally independent, however, thesr di
When BICM-T is considered, for each= 1,..., N, two tributions depend on the bit’s positidn= 1, 2. Therefore, we

bits ¢; will be transmitted using the same symhg| and thus, need to use the conditional pdfs,, (A\|B1) and pr, (A B2),

the two corresponding L-valuds will be mutually dependent where L; and L, are the random variables representing the
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L-values at the decoder’s inputs. The PEP in this case isigiveolumns ine being equal toe,

by (19) (shown at the bottom of the page), wheig;, is the
Hamming weight of the:th row of e. The UB in (14) can be
expressed as

UBy = Y PEPy(wi,ws) Y. dulie)

w1, Wws e€Cu; wy
= Z PEPM(wlaw2)ﬁ$1,w2’ (20)
w1, w2

whereC,, ., is the set of codewords witheneralizedHam-
ming weight [wy,ws] (wy in its kth row), i.e., Cuy w, =
{e e & w = We,1,Ws = Ee,g}, and ﬂg]ij is the

generalized weight distribution spectrum of the code thke$

[1,0]", e; = [0,1]T, and
e; = [1,1]7.2 Then, the UB expression in (14) becomes

S PEPr(wi,wp,ws) Y. dulie)

W1,W2,Ws e€Cuw wy,wyy

Z PEPT(wlv’LUQawE)BE)l,wg,wga

w1,W2,Ws

T =

(24)

WhereCu, wyws = {€ € € 1 W1 = We,1,Ws = We,2, Wy, =
we,x} and B, . ... IS @ new weight distribution spectrum
of the codeC that takes into account the generalized weight
[wy, we, wx] of the codewords, i.e., it considers separately the
case where, = [1,1]. This is different fromgg, ., where

such a case will increase, andw, in the generalized weight

into account the errors at each encoder’s output separataty [wy,w,]. Clearly, the following relationships hold
UB in (20) was shown in [6] to be useful when analyzing the

UEP introduced by the binary labeling and also to optimize

the interleaver and the code.
3) BICM without bit-interleaving (BICM-T)¥or BICM-T,

yet a different particularization of (15) must be adoptedt L

A be the metric associated to the codewerénd assume
without loss of generality thaty = ¢, cf. (15). This metric is

a sum of independent random variables, i.e.,
Ae 2 A® f AGFD L ACGFD (21)

where A®) = ¢, ;1; ; + ez 412+ Which corresponds to the L-

values defining the PEP in (15). Because the interleaverP
removed/;: = I ;,, and thus, by using (4), we express each

of these metrics as

07 if e = [0,0]
A(t) = A(eta St) = (_1) ’tl}’t’ if € = [170] ’
(_1)52,45"7“ if e = [O7 1]
Zi:1(_1)sk’tlg,ta if e =[1,1]
(22)

where we useA(e;,s;) to show thatA(*) depends on the
scrambling’s outcome, (throughfgt) and the error pattern
at timet, e;.

Sincei};t are random variables (that depend joand z;),
we need three pdfga, (A|B1), pa,(A|B2), and pay (A|B),

dH(e) = We,1 + We 2 + 2we,§] (25)
Ee.,l = We,1 + We, > (26)
We,2 = We,1 + We,x- (27)

Example 1:Consider the constraint leng#i = 3 optimum
distance spectrum convolutional code (ODSCC) with polyno-
mial generatorg5,7) [19, Table I]. The free distance of the
code isd*c = 5, and ¢ = 1, i.e., there is one divergent path
at Hamming distance five from the all-zero codeword, and the
Hamming weight of that path idy(i.) = 1. Moreover, it is
gssible to show that this codeword is given by

o],

1 1 1

ie., dH(e) =5, We,1 = 0, We,2 = 1, andwe; = 2. If BICM-
M is considerediv. 1 = 2 andw, 2 = 3.

B. PDF of the L-values

In order to calculate the PEP for BICM-T in (23) we
need to compute the conditional pdfs, (A|B1), pa, (A B2),
and pa. (A|B). In this subsection we show how to find
approximations for these PDFs.

The L-values in (2) can be expressed as

D ver,, Py (1] Xe = )

If,=log : (28)

for the three relevant cases defined in (22). We note that
pas (A|B) is conditioned not only on one bit, but on the pair of _ _ _
transmitted bitsB = [B;, Bo], whereB, B,, and B represent WhereXj, is the set of constellation symbols labeled witat

the bitsCT,, CT,, andC7T, respectively. From (21), and due toPit positionk. Using the fact that the channel is Gaussian and if
the indepéndehce of the individual L-values, the PEP in (15),
e note that the three arguments ; we,2 andw, x; are a consequence

can be expressed as (23) (Shown at the bottom of the Pag&e code rater = 1/2 considered in this paper. For other code rates, more
wherewe 1, we 2, andwe s, are, respectively, the number ofarguments will be needed.

Dveryo Py (Y| Xe = )

PEP(e) = PEPg(dx(e)) = /0 OO{pL(/\|b = 0)}*dnle) g (16)

PEP(C) = PEPM(EeJ,EeQ) = / {le (/\|Bl = 0)}*Ee’1 * {pL2 (/\|Bg = 0)}*Ee’2 dA, (19)
0

PEP(e) = PEPT(we,1, We 2, We,x) = / {pa,(A[B1 = 0)}" " # {pa, (A[B2 = 0)}"=2 * {pay (A|B = [0,0])} "= dA,
0
(23)
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the so-called max-log approximatidog(exp(a) + exp(b)) ~ s, = [0,0] (z; = A), the closest linear piece is the right-most
max{a, b} is used, the L-values can be expressed as piece labeled by, = [0, 1] ands; = [:, 0] (dashed line), which
givesa([0,1],[0,0]) = +a/A andb([0,1],]0,0]) = —2a. All
17, (yelse) =~ ~ | min (y, —2)> — min (y, —z)?|, (29) the other values in Table | can be found by a similar direct
7 o€Xk.0 oEXk 1 inspection of Fig. 3.

where from now on we use the notatigny (1;]s;) to empha- Using the approximation in (30), the conditional L-values
size that the L-values depend on the received signal and fR@nditioned ons;) can be modeled as Gaussian random
scrambler's outcome;. In fact, the L-values depend on thevariables where their mean and variance depens;on, and
transmitted symbok;, however, since the all-zero codeworct: !-€.,

is transmitted ([cT ,,c5,] = [0,0]) and no interleaving is MS, = s.) = (N iler. s).62(e . s 32
performed,z; is completely determined by, i.e., z;, = PAAISe = 0) = (X ler 80), 6% (en, 1)), (32)
O(e]) = D(sy). where the mean value and variance are given by

The L-value in (29) is goiece-wise linearfunction of ;. . o -
Moreover, the L-values\(e;, s;) in (22) are linear combina- f(se) = wialer, si) + bler, st) (33)
tions of I, (y:|s:) in (29), and therefore, they are also piece- 5% (er, 8¢) = [aer, st)]Qﬂ_ (34)
wise linear functions of,. Two cases are of particular interest, 2

namely, where; = [1,0] or e; = [0, 1], and whene; = [1,1]. In Table Il we show the mean values and variances in (33)-
The piece-wise linear relationships for the first case aosvsh (34) for the same cases presented in Table |.

in Fig. 3 a). In this figure we also show the constellation To obtain the (unconditional) pdf of in (22), we average
symbols (or equivalentlys;) with their binary labelings and (32) over the scrambling outcomes (cf. Table I1), which

we use the notatios; = [0/1,:] ands; = [;,0/1] to show are assumed to be equiprobable. This results in the folgwin
that fore, = [1,0] ande; = [0, 1] the L-valuesA(e;, s;) are expression
independent of, ; ands; ¢, respectively. In Fig. 3 b), the four

1 . . i _

possible cases whesy = [1,1] are shown. 2 (X =30, 20) + 9 (X~ 20)], !f e =[1,0]
For a given scrambler outconsg (or equivalently, a given pa(A) = ¢()‘5 - 2a)v if e; = [0,1] -

transmitted symbok:;), the received signaj, is a Gaussian (X —4a, 8a), if e; =[1,1]

random variable with mean; and varianceV,/2. Therefore, (35)

each L-value\ (e, s¢) in (22) is a sum of piece-wise Gaussian

functions? In order to obtain expressions that are easy to work IV. DISCUSSION ANDAPPLICATIONS

with, we use the soicalled zero-crossing gpproximatiomeft In the previous section, we developed approximations for

L-values proposed in [21, Sec. Il-C] which replaces all thgye pdf of the L-values passed to the decoder in BICM-T,

Gaussian pieces required in the max-log model of L-valugg (35). |n this section we use them to quantify the gains

by a single Gaussian function. Intuitively, this approxtioa  offered by BICM-T over BICM-S, to define asymptotically

states that optimum CCs, and to compare BICM-T with Ungerboeck’s

A(yiles, i) ~ aler, st)ys + bler, sp), (30) 1D-TCM.

wherea(e;, s;) andb(e;, s;) are the slope and the interceply performance of BICM-T

of the closest linear piece to the transmitted symhol ) .
In Table | we show the values daf(e;,s;) and b(e;, s;) Theorem 1:The UB for BICM-T is

defining (30) for 4-PAM, where for notation simplicity we

1 wr w1
have defined UBr = Z Buos ws s (5) Z ( ; )

. ) w1, W2, Ws; 7=0 J
£ 4yA=. 31
T . g [t dws +2))7 27 ) g0
To clarify how these coefficients are obtained, consider for (w1 + we + dws) 5 )
examplee, = [0,1]. In this case, fors, = [1,1], which

corresponds ta; = —3A, the closest linear piece intersecting  P100f: Using the pdf of the L-values in (35), the elements
the z-axis is the left-most part of the curve labeled in Fig. ¥ the integral defining the PEP in (23) can be expressed as
by e, = [0,1] ands; = [:, 1] (dashed-dotted line). This gives 1\ &L Sy

a([0,1],[1,1]) = +a/A (slope) andb([0,1],[1,1]) = +2« {pa, (A|By = 0)}" —<§> Z< )

(intercept), as shown in Table I. If for example = [0, 1] and j=o \J

. 1/1()\; —a(25 4+ wq), 2aw1) (37)
The max-log metric in (29) is suboptimal in terms of BER, hware it - *ws .
is very popular in practical implementations because ofats complexity. {pA2(/\|32 - O)} =1 ()" — 0wz, 20‘“’2) (38)
Moreover, when low order constellations are used, the ughi®fsimplifica- MB = [0.0NV*%2 =) (\: —daws. Saw 39
tion results in a negligible impact on the receiver's parfance [20, Fig. 9]. {pas(A 100D} d]( ’ = E)’ (39)
The impact of this approximation, however, becomes moreoitapt when \vhere we used 1/1()\ I 0%) ” % 1/1()\ 7y U%) _
) ) AR ) )

higher order constellations are considered, as shown inHep 9]. J T 9 . . -
4Closed-form expressions for the pdfs &fet, s:) whene; = [1,0] and .7/’(/\§ 2 j—1 i 2_j-107) and where the bmom_'al coeﬁlf:lent.
e; = [0,1] (cf. Fig. 3 a)) were presented in [21]. in (37) comes from the sum of the two Gaussian functions in
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a) Cases whee; = [1,0] or e; = [0,1]

Fig. 3.

A(e,,, St,)
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4yA? A

04

—4yA? 4

—8yAZ

b) Cases wher, = [1,1]

Piece-wise relation between the L-valug&e;, s¢) in (22) and the received signai for 4-PAM for all the possible values af; and s;. The

relation for the case whea; = [1,0] or e; = [0, 1] is shown in &) and the relation when = [1,1] is shown in b). The transmitted symbols and their
corresponding binary labelings are shown with black squafée notations; = [0/1,:] is used to show that foe; = [1,0] the L-valuesA(e:, s¢) are

independent ob2 ;.

TABLE |
VALUES OF d(e¢, st) AND b(et, s¢) IN (30) FOR4-PAM FOUND BY DIRECT INSPECTION OFFIG. 3.

St = [17 1] St = [170} St = [070} St = [07 1}
d(et, St) B(et, St) d(et, St) l;(et, St) d(eh St) l;(et, St) d(et, St) l;(eh St)
e; = [1,0] +a/A 0 +a/A 0 —a/A 0 —a/A 0
et = [0,1] +a/A +2 —a/A —2a +a/A —2« —a/A +2a
e =[1,1]  +2a/A 2 +2a/A —2« —2a/A —2« —2a/A +2a
TABLE II
VALUES OF ji(et, 8t) AND 62 (et, s¢) GIVEN IN (33) AND (34) FOR4-PAM.
St = [17 1] St = [170} St = [070} St = [071}
filer,st) (et se) pler,st) 6%(er,st)  filer,se)  °(er,st) jpler,se)  53(er st)
et = [1,0] —3a 2a -« 2a -« 2a —3a 20
et = [0,1] -« 2a -« 2c -« 2a -« 2a
e = [1,1] —4a 8a —4a 8a —4a 8a —4a 8o
(35) whene; = [1,0]. Using the relations (37)—(39) in (23)expression (36) is obtained. |
ives
g In Fig. 4, numerical results for BICM-T with 4-PAM labeled
© AN SN Sy with the BRGC and using the ODSC(5,7) (K = 3) and
PEPT (w1, w2, wy) :/ <§) Z< : > (247,371) (K = 8) [19, Table 1] are shown. For BICM-M,
0 —o \J ; . . . .
J two configurations exist for each code. The first one is when
(A p12x,,0105) dX, (40) all the bits from the first encoder’s output are interleaved a
where then assigned to the first modulator’s inpét £ 1) and all

the bits from the second encoder’s output are interleaveld an
(41) then assigned to the second modulator’s ingut« 2). The
(42) second alternative corresponds to the opposite, i.e halbits
from the first encoder’s output are sent over= 2 and the
By using the definition ok in (31) andA in (1), and (41) bits from the second encoder’s output are sent dver 1.
and (42) in (40), as well as the UB expression in (24), thehis is equivalent to defining the code by swapping the order

p12,5, = —(wi +we + dws + 2j)a
0%7272 = 2(wy + w2 + 4dwy)a.
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10 f ; ; : where
o BICM-S [4]
i A BICM-M (“Best”) [6] C A .
107 v BICM-T ("Worst’) 7 A~ = wi (w1 + w2 + 4dwy) (44)
o BICM-T (“Best”) ¢ Y £0
. UBs Wiw2,ws
107°L )
- — = Asymptotic UBs

"
C _ C
M= = Z (5) w1, W2, W (45)

w1, w2, ws
wiFws +H4ws=A"

Proof: The UB in (36) is a sum of weighted Q-functions,
and thus, for high SNR, only the Q-functions with the smalles
argument should be considered. For e&eh, ws, ws,) there
is a Q-function that dominates the inner sum in (36), which
is obtained forj = 0. [ |

For comparison purposes, we present here the performance
of BICM-S at asymptotically high SNR. This can be obtained
from [4, egs. (55) and (64)] (or alternatively from [6, ed5]B,

0 1n which gives

6 7
SNR~ [dB]

3 dgcc 2dfrcc’}/
Fig. 4. BER for BICM using the(5,7) and (247,371) ODSCCs [19] UBL = (= ﬁ@ﬁ_eeQ -H (46)
and 4-PAM labeled with the BRGC, and for BICM-S [4], BICM-M][@and 4 dy 5 ’
BICM-T. The simulations are shown with markers and the UBhwsblid

lines. The asymptotic UB is shown with dashed lines. whered!i® is the free Hamming distance of the code which

can be expressed @§°° = wiec+wiee42wlee, cf. (25). The
expression (46) shows that the ODSCCs are the optimal choice

of the polynomial generators. For these two particular spdéor BICM-S because they have maximum free Hamming
the configuration that minimizes the BER for medium to higHistance, cf. [19, Sec. I]. More details are given in SecCLV-
SNR is the second one, i.e., when all the bits generated by thén Fig. 4, we show asymptotic UBs fdt = 3. For BICM-T
polynomial (7) or (371) are sent ovek = 1 and all the bits we used Theorem 2, for BICM-S we use (46), and for BICM-
generated by the polynomié) or (247) are sent ovek = 2.° M we use [6, eq. (25)]. All of them are shown to follow the
We denote the configuration that minimizes (or maximizes) tisimulation results quite well. Similar results can be afeali
BER by “Best” (or “Worst”). In Fig. 4, we show BICM-T with for the code withK = 8, however, we do not show these
the best and worse configurations, however, for BICM-M, weesults not to overcrowd the figure.
only show the best configuration. The asymptotic gain (AG) provided by using BICM-T

To compute the UB for BICM-S and BICM-M, we use thenstead of BICM-S is obtained directly from Theorem 2 and
expressions in [6, eq. (22)—(23)], and for BICM-T we use Thé46), as stated in the following corollary.
orem 1. All the UB computations were carried out considering Corollary 3: The AG provided by BICM-T with a given
a truncated spectrum of the code, ifu, wy,ws, ws} < 30 codeC with respect to BICM-S using an ODSCC is
which is calculated numerically using a breadth-first searc A€
algorithm [_22]._ The results in Fig. 4.show that _the UBs AGs_1 = 10log;, <f_>’ (47)
developed in this paper for BICM-T predict well the simuddti di®e
results. The gains by using BICM-T instead of BICM-S for oo ) )
a BER target ofl0~7 are approximately 2 dB foi = 3 wheredy* is the free Hamming distance of the ODSCC.
and 1 dB fork = 8. Moreover, these gains are obtained by EX@mple 2 (AG for the5,7) code): For  the  particular
decreasing the complexity of the system, i.e., by not doif§de (5:7), it is possible to see that the solution of (44)

interleaving/de-interleaving. _corregponds to the event at free Hamming distdnce
.e., d%oc = 5, We1 = 0, We2 = 1, wes = 2
_ (cf. Example 1), and therefored® = 9. This result in
B. Asymptotic Performance an AG of 10logy, (2) ~ 2.55 dB, cf. (47). Moreover,

In this subsection, we analyze the performance of BICM-3ince the input sequence that generates the codeword at free
for asymptotically high SNR and we compare it with BICM-sHamming d|?:tance has Hamming weight ongg > = 1),
Theorem 2:For a given codeC and asymptotically high We obtain Mg, , = 1 for the configuration “Worst". If the

SNR, the leading term of th UB for BICM-T is polynomials are swapped (which corresponds to swapping
the rows ofe), i.e., if we consider the codg, 5), we obtain
2vAC Weq1 = 1, Weo = 0, wex = 2 and the samed® (since A
I _ g€ / : , :
UBp = M™Q < 5 ) ’ (43) does not depend on the order of the polynomials). However,

in this caseM{, , = 1/2. These two asymptotic bounds are

5These configurations were found in [6] based on a UB for BICNsiMilar shown in Fig. 4, where the influence of the coefficiet"

to (20). It was shown in [6] that different configurations uksn different
BER performance because of the UEP introduced by the birdmslihg. SHowever, this is not always true for other codes.
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(Mg 5 = 1 for (5,7) and M, , = 1/2 for (7,5)) can be than the ODSCCs, cfK = 6,7. In fact, only for K = 3
observed as a weighting coefficient applied to the Q-functidhe ODSCC is also optimum for BICM-T The results in

in (43) (this is also visible in the simulation results). Table Il also show that the gains offered by the AOCCs in
Corollary 4: The AG provided by BICM-T with respect to four out of six cases come from a reduced multiplicit/©,
BICM-S is bounded as i.e., both AOCCs and ODSCCs have the sasfe In these
AG - 8 cases, BICM-T with an AOCC and BICM-T with an ODSCC
s—r < 3 dB. (48) will give a similar BER performance.
have offers with respect to BICM-S with an ODSCC, cf. (47). The
c values obtained are around 2 dB, which are consistent with
AT = min (w1 +wy + dws) Corollary 4.
ﬁE’l’uQ’WE;éO
< wiree plree 4 gqpliee (49) D. BICM-T vs. TCM
< 20T 4 2wiree 4+ 4epltee, (50) As mentioned in Sec. II-B, the transmitter of BICM-T is

free  free  froe _identical to the transmitter of Ungerboeck’s 1D-TCM and to
where we usew;*, wy*, w*’] to denote the generalizedy gmatic TCM. In this subsection we compare the asymptotic

weight of the event(s) at free Hamming distance. The IBerformance of BICM-T and Ungerboeck’s 1D-TCM.

equality in (49) holds because the event(s) at free Ham-\we pave previously defined in (47) the AG of BICM-T
ming distance belong to the elements in the minimizatiogyer BICM-S. It is also possible to define the AG of BICM-
The inequality in (50) holds because;* + wy* > 0. T compared to uncoded transmission with the same spectral
Recognizing2w"™ + 2w + 4w§* in (50) as twice the efficiency (uncoded 2-PAM). Since the minimum squared

fre(fa Hammifng distargce of thA? codg, cf. ngS),.we obtain g yclidean distance of the 2-PAM constellation (normalied
2wy + 2wy*® 4 4wy < 2dg*, wheredy® is the free p _ 1) is 4, the AG is given by

Hamming distance of the ODSCC. Thu¢C < 24, which

combined with (47) completes the proof. [ | AGyc_t = 10log;, (A?c) _ (51)
C. Asymptotically Optimum Convolutional Codes The AG in (51) is shown in Table lll. FoK' = 3, AGuc—r

is equal to2.55 dB, which is the same adGgs_.t. This is

Optimum CCs—in the sense of minimizing the BER fo e
asymptotically high SNR—are usually defined in terms (Z[?ecause BICM-S witl" = 3 does not offer any AG compared

free Hamming distance, i.e., good CCs are those, which O uncoded 2-PAM. Analyzing the values dGuc_r in

. ; . Sble [ll, we find that they are the same as those obtained
a given rate and constraint length, have the maximum fr%

e . . .
cistance (MFD) [23, Sec. 8:25]. The MFD crerion can bl Uiy ' " it 0 1 prtomms asympiotically a5 well
refined if the multiplicities associated to the differentigigs 1P ymp y

aﬁ 1D-TCM, and therefore, it should be considered as good

are considered [19], [13, Sec. 12.3]. Based on this refine . . . T
optimality criterion, the ODSCCs were defined, which ard ernative for CM in nonfading channels (however, thisas n
' ' e case if BICM-S is used, or if BICM-T is used with the

EgtrlmBE:ICTA_?\;)thv\?emigvgags?VLiSI%n [aG?dtrI:;dBflgv:sssgﬁ gG)ODSCCs). While this asymptotic equivalence between BICM-
' H T and 1D-TCM is very interesting, a systematic comparison of

good indicator of the optimality of the code. If BICM-T , . . : .
. . . their performance when changing the constellation sizéngpod
is considered, and as a direct consequence of Theorem . . . :
asymptotically optimum convolutional codes (AOCCs) can b& € or binary labeling requires a deeper analysis.

For completeness, in Table Ill, we also show the AG

defined. o )
L . . . offered by BICM-S over uncoded transmission, defined as
Definition 1 (Asymptotically optimum CCs for BICM-T): AGucs = AGuo_r — AGg 7. The performance of un-

For a given/' and 17, a CC is said to be an AOCC if it has oded transmission does not dependfnbut on the other

the lowest multiplicity /¢ among the codes with the highesﬁand the performance of BICM-T and BICM-S in general

C
A~ . . 'jncreases whet increases. This is reflected in an increase
We have performed an exhaustive numerical search O the AGs AG and AG in Table Il when K

AOCCs based on Definition 1, which from now on we denote ve—T ve—s

: : increase$. Finally, we also note that fol\ = 7, the use of
by C*. We considered for constraint lengths = 3,4, ....,8 o ' : L
and all codes with free distance < dfiec < diee. The BICM-S with the ODS results in an asymptotic gain of 3.01 dB

= compared to uncoded transmission (&fiyc_.g in Table III).
spectrum was truncated as + ws + 4wy < dgcc + 8 and b ®Cucs )

the search was performed in lexicographic order. The ®su tbc')[;?r?;/grb];)rptrgz;Z?f'?gﬁﬁgc?;bllitn]e same as the one

are shown in Table Ill, where for comparison we also includ%
the ODSCCs (with their respective coefficient§ andM®).  7ror k' — 4 the AOCC (13,17) has, in fact, the same spectrum
If there is more than one AOCC for a giveii, we present 55 as the ODSC(15, 17). The AOCC appears in the list because

SW2,Ws .
the first one in the list. These results show that in genesal tAf the Texicographic order search.
9 8The fact thatAGyc_g is the same forKk = 7 and K = 8 can

Tree Hammi_ng distance of the code is not the proper Criteri%_@ explained from the fact that the corresponding ODSCCe hiag same
in BICM-T, i.e., codes that are not MFD codes perform bettefiec = 10.
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TABLE Il
COoeFFICIENTSAC aAND M T FORAOCCs AND ODSCGs INBICM-T. THE ASYMPTOTIC GAINS AND THEHAMMING FREE DISTANCES ARE ALSO SHOWN

K AOCCs ODSCCs AG [dB]
(g1,92)  diiee AY MY | (g1,g2)  di A® MC© | AGs—t AGuc—t AGuc_s

3 (7,5) 5 9 0.50 (7,5) 5 9 0.50 2.55 2.55 0

4 (13,17) 6 10 0.50 (15,17) 6 10 0.50 2.22 3.01 0.79
5 (23,33) 7 11 0.38 (23,35) 7 11 0.88 1.96 3.42 1.46
6 (45,55) 7 13 1.62 (53,75) 8 12 0.50 2.11 4.15 2.04
7 | (107,135) 9 14 0.50 | (133,171) 10 14  3.09 1.46 4.47 3.01
8 | (313,235) 10 16 8.02 | (371,247) 10 15 0.61 2.04 5.05 3.01
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