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Abstract: The basic model of traffic assignment does not capture complex traffic flow
relationships such as interactions among vehicles on different road links, joint capacities
on two-way streets, turning priorities in junctions, etc. Traditionally, such relationships
are introduced implicitly through generalizations of the separable travel cost function
of the basic model, and the refined models are usually stated as variational inequalities.
However, this approach has found very little practical use, seemingly mostly because
the generalized travel cost functions are not easily chosen and calibrated.

An alternative strategy for refining the basic model is to capture supplementary
traffic flow relationships explicitly through the introduction of side constraints. This
explicit approach has the advantage of always leading to optimization formulations, and
the immediate physical interpretations of the side constraints introduced may make it
easy to construct, calibrate and apply the resulting models compared to models with
non-separable cost functions.

We consider a traffic equilibrium model with general side constraints and show that
its optimality conditions correspond to a generalization of Wardrop’s user equilibrium
principle. Further, we derive a close relationship between models of traffic equilibria
involving side constraints and generalized travel cost functions, respectively. These
results motivate a further study into the art of modelling traffic assignment problems
through the use of explicit side constraints.
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INTRODUCTION AND MOTIVATION

Consider a transportation network G = (N ,A) of nodes and directed links. Between
certain pairs of origins and destinations, (p, q) ∈ C, fixed positive travel demands dpq

are given, and each link a ∈ A is associated with a positive and strictly increasing
travel cost function ta : ℜ|A|

+ 7→ ℜ++. The user equilibrium principle of Wardrop (1952)
states that for each origin-destination (O-D) pair (p, q), the routes utilized have equal
and minimal travel costs, that is, at an equilibrium flow, the conditions

hpqr > 0 =⇒ cpqr = πpq, ∀r ∈ Rpq, (1.1)

hpqr = 0 =⇒ cpqr ≥ πpq, ∀r ∈ Rpq, (1.2)

where hpqr is an equilibrium flow on route r ∈ Rpq, cpqr = cpqr(h), with h = (hpqr),
is the travel cost on the route, and πpq is the equilibrium travel cost of the least-cost
routes in O-D pair (p, q), are satisfied.

For separable travel cost functions, i.e., where the travel cost on each link is inde-
pendent of the flow on other links, a solution to the Wardrop Conditions (1.1)–(1.2)
can be found by solving the convex network optimization problem (e.g., Beckmann et
al., 1956, and Dafermos, 1972)

[TAP]

min T (f)
def
=

∑

a∈A

∫ fa

0
ta(s)ds, (1.3)

subject to
∑

r∈Rpq

hpqr = dpq, ∀(p, q) ∈ C, (1.4)

hpqr ≥ 0, ∀r ∈ Rpq, ∀(p, q) ∈ C, (1.5)
∑

(p,q)∈C

∑

r∈Rpq

δpqrahpqr = fa, ∀a ∈ A, (1.6)

where

δpqra
def
=

{

1, if route r ∈ Rpq uses link a,
0, otherwise,

∀a ∈ A, ∀r ∈ Rpq, ∀(p, q) ∈ C,

is the link-route incidence matrix, and fa denotes the total flow on link a.
The equilibrium model [TAP] is frequently applied in transportation analysis, and

many algorithms have been developed for its efficient solution. (See, e.g., Patriksson,
1995, for a thorough review of algorithms for [TAP].) The inherent simplicity of the
model, however, makes it inapplicable to more complex traffic problems (e.g., Sender
and Netter, 1970). For instance, it does not capture the interactions between the flows
on intersecting links, or between vehicles of different types. An illustrative example of
a deficiency of the model and its possible consequences is provided by Hearn (1980),
who comments on its property of allowing every road to carry arbitrarily large volumes
of traffic. This deficiency of the model causes that

“the predicted flow on some links will be far lower or far greater than the
traffic engineer knows they should be if all assumptions of the model are
correct. In practice, the result is that the model predictions are ignored, or,
more often, the user will perturb the components of the model (trip table,
volume delay formulas, etc.) in an attempt to bring the model output more
in line with the anticipated results.”



In order to avoid such heuristic tampering with components of the model available,
traffic planners must be supplied with analysis tools whose underlying traffic models
are sufficiently general, reliable and accurate.

We distinguish two approaches for improving the model’s ability to accurately de-
scribe, reproduce, or predict a real-world traffic situation.

The traditional approach is to capture additional flow relationships through the
introduction of non-separable, and typically also asymmetric, travel cost functions.
The solution of (1.1)–(1.2) can then, however, not be reformulated into an optimization
problem of the form [TAP], due to the non-integrability of the resulting travel cost

function c : ℜ|A|
+ 7→ ℜ|A|

++. Instead, the Wardrop conditions are formulated as the
variational inequality problem of finding an f ∗ ∈ F such that

[VIP]
c(f ∗)T(f − f ∗) ≥ 0, ∀f ∈ F,

where F = { f ∈ ℜ|A| | f satisfies (1.4)–(1.6)}. The resulting class of models has
been extensively studied from a theoretical and algorithmical point of view (see, e.g.,
Nagurney, 1993, and Patriksson, 1995). Seemingly, the asymmetric models’ popularity
is a consequence of their mathematical elegance and nice interpretations rather than
their applicability, since real-world applications seem to be lacking. A major reason
for this is probably the practical difficulty of choosing and calibrating the asymmetric
travel cost functions.

An alternative—but so far little studied—approach to improve the quality of the ba-
sic traffic equilibrium model is to introduce a set of side constraints to model additional
restrictions on possible flow patterns. Such side constraints could be used to describe,
for instance, the interactions among vehicles in a junction, joint capacities on two-way
streets and links in intersections and roundabouts, requirements that observed flows
on some links should be reproduced in the calculated solution, a traffic control policy,
or dynamic aspects. We believe this approach to be appealing from a practical point
of view, since it is certainly easier for the traffic engineer to identify a suitable set of
side constraints—which may have immediate physical interpretations—than to estimate
proper values of parameters in complex travel cost functions. (In the example provided
by Hearn (1980), the proper improvement of the basic model is the introduction of link
capacity constraints corresponding to the engineer’s anticipation of reasonable levels
of traffic flow.) The approach to improve a traffic equilibrium model by introducing
general side constraints was first discussed by Larsson and Patriksson (1994).

Although this alternative approach is more straightforward than that based on
asymmetric cost functions, it has been given comparatively very limited attention.
We present a general side constrained assignment model and investigate its optimality
conditions; these may be interpreted as a generalization of Wardrop’s equilibrium Prin-
ciple (1.1)–(1.2) in the sense that an equilibrium holds in terms of generalized travel
costs. Moreover, we show that the side constrained assignment problem may be equiv-
alently solved as a standard equilibrium model with a well-defined adjusted travel cost
function. This result leads to an interesting relationship between side constrained and
asymmetric models of traffic equilibria, which is one motivation for further studying
side constrained models.



A SIDE CONSTRAINED ASSIGNMENT MODEL

Let gk : ℜ|A|
+ 7→ ℜ, k ∈ K, be convex and continuously differentiable, and define the

side constraints
gk(f) ≤ 0, ∀k ∈ K.

Here, the index set K may, for instance, consist of the index set of the links, nodes,
routes, or O-D pairs, or any combination of subsets of them. (The constraints are,
without any loss of generality, given as inequalities.)

Consider the general side constrained traffic equilibrium problem

[TAP-SC]

min T (f) =
∑

a∈A

∫ fa

0
ta(s)ds, (2.1)

subject to

∑

r∈Rpq

hpqr = dpq, ∀(p, q) ∈ C, (2.2)

hpqr ≥ 0, ∀r ∈ Rpq, ∀(p, q) ∈ C, (2.3)
∑

(p,q)∈C

∑

r∈Rpq

δpqrahpqr = fa, ∀a ∈ A, (2.4)

gk(f) ≤ 0, ∀k ∈ K. (2.5)

We assume that the feasible set of [TAP-SC] is non-empty; in cases where some
functions gk are nonlinear, we also assume that a constraint qualification (e.g., Bazaraa
et al., 1993, Ch. 5) holds. The convexity of [TAP-SC] then ensures the existence of an
optimal solution, which is unique in the link flows and characterized by the first-order
optimality conditions. We next show that the optimality conditions of [TAP-SC] give
rise to a Wardrop equilibrium principle in terms of generalized route travel costs.

Theorem 1. (A generalization of the Wardrop principle) If (h, f) solves the problem
[TAP-SC] and π ∈ ℜ|C| and β ∈ ℜ|K| are vectors of optimal Lagrange multipliers for the
Constraints (2.2) and (2.5), respectively, then

hpqr > 0 =⇒ cpqr = πpq, ∀r ∈ Rpq, (2.6)

hpqr = 0 =⇒ cpqr ≥ πpq, ∀r ∈ Rpq (2.7)

holds for all O-D pairs (p, q) ∈ C, where

cpqr
def
= cpqr(h) +

∑

a∈A

δpqra





∑

k∈K

βk

∂gk(f)

∂fa



 , ∀r ∈ Rpq, ∀(p, q) ∈ C. (2.8)

Proof. Stating the stationary point conditions for the Lagrangean function

L(f, β)
def
= T (f) +

∑

k∈K

βkgk(f) (2.9)



subject to (2.2)–(2.4) we obtain, from the convexity of [TAP-SC], that (h, f) is a solution
if and only if

hpqr (cpqr − πpq) = 0, ∀r ∈ Rpq, ∀(p, q) ∈ C, (2.10)

cpqr − πpq ≥ 0, ∀r ∈ Rpq, ∀(p, q) ∈ C, (2.11)
∑

r∈Rpq

hpqr = dpq, ∀(p, q) ∈ C, (2.12)

hpqr ≥ 0, ∀r ∈ Rpq, ∀(p, q) ∈ C, (2.13)
∑

(p,q)∈C

∑

r∈Rpq

δpqrahpqr = fa, ∀a ∈ A, (2.14)

βkgk(f) = 0, ∀k ∈ K, (2.15)

gk(f) ≤ 0, ∀k ∈ K, (2.16)

βk ≥ 0, ∀k ∈ K, (2.17)

where cpqr is given by (2.8).
The Condition (2.11), together with (2.10) and (2.12), implies that the multiplier

πpq is the minimum generalized travel cost cpqr in O-D pair (p, q), and (2.10) further
states that these costs are equal for all routes utilized in the O-D pair. Hence, the
Conditions (2.10)–(2.11) imply (2.6)–(2.7), and the theorem is proved. 2

Solutions to [TAP-SC] thus correspond to flows satisfying a generalization of the
Wardrop equilibrium conditions, based on the generalized travel Costs (2.8).

One can, in general, not relate the actual travel costs of the unused routes to those of
the used ones; for instance, the cheapest route in an O-D pair may be unused because its
generalized cost is too high. Furthermore, the Wardrop principle for [TAP] is intimately
associated with the Cartesian product structure of its feasible set, and one can for the
side constrained model not state similar optimality conditions in terms of actual travel
costs. However, under the (reasonable) additional assumption that each constraint
function gk is nondecreasing in each link flow variable fa, a Wardrop-type principle in
terms of actual travel costs may be established. (This result generalizes that of Larsson
and Patriksson, 1994, for the case of link flow capacity side constraints.)

Theorem 2. (A Wardrop-type principle) Let f be the link flow solution to [TAP-SC],
and suppose that

∂gk(f)

∂fa

≥ 0, ∀a ∈ A, ∀k ∈ K.

Consider any O-D pair (p, q). Let a route r ∈ Rpq be defined to be unsaturated if for
all k ∈ K and all links a ∈ A on route r,

∂gk(f)

∂fa

> 0 =⇒ gk(f) < 0.

Assume, without any loss of generality, that in a corresponding route flow solution to
[TAP-SC] the first l routes are actually used, and that among these the first m are
unsaturated. Then,

cpq1 = . . . = cpqm ≥ cpq,m+1 ≥ . . . ≥ cpql,

and the unused routes in the O-D pair have generalized route costs that are at least as
large as that of the used routes in the O-D pair.



Expressing the route travel costs as

cpqr =
∑

a∈A

δpqrata(fa), ∀r ∈ Rpq, ∀(p, q) ∈ C,

we obtain from (2.8) that

cpqr =
∑

a∈A

δpqra



ta(fa) +
∑

k∈K

βk

∂gk(f)

∂fa



 , ∀r ∈ Rpq, ∀(p, q) ∈ C.

Associated with the generalized route travel costs hence are the generalized link travel
costs

ta(f)
def
= ta(fa) +

∑

k∈K

βk

∂gk(f)

∂fa

, ∀a ∈ A. (2.18)

The interpretations of the optimal Lagrange multipliers and the Conditions (2.6)–
(2.7) depend on the form of the constraint functions gk. For example, in the case of
simple upper bounds on the link flows (K = A and ga(f) = fa − ua, ua ∈ [0, +∞],
for each a ∈ A), (2.18) reduces to ta(fa) = ta(fa) + βa, a ∈ A, and the multipliers
βa may be associated with the equilibrium queueing delays on the saturated links (i.e.,
those with flows on their respective upper bounds), and the multipliers πpq with the
(minimal) sum of total travel cost and queueing delay in each O-D pair; see Miller et
al. (1975), Payne and Thompson (1975), Smith (1987), and Larsson and Patriksson
(1994). (In the case of capacitated traffic assignment, the constraint functions ga are
nondecreasing, and an unsaturated route contains no saturated links.)

The reader should note that the optimal multipliers β are not necessarily unique.

SOLVING THE SIDE CONSTRAINED MODEL

Whenever side constraints are introduced in a traffic assignment model, traditional
assignment methods, such as the Frank–Wolfe algorithm and its relatives, either become
inapplicable or their efficiency is seriously degraded. In addition, the existing program
packages do not possess the ability to take side constraints into account.

However, when considering possible solution principles for the side constrained
model, it is most natural to aim at exploiting the efficient solution methods and pro-
gram packages that are available for the basic model. This immediately leads us to
a classical approach for handling complicating constraints: the pricing strategy (e.g.,
Lasdon, 1970, Ch. 8).

We associate with the side Constraints (2.5) non-negative prices βk, k ∈ K, which
define the costs of violating these constraints. Given certain values of these prices,
the side constraints are priced-out, i.e., handled implicitly by being included in the
objective function. The resulting optimization problem,

[TAP(β)]

min
f∈F

L(f, β) = T (f) +
∑

k∈K

βkgk(f),

is a standard assignment model (with, in general, a non-separable travel cost function
though) and is solvable with most standard methods for the basic model, giving the
unique link flow solution f(β). (Note that the objective L(·, β) is strictly convex with
respect to the link flows.)



The solution to the priced-out problem may be characterized as the solution to a
side constrained assignment problem where the right hand sides of the original side
constraints are modified through certain perturbations. This result is stated below; it
follows immediately from Everett’s Theorem (e.g., Lasdon, 1970, Th. 8.3).

Theorem 3. (An Everett-type result for [TAP-SC]) Let β ∈ ℜ|K|
+ be a price vector.

Then the solution f(β) to the priced-out problem [TAP(β)] solves the side constrained
traffic assignment problem

[TAP-SC(β)]

min T (f),

subject to

∑

r∈Rpq

hpqr = dpq, ∀(p, q) ∈ C,

hpqr ≥ 0, ∀r ∈ Rpq, ∀(p, q) ∈ C,
∑

(p,q)∈C

∑

r∈Rpq

δpqrahpqr = fa, ∀a ∈ A,

gk(f) ≤ gk, ∀k ∈ K,

where

gk

def
=

{

gk(f(β)), if βk > 0,
max {0, gk(f(β))}, if βk = 0.

Noting that the priced-out problem [TAP(β)] is equivalent to a standard traffic as-
signment model with a link travel cost mapping of the form (2.18), a precise relationship
between [TAP(β)] and [TAP-SC] is obtained when choosing the price vector β equal to
a vector of optimal Lagrange multipliers for the side Constraints (2.5).

Theorem 4. (An equivalent standard assignment problem) Let β be an arbitrary
vector of optimal Lagrange multipliers for the side Constraints (2.5). Then the solution
set of the standard traffic assignment model with link travel cost mapping

t(·) = t(·) + ∇g(·)β, (3.1)

equals that of [TAP-SC].

Proof. The strict convexity of T and the discussion following Theorem 6.5.1 of Bazaraa
et al. (1993) yield that f ∗ = f(β). The result then follows since the link travel cost
mapping of [TAP(β)] is ∇L(·, β) = t(·) + ∇g(·)β. 2

The side constrained assignment model [TAP-SC] may thus be solved as an equiv-
alent, convex, standard traffic equilibrium problem with an appropriately chosen ad-
justment of the travel costs ta; this problem will be referred to as [TAP-A]. Hence,
the link travel cost Mapping (3.1) provides a precise statement of the influence of the
side constraints on the travel cost perception of the users of the traffic network, and
therefore on their route-choice behaviour.

The variational inequality problem corresponding to the first-order optimality con-
ditions of the problem [TAP-A] is to find an f ∗ ∈ F such that

t(f ∗)T(f − f ∗) ≥ 0, ∀f ∈ F.



In contrast to the variational inequality formulation [VIP] this problem is symmetric,
since its cost mapping is integrable.

The result of Theorem 4 may alternatively be derived from Theorem 3; as the
price vector tends to a vector of optimal Lagrange multipliers, the solution f(β) will,
because of the strict convexity of T , tend continuously to f ∗, so that the right hand
sides gk of the side constraints of the problem [TAP-SC(β)] tend continuously to zero
and the problem [TAP-SC(β)] tends to [TAP-SC]. (Simultaneously, the solution set of
the priced-out problem [TAP(β)] tends to that of [TAP-SC].)

In order to find (near-)optimal values of β one may solve the Lagrangean dual
problem

[TAP-SCD]

max
β≥0

L(β),

where

L(β) = min
f∈F

L(f, β).

Lagrangean dual problems are typically solved using simple iterative search meth-
ods for (essentially) unconstrained optimization. Within a dual solution procedure for
[TAP-SCD], the result of Theorem 3 may be utilized for monitoring the progress with
respect to the aim of finding a solution to [TAP-SC]. This result also facilitates the
finite termination of the dual algorithm when the solution is near-feasible with respect
to the side constraints. Clearly, near-feasible solutions are often satisfactory considering
the uncertainties in the input data; near-feasibility is also satisfactory when the side
constraints are weak, in the sense that they do not need to be fulfilled exactly.

For a link capacity side constrained equilibrium model, Larsson and Patriksson
(1994) investigate and evaluate an augmented Lagrangean dualization (i.e., nonlinear
pricing) technique for finding optimal values of β and establish that it is more efficient
than traditional Lagrangean dualization; moreover, for certain instances of augmented
Lagrangean schemes, the sequence of dual iterates generated can be shown to converge
(at least linearly) although the set of dual solutions is not a singleton in general.

CONCLUSIONS AND FURTHER RESEARCH

The foundation for the development of models of equilibria based on the inclusion of
explicit side constraints is the hypothesis that the additional flow relationships which
we want to capture when modelling a real-world traffic problem may be well represented
by a set of side constraints. Under this hypothesis, we may establish a close relationship
between the improvements of the basic traffic equilibrium model through the introduc-
tion of explicit side constraints and generalized travel cost functions, respectively:

(i) In the generalized travel cost approach, the proper cost function to be used has
the form (3.1).

(ii) This generalized travel cost function involves gradients of the constraint functions
gk, which are unknown since they are not formulated explicitly in this approach.

(iii) The proper values of its travel cost parameters β are unknown, since the side
constrained problem is not solved in this approach.



Hence, the strategy of using generalized travel costs may be regarded as implicit,
which explains, at least partially, why equilibrium models with generalized travel cost
functions are difficult to calibrate, and therefore difficult to use in practice.

In contrast, the inclusion of side constraints in the equilibrium model constitutes an
explicit approach, in which the physical interpretations of these constraints facilitate
the calibration of the model. The strategy of extending the basic model with side
constraints also allows a large flexibility in the construction of the model, since the side
constraints may be nonlinear as well as non-separable. Thus, the use of side constraints
is a direct and general approach for improving the basic model.

To summarize, if explicit side constraints are utilized in a refinement of the basic as-
signment model, the solution of the resulting model [TAP-SC] automatically produces
the travel cost mapping of an equivalent standard traffic equilibrium model. Hence,
through a process in which one or more side constrained models are solved, one may de-
rive (i.e., determine the appropriate side constraints) and calibrate (i.e., find the proper
coefficients β) adjusted travel cost functions for use in existing transportation analysis
tools based on traditional equilibrium models, in order to (indirectly through the cost
functions) take into account the additional model components which are described by
the side constraints. The solution of an (augmented) Lagrangean dual problem may
then be viewed as a means for calibrating these travel cost functions.

The many possibilities for modelling traffic interactions with explicit side con-
straints, and the strong relationships to equilibrium models with generalized travel
costs, motivate the further exploration of this modelling strategy for traffic equilibrium
problems. The successful outcome of this exploration relies on cooperations between
operations researchers and users ot today’s transportation planning systems.
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