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Abstract

The purpose of this paper is to provide a unified description of iterative algorithms for the solu-
tion of traffic equilibrium problems. We demonstrate that a large number of well known solution
techniques can be described in a unified manner through the concept of partial linearization,
and establish close relationships with other algorithmic classes for nonlinear programming and
variational inequalities. In the case of nonseparable travel costs, the class of partial linearization
algorithms are shown to yield new results in the theory of finite-dimensional variational inequal-
ities. The possibility of applying truncated algorithms within the framework is also discussed.
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1 Introduction

Traffic planning and transportation analysis problems have motivated a large amount of aca-
demic research into mathematical modelling and the design of algorithms during the last 25
years. The analysis of mathematical models of traffic planning problems aid planners in predict-
ing what effects changes in the traffic network topology will have on the network’s performance,
with respect to congestion, queueing, safety and so on, without having to perform these changes
in the real traffic network.

In this paper we consider the static model of traffic assignment with and without link interac-
tions, with emphasis on the problem resulting from the principle of user equilibrium, formulated
by Wardrop [97]. Given link performance functions, modelled as strictly increasing functions of
the flow on the links, the equilibrium conditions can be shown to be the first order optimality
conditions of a convex mathematical program; hence, the traffic equilibrium problem may be
analyzed by using standard techniques in nonlinear optimization. The special problem structure
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and the size of real-world problems, however, make the problem a challenge for the development
of specialized methods. A large amount of research has been made in the development of efficient
algorithms for these problems and also to validate the use of the models in practice. When there
are link interactions present in the model, a reformulation as a convex program is not possible to
make in general. Through a reformulation of the equilibrium conditions as a finite-dimensional
variational inequality, it is still possible to solve these more general problems efficiently. Re-
cently, variational inequalities have shown to be equivalent to (generally) nonconvex, and also
possibly nondifferentiable, optimization problems. Based on these optimization formulations
new algorithms have been developed, and applied to traffic equilibrium.

Many of the feasible direction methods and successive approximation algorithms presented for
the traffic assignment problem may be given a unified description. In this paper we introduce
a class of algorithms that is based on iterative travel cost approximations, and show that a
number of well known iterative algorithms for traffic assignment belong to this class. Examples
of such methods are the Frank-Wolfe algorithm, Jacobi and Gauss-Seidel type methods and
Newton methods. We will also establish a close relationship between this algorithmic class and
the classes of algorithms defined by Dafermos [24], Migdalas [69] and Tseng [93].

The remainder of the paper is organized as follows. In Section 2 we introduce the traffic equilib-
rium problem, and discuss some of its important properties. In Section 3 we introduce the con-
cept of partial linearization and provide some interpretations. We discuss the global convergence
of the general algorithm, and validate truncated subproblem solutions within the framework.
Well known instances of the algorithm, as well as possible extensions, are discussed in Section
4. Parallel (partially) asynchronous implementations of the partial linearization algorithm are
also validated. In Section 5 we present the variational inequality formulation of the general
traffic equilibrium problem. Optimization reformulations are also presented, and we establish
a new equivalence result for variational inequality algorithms. We provide in Section 6 some
well known instances of algorithms for traffic equilibria, and discuss possible extensions by the
introduction of line searches with respect to merit functions. Finally, in Section 7, we draw some
conclusions and present research opportunities.

2 The traffic equilibrium model

Consider a transportation network G=(N , A), where each directed arc a ∈ A is associated with
a positive travel time, ta(f). This travel time, or transportation cost, measures the disutility of
using the arc as a function of the network flow f . The functions ta(f) are usually referred to
as arc performance functions, and are monotone as a result of congestion. For certain pairs of
origins and destinations, (p, q) ∈ C, where C ⊂ N × N , there is a given positive flow demand
dpq. Each O-D pair (p, q) is associated with a specific commodity. We denote the commodity
flow directed from node p to node q through arc a by fapq, giving rise to the total arc flow
equation fa =

∑

(p,q)∈C fapq. To measure the commodity flow into and out of a specific node
i ∈ N , we define Wi and Vi to be the sets of arcs initiated at node i and terminating at node
i, respectively. The problem of determining a network flow fulfilling the travel demands and a
prescribed performance criterion is referred to as the traffic assignment problem.

In this paper, we consider static traffic assignment problems, modelling peak-hour urban traffic.
Two main principles of optimality are usually considered. These are attributed to Wardrop [97].
The first optimality principle is based on the intuitive behaviour of traffic, i.e., each user of the
traffic network seeks to minimize his/her own travel time, leading to a steady-state where all
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used routes between a given pair of origin and destination have equal travel times; it is therefore
known as the principle of user equilibrium. With the assumptions that the function t(f) is
integrable and that the Jacobian of t is positive semidefinite for all feasible flows, Wardrop’s
first conditions of optimality can be reformulated as a convex mathematical program (e.g. [22]).
First to formulate this program are Beckmann et al. [7], in the case of separable cost functions
(i.e., ta(f) = ta(fa),∀a ∈ A). The assumption that the travel cost function is integrable is in
some applications too restrictive. A nonintegrable function t(f) corresponds to an asymmetric
Jacobian of travel costs. The problem is therefore known as the asymmetric traffic assignment
problem, and may be formulated for instance, as a variational inequality [90, 23], a nonlinear
complementarity problem [2], a fixed point problem (e.g. [71]) or as a, generally nonconvex,
mathematical program by the use of so called gap functions (e.g. [44]). If separable costs are
considered, the corresponding mathematical program will have an objective with additive terms
ga(fa) =

∫ fa

0 ta(s)ds.

The second optimality principle is known as the system optimum principle, and corresponds
to the situation in which the whole transportation system’s disutility is minimized. The flows
corresponding to the system optimum must be imposed upon the users, thus giving a problem
of prescription, as opposed to the problem of description in the case of user equilibrium. Under
the assumption that each function ta(fa) is positive, monotonically increasing and convex, this
principle can be shown to be equivalent to a convex mathematical program, and the objective
will have additive terms ga(fa) = ta(fa)fa.

The fixed demand Traffic Assignment Problem may, in both cases of optimality principles, be
stated as (e.g. [74])

[TAP] min T (f) =
∑

a∈A

ga(fa)

s.t. Afpq = dpq ∀(p, q) ∈ C

fpq ≥ 0 ∀(p, q) ∈ C
∑

(p,q)∈C

fapq = fa ∀a ∈ A,

where A is an |N | × |A| arc-node incidence matrix, fpq is the vector of commodity flows fapq

and where dpq denotes the demand vector for commodity (p, q). This formulation is referred to
as the arc-node formulation.

It is also possible to formulate [TAP] in terms of route flow variables. Define the set of simple
routes from p to q by Rpq, and the flow on route r ∈ Rpq by hpqr. If we define an arc-route
incidence matrix ∆ = (δpqra) for G, i.e., δpqra = 1 if r ∈ Rpq contains arc a, and 0 otherwise, then
arc flows are calculated as fa =

∑

(p,q)∈C

∑

r∈Rpq
δpqrahpqr, and the traffic assignment problem

becomes (e.g. [39, 27])

[TAP] min T (f) =
∑

a∈A

ga(fa)

s.t.
∑

r∈Rpq

hpqr = dpq ∀(p, q) ∈ C

hpqr ≥ 0 ∀r ∈ Rpq ∀(p, q) ∈ C
∑

(p,q)∈C

∑

r∈Rpq

δpqrahpqr = fa ∀a ∈ A.
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We will refer to this formulation as the arc-route formulation. In the sequel we will concentrate
on the case of user equilibrium.

The reader may note that an inherent property of [TAP] is that its objective function is non-
separable with respect to commodity flows, while the feasible set is a Cartesian product set.
Furthermore, one can show that, for strictly increasing arc performance functions, the objective
is strictly convex with respect to total arc flows fa, but only convex with respect to commodity
flows fapq (e.g. [89]). Thus, the program [TAP] is convex.

The development of formalized methods for the solution of the traffic assignment problem arose
in the middle of the 1960’s. The most influential and well known algorithm is an adaptation of
the method of Frank and Wolfe [37], first suggested for use in this field by Bruynooghe et al.
[16] and implemented for a small city by LeBlanc et al. [54]. Based on a feasible flow f (l), a
first order Taylor approximation of the objective yields a linear subproblem, which in the case of
user equilibrium is equivalent to |C| independent shortest route problems in the transportation

network, based on the arc costs t
(

f (l)
)

. A line search is then made in the direction y(l) − f (l),

where y(l) is a shortest route pattern.

Another important class of algorithms is the class of cyclic decomposition methods, in which the
problem is solved for subsets of the variables sequentially. Cyclic decomposition schemes extend
block Gauss-Seidel methods known from the solution of systems of linear and nonlinear equations
to constrained optimization [75]. In the traffic assignment context, the cyclic decomposition is
made over the commodities (e.g. [73, 82]). The advantage of these algorithms, as compared
to the Frank-Wolfe approach, is that the nonlinearity of the objective is preserved, thus better
retaining the properties of the original problem. A disadvantage, however, is that the algorithm
is inherently sequential, as opposed to the Frank-Wolfe algorithm.

The idea behind the original formulation of a partial linearization method1 [49] was to combine
the advantages of these two approaches, by making subproblems nonlinear and separable with
respect to commodities. (This is accomplished by identifying the nonseparable part of the objec-
tive, and linearizing it.) It is a generalization of the Frank-Wolfe algorithm that avoids extreme
point solutions to the subproblems by retaining them nonlinear. In this way the subproblems
will better resemble the original problem, and therefore hopefully provide better search direc-
tions. By making the subproblems separable with respect to the commodities, the algorithm
will avoid the sequential character of cyclic decomposition schemes, and hence, the algorithm
may utilize parallel computing environments.

In the following, we will develop a class of algorithms, whose common feature is that only a
part of the objective is linearized in each iteration, as opposed to the Frank-Wolfe approach.
The algorithm extends the one given in [49]; by choosing the part to linearize in different ways,
a number of well known methods for nonlinear programming and traffic assignment may be
recognized.

1Originally, the term partial linearization was used by Evans [30] for an iterative algorithm for the combined
distribution and assignment problem. This algorithm is, in fact, an instance of the partial linearization algorithm.

4



3 The partial linearization algorithm

3.1 Introduction

The basis for the discussion in this section is an article by the author [81], where the conver-
gence of partial linearization methods is established for, not necessarily differentiable, convex
programming and pseudo-convex differentiable programming. The algorithm is stated for a gen-
eral problem over a compact and convex feasible set, where the objective is pseudo-convex and
continuously differentiable.

[P] min
x∈X

T (x)

The general algorithm works as follows.

In a feasible point, x(l), the objective function is expressed as

T (x) = Φ
(

x,x(l)
)

+
(

T (x) − Φ
(

x,x(l)
))

, (3.1)

where Φ(x,y) is assumed convex and continuously differentiable with respect to x and continuous
with respect to y. The second term in (3.1) can be seen as expressing the error when replacing

the original objective, T (x), by the function Φ
(

x,x(l)
)

. The idea then is to take this error into

account by replacing it with a first order Taylor expansion around x(l).

The convex subproblem solved in iteration l then is

[PL-SUB(l)] min
x∈X

T (l)
(

x,x(l)
)

, where

T (l)
(

x,x(l)
)

= Φ
(

x,x(l)
)

+T
(

x(l)
)

−Φ
(

x(l),x(l)
)

+
[

∇T
(

x(l)
)

−∇xΦ
(

x(l),x(l)
)]T (

x− x(l)
)

,

and where ∇xΦ (y,y) = ∇xΦ (x,y)|x=y. We immediately see that the algorithm extends the
Frank-Wolfe algorithm, which corresponds to letting Φ ≡ 0.

The basic descent property is given by the following theorem.

Theorem 3.1 [81, Theorem 2.1] Assume that x(l) ∈ X, and that x(l) is any optimal solution to
[PL-SUB(l)]. If x(l) solves [PL-SUB(l)], then x(l) solves [P]. Otherwise, the direction d(l) =
x(l) − x(l) is a feasible descent direction with respect to T .

If convergence is not detected after having solved [PL-SUB(l)], the algorithm proceeds by
performing a line search in the direction d(l) with respect to T , defining the new point x(l+1).
The basic convergence property of this algorithm is given below.

Theorem 3.2 [81, Theorem 2.2] The partial linearization algorithm either terminates in a finite

number of iterations or it generates an infinite sequence
{

x(l)
}

such that any accumulation point

solves [P].
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Under the additional assumption that T (x) has a Lipschitz continuous gradient, i.e., there exists
a constant K ≥ 0 such that

∥
∥
∥∇T

(

x1
)

−∇T
(

x2
)∥
∥
∥ ≤ K

∥
∥
∥x1 − x2

∥
∥
∥ ,∀x1,x2 ∈ X,

then it is possible to show that the partial linearization algorithm is globally convergent even
when line searches are made only approximately. See [81] for further details.

Later, we will develop a variant of the partial linearization algorithm where the subproblems
are solved inaccurately, i.e., where [PL-SUB(l)] is solved with a truncated algorithm. Global
convergence holds for any descent algorithm applied to [PL-SUB(l)], and for almost arbitrary
inaccuracy, provided that the algorithmic map of the descent algorithm is closed. (See [99]
for a general discussion on closedness of algorithmic maps.) The Frank-Wolfe algorithm is an
interesting special case, since such a truncated partial linearization algorithm may be easily
implemented by slightly modifying an existing Frank-Wolfe code.

Some differences between the general algorithm and the Frank-Wolfe method is noted below.

A nice property of the Frank-Wolfe algorithm is that for convex problems a termination criterion
is available through the lower bound on the optimal objective value, obtained from the linear
subproblem. In the partial linearization algorithm this termination criterion is not valid since
the error function T (x) − Φ(x,y) is not convex in general. It is, however, easy to show that

T
(

x(l)
)

− T (l)
(

x(l),x(l)
)

> 0 whenever x(l) is not a solution to [P], and that this difference

tends towards zero. The reader may note that an optimal solution is obtained also from the
sequence of solutions to the subproblems, if Φ(x,y) is strictly convex with respect to x, i.e.,

liml→∞

(

x(l) − x(l)
)

= 0. This is not the case in the Frank-Wolfe algorithm.

Interpretations of the subproblem in the partial linearization algorithm are made below.

If the function Φ(x,y) is chosen so that ∇xΦ(x,x) = 0, then [PL-SUB(l)] reduces to

min
x∈X

∇T
(

x(l)
)T (

x− x(l)
)

+ Φ
(

x,x(l)
)

. (3.2)

Algorithms of this type is studied by Migdalas [69], who refers to them as regularized Frank-
Wolfe algorithms, and Tseng [93], by the name nonlinear proximal descent (NPD) methods.
(As will be shown later, these algorithms are, in fact, equivalent to the partial linearization
algorithm.) The expression (3.2) provides a nice characterization of the method class as partial
linearization methods as opposed to complete linearization methods, such as the Frank-Wolfe
algorithm. In the Frank-Wolfe algorithm, the first order Taylor expansion, which is valid only
locally around x(l), is used globally in the subproblem phase. The subproblem solved in a partial
linearization method introduces a regularization term in the objective function of the Frank-
Wolfe subproblem, restricting the distance between the current point x(l) and the subproblem
solution x(l). By retaining the nonlinearity of the original objective function, partial linearization
methods will therefore avoid the tailing-off phenomena inherent in the Frank-Wolfe method,
caused by the generation of extreme point subproblem solutions (e.g. [59]).

Apart from avoiding tailing-off phenomena the partial linearization method may be used to
regularize not strictly convex problems by adding a strictly convex term to the objective. Assume
that the objective function T (x) is convex but not strictly convex everywhere. Assume also that
the function Φ(x,y) is strictly convex with respect to x. Let Φ(x,y) = T (x) + Φ(x,y), which
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then is strictly convex with respect to x. Rewrite the objective as in (3.1), i.e., let

T (x) = Φ(x,y) +
(

T (x) − Φ(x,y)
)

= T (x) + Φ(x,y) + (−Φ(x,y)) .

The subproblem solved in the partial linearization method then is to minimize

T (l)(x,x(l)) = T (x) + Φ
(

x,x(l)
)

−∇xΦ
(

x(l),x(l)
)T (

x − x(l)
)

,

i.e., the subproblem in the partial linearization algorithm may also be seen as a strengthening
of a not strictly convex problem by adding a strictly convex term, Φ, to the objective. As an
example, consider the function Φ(x,y) = c

2 ‖x − y‖2
2, where c > 0. The subproblem then is

to minimize T (x) +
c

2

∥
∥
∥x− x(l)

∥
∥
∥

2

2
, which is equivalent to the subproblem of the proximal point

algorithm [86].

The possibility of obtaining strictly convex subproblems by choosing Φ strictly convex also
facilitates the use of duality based methods for [PL-SUB(l)]. Efficient dual ascent methods have
been developed for strictly convex problems in single-commodity networks, matrix balancing,
quadratic programming and entropy maximization, see e.g. [11, 14, 15, 17, 18, 57, 87, 92, 95,
96, 100]. Through the use of partial linearization such methods are applicable to [TAP] since
the choice of Φ as a separable strictly convex function with respect to the commodities induces
both strict convexity and separability of [PL-SUB(l)] (see Section 4.1). Since these methods
are amenable to parallel computations efficient parallel partial linearization methods are defined
(see Section 4.2).

The subproblem [PL-SUB(l)] may also be given a more general formulation. Assume that [P]
is given by its variational inequality characterization (see Section 5.1)

[VIP] find x∗ ∈ X such that ∇T (x∗)T(x − x∗) ≥ 0,∀x ∈ X.

Assume also that ϕ : X×X 7→ ℜn is monotone with respect to its first argument and continuous
with respect to its second, and that ϕ(·,y) is not necessarily the gradient of a convex function
Φ(·,y). The subproblem of the partial linearization method may then be described as follows. In

iteration l, the cost vector ∇T is approximated by ϕ

(

·,x(l)
)

, and the error made when replacing

∇T with ϕ is taken into account by adding the term ∇T
(

x(l)
)

−ϕ

(

x(l),x(l)
)

to the cost. The

subproblem is then the following variational inequality.

[PL-SUB-VIP(l)] Find x(l) ∈ X such that

[

ϕ

(

x(l),x(l)
)

+ ∇T
(

x(l)
)

− ϕ

(

x(l),x(l)
)]T (

x− x(l)
)

≥ 0,∀x ∈ X

(By associating the map ϕ(·,y) with the gradient of Φ(·,y), using its variational inequality
characterization the subproblem [PL-SUB(l)] can be shown to be equivalent to [PL-SUB-

VIP(l)].)

This more general description of the subproblem of the partial linearization algorithm will be
used later to establish that cyclic decomposition methods are instances of the general algorithm.
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3.2 Truncated partial linearization algorithms

From a practical point of view subproblems can not be solved exactly, and there is an obvious
trade-off between the amount of work spent on solving [PL-SUB(l)] and obtaining sufficiently
steep descent directions. We conclude this section by establishing the global convergence of a
version of the partial linearization algorithm, where each subproblem is solved with a truncated
descent algorithm with closed algorithmic map.

The idea behind the truncated partial linearization algorithm is to bound the work performed on
[PL-SUB(l)], by bounding from above the number of iterations performed with a finite integer,
k(l). These numbers can either be determined a priori , or be viewed as being the consequence of
the algorithm and stopping criteria chosen for [PL-SUB(l)]. It will be shown that the sequence
{

k(l)
}

may be chosen arbitrary, with k(l) ≥ 1,∀l, and convergence will still be ensured under

the condition that the method used for solving [PL-SUB(l)] has a closed algorithmic map.

The following lemma and theorem establish the global convergence of the truncated partial
linearization algorithm.

Lemma 3.1 If T (l)
(

x,x(l)
)

< T (l)
(

x(l),x(l)
)

holds for some x ∈ X, then d(l) = x − x(l) is a

feasible descent direction of descent with respect to T .

Proof The fact that ∇xT (l)(x,x) = ∇T (x),∀x, and the convexity of T (l) yields

∇T
(

x(l)
)T (

x− x(l)
)

= ∇T (l)
(

x(l),x(l)
)T (

x− x(l)
)

≤ T (l)
(

x,x(l)
)

− T (l)
(

x(l),x(l)
)

< 0.
2

The implication of this lemma is that is suffices with a single iteration of a descent algorithm
on [PL-SUB(l)] to obtain a feasible descent direction with respect to T .

Theorem 3.3 Assume that T (x) is pseudo-convex and continuously differentiable, and that
Φ(x,y) is convex and continuously differentiable with respect to x, and continuous with respect to
y. Furthermore, assume that the algorithm used for solving [PL-SUB(l)] is a descent algorithm
with closed algorithmic map, and that the termination criteria chosen for [PL-SUB(l)] are such

that 1 ≤ k(l) < ∞,∀l. Then any accumulation point of the sequence
{

x(l)
}

solves [P].

Proof By Lemma 3.1, the sequence
{

d(l)
}

is a sequence of descent directions. Following the

proof of [81, Theorem 2.2] we conclude that there exists a subsequence L̂ so that

lim
l∈L̂

∇T
(

x(l)
)T (

x(l) − x(l)
)

= ∇T (x∗)T (x − x∗) = 0, (3.3)

where x∗ = liml∈L̂ x(l) and x = liml∈L̂ x(l), and where x(l) is the result of the truncated solution

of [PL-SUB(l)].
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Taking the limit of L̂, we have by Lemma 3.1 that

lim
l∈L̂

T (l)
(

x(l),x(l)
)

def
= T ∗ (x,x∗) ≤ T ∗ (x∗,x∗) .

The convexity of T (l),∀l implies that

T ∗ (x,x∗) ≥ T ∗ (x∗,x∗) + ∇T ∗ (x∗,x∗)T (x− x∗) .

But the fact that ∇T (l)(x,x) = ∇T (x),∀x and using (3.3) we obtain T ∗ (x,x∗) ≥ T ∗ (x∗,x∗),
and hence we have that

T ∗ (x,x∗) = T ∗ (x∗,x∗) . (3.4)

Assume that, for any positive constant M , there exists a finite integer i such that k(l) ≥ M,∀l ≥ i.
(We say that liml→∞ k(l) = ∞.) Then the subproblem is solved accurately in the limit, and
convergence is ensured by Theorem 3.2.

Let us now show that the subproblem is solved accurately in the limit also when k(l) 6→ ∞.

Since k(l) 6→ ∞, there must be an integer k∗ that occurs in the sequence
{

k(l)
}

, l ∈ L̂, an infinite

number of times. Choose the subsequence of L̂ corresponding to these indices. The subproblem
[PL-SUB(l)] is in the limit of this sequence solved with k∗ ≥ 1 iterations of a descent algorithm
with closed algorithmic map. We next show that x is a solution to this problem.

Define x(l) ∈ M(l)
(

x(l)
)

to be the algorithmic map defining the solution of [PL-SUB(l)] obtained

after k(l) iterations. It suffices to show that x ∈ M (x∗), where M is the composite map of
k∗ consecutive direction finding problems (the map C) and line searches (the map B), i.e.,
M = BCBC × . . . × BC

︸ ︷︷ ︸

k∗ times BC

.

But since the mapping C is closed by assumption, and also the mapping B [6, Theorem 8.3.1],
the composite mapping M is closed [6, Theorem 7.3.2]. Hence, x ∈ M (x∗) so that x is the
solution to the truncated subproblem in the limit.

By using (3.4), Lemma 3.1 and the fact that k∗ ≥ 1, we conclude that x∗ must solve the
subproblem in the limit, i.e., that x∗ ∈ arg min

x∈X
T ∗ (x,x∗). Theorem 3.1 then implies that x∗

solves [P]. 2

Related convergence results have been obtained earlier for certain conceptual algorithms, see
e.g. [83, Section A.2].

Note that, for the interesting special case of using Frank-Wolfe for solving [PL-SUB(l)], when-
ever k(l) = 1, iteration l in the truncated partial linearization algorithm reduces to a Frank-Wolfe
iteration. Note also that by the proof of Theorem 3.3, the limit point of the truncated subprob-
lem solutions, x, in fact solves the subproblem in the limit exactly, despite the fact that each
subproblem is solved inaccurately.

Migdalas [69] presents a truncated Frank-Wolfe algorithm for the subproblem of the regulariza-
tion algorithm. There, the subproblems are truncated when the relative error is smaller than an
a priori determined value. To ensure convergence, the sequence of values are assumed to have
limit zero, so that, in essence, the subproblems are solved with a higher and higher accuracy.
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It is interesting to note that, by the discussion made above, this is accomplished automatically
regardless of the number of iterations performed on each [PL-SUB(l)].

The feasible set in the arc-node formulation of the traffic equilibrium problem is, in general,
not bounded due to the presence of cycles in the network. When applying the Frank-Wolfe
algorithm to [PL-SUB(l)], it is possible that negative arc costs can occur, and that, as a
consequence, the linear subproblem may have an infinite solution. (This can, however, not
happen during the first iteration of the subproblem solution process, since the arc costs then

are defined by t
(

f (l)
)

, positive by assumption.) In a practical implementation the subproblem

may be truncated prematurely if a negative cycle is detected. The global convergence of such
an algorithm is still ensured by Theorem 3.3.

In the next section we will outline the use of partial linearization methods for separable traffic
equilibrium problems. The presentation is divided into two parts; we first discuss Jacobi/Gauss-
Seidel type algorithms and then Newton type approaches. Algorithms incorporating truncated
algorithms and simplicial decomposition/column generation are also discussed.

4 Partial linearization algorithms for separable traffic equilib-

rium problems

4.1 Jacobi/Gauss-Seidel type algorithms

The Jacobi and Gauss-Seidel methods are well known for the solution of systems of linear and
nonlinear equations [75], and optimization problems over Cartesian product sets [17]. Assume
that the feasible set X ⊆ ℜn in [P] is a Cartesian product, i.e., that X =

∏

i∈C Xi, where
Xi ⊂ ℜni and

∑

i∈C ni = n. Given a point x(l) ∈ X, the Jacobi subproblem then consists of the
following |C| independent problems

[J
(l)
i ] x

(l+1)
i ∈ arg min

xi∈Xi

T
(

x
(l)
1 ,x

(l)
2 , . . . ,x

(l)
i−1,xi,x

(l)
i+1, . . . ,x

(l)
|C|

)

.

It is easily verified that Jacobi is a partial linearization algorithm, through the subproblem

defining function Φ(x,y) =
∑

i∈C T
(

y1,y2, . . . ,yi−1,xi,yi+1, . . . ,y|C|

)

. As applied to traffic

assignment, the subproblem solved for commodity i ∈ C in a Jacobi method, given a feasible
flow f (l), then is

[TAP
(l)
i ] min

∑

a∈A

∫ fai+
∑

j 6=i
f
(l)
aj

0
ta(s)ds

s.t. Af i = di

fi ≥ 0.

The reader should note here that a decomposition of the original problem into independent
subproblems is accomplished by any function Φ of the form

Φ(x,y) =
∑

i∈C

Φi(xi,y), (4.1)

where each function Φi is convex with respect to the variables xi.
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An alternative to the parallel solution of the subproblems is to instead use the new information
obtained from one subproblem when solving the next. Although this strategy is inherently
sequential, the better utilization of information may result in a better practical convergence
rate. This is the Gauss-Seidel approach, and for the variables xi the subproblem is

[GS
(l)
i ] x

(l+1)
i ∈ arg min

xi∈Xi

T
(

x
(l+1)
1 ,x

(l+1)
2 , . . . ,x

(l+1)
i−1 ,xi,x

(l)
i+1, . . . ,x

(l)
|C|

)

.

The Gauss-Seidel method is an instance of the partial linearization algorithm. The subproblem,
defining one main iteration, may be described by the variational inequality

[GS(l)] find x(l+1) ∈ X such that

ϕ

(

x(l+1),x(l)
)T (

x − x(l+1)
)

≥ 0,∀x ∈ X,

where the ith block component of ϕ is ϕi(x,y) = ∇iT
(

x1,x2, . . . ,xi−1,xi,yi+1, . . . ,y|C|

)

. Since

ϕ(x,x) = ∇T (x), Gauss-Seidel is a special case of partial linearization (compare [GS(l)] with
[PL-SUB-VIP(l)]). Applying Gauss-Seidel to traffic equilibrium results in a subproblem for

commodity i equal to [TAP
(l)
i ], with the objective replaced by

∫ fai+
∑

j<i
f
(l+1)
aj

+
∑

j>i
f
(l)
aj

0
ta(s)ds.

A large number of articles have been devoted to Jacobi and Gauss-Seidel approaches. Cyclic
decomposition methods for [TAP] are presented in e.g. [20, 21, 22, 16, 27, 73, 82, 88]. In
combination with simplicial decomposition/column generation (see [47, 51]), such algorithms
have also been presented in [39, 55, 72, 74, 36, 34]. Jacobi/Gauss-Seidel methods have also been
applied to the problem of optimal routing in computer communication networks (a problem with
the same structure as [TAP]), often in combination with Newton type approaches. We would like
to stress that most applications of Jacobi or Gauss-Seidel algorithms for traffic assignment is of
the successive approximation type, i.e., the solution to the separable subproblem is taken as the
new iterate point, while, in the partial linearization scheme a line search is included between the
current iterate and the subproblem solution point. Not only may the global convergence criteria
be weakened (it is well known that the convergence of Jacobi and Gauss-Seidel methods require,
typically, strict convexity of either the whole objective or with respect to each independent
variable block component, see e.g. [15, Section 3.3.5]), but also the practical convergence is
expected to be much better by including line searches [31].

The partial linearization algorithm defines extensions of the Gauss-Seidel approach. A general
Gauss-Seidel type algorithm is defined by an ordering {il}

∞
l=1 of indices to be chosen, and a

mapping ϕ such that, for the variable block component xi, the following variational inequality
is solved.

[GS-PL
(l)
i ] Find x

(l)
i ∈ Xi such that

[

ϕi

(

x
(l)
i ,x(l)

)

+ ∇iT
(

x(l)
)

− ϕi

(

x
(l)
i ,x(l)

)]T (

xi − x
(l)
i

)

≥ 0,∀xi ∈ Xi,

which reduces to a convex nonlinear program if ϕi is a gradient.

By letting the mapping ϕi be such that ϕi(xi,x) = 0, we obtain the generic subproblem of
Tseng [93]:

11



[GS-NPD
(l)
i ] find x

(l)
i ∈ Xi such that

[

ϕi

(

x
(l)
i ,x(l)

)

+ ∇iT
(

x(l)
)]T (

xi − x
(l)
i

)

≥ 0,∀xi ∈ Xi.

Tseng extends the Gauss-Seidel type approach by including an inexact line search with respect

to the original cost in the direction x
(l)
i −x

(l)
i , after each subproblem. Furthermore, the sequence

of indices il chosen is not restricted to be the standard cyclic order (il = 1+ l mod |C|). Rather,
in order to establish convergence, the sequence of indices {il} must satisfy the condition that
there exists a constant B ≥ |C| such that every index is chosen at least once every B successive
iterations (essentially cyclic rule).

Based on the results obtained in this paper we may extend Tseng’s Gauss-Seidel type algorithm
in several directions. In view of the results of Section 3.2, the subproblems need not be solved
exactly in order to establish convergence (cf. [15, Prop. 3.3.8] and [68]). Furthermore, other
orders of iteration are possible, such as variants of the Gauss-Southwell (remotest) order [17],
in which the index chosen corresponds to variables being, in some measure, farthest from the
optimum. In the traffic assignment context an algorithm based on such an ordering is established
convergent in [82]. In iteration l the commodity to be considered is chosen based on the error
in the Wardrop conditions, using dual prices obtained from the Frank-Wolfe subproblem. A
simpler way of using the Frank-Wolfe algorithm in the choice of commodity in a Gauss-Seidel
type scheme is to instead use the value of the primal gap function (see Section 5.3), which is
directly available from the computation of shortest routes. Evaluating, for each commodity,
the current total cost of transportation minus the total cost of transportation along a shortest
route provides a measure of the distance (gap) from the optimum for each commodity. The
commodity chosen in iteration l then is the one with the largest (relative) gap. The convergence
of such an algorithm is established analogously to [82].

Other Jacobi type methods for [TAP] have been presented in [19, 50]. These are briefly discussed
below, and shown to be instances of the general algorithm.

In [19] a shifted function h(b) = T (b + f) − T (f) is defined for feasible flows f . Then [TAP] is
equivalent to minimizing h(b) subject to b : b + f is feasible. By defining ha to be the term of
h corresponding to arc a, they then define a scaled separable function (σ > 0 is a constant)

hs(b, σ) =
∑

a

∑

i

1

σ
ha(σbai) =

=
∑

a

∑

i

1

σ





∫ σbai+
∑

i
f
(l)
ai

0
ta(s)ds −

∫
∑

i
f
(l)
ai

0
ta(s)ds



,

which is minimized with respect to b. Associating the scaled separable function hs with the
function Φ we may conclude that the algorithm is a partial linearization algorithm. It should
be noted that for the special case of σ = 1, the algorithm reduces to the Jacobi algorithm.

In [50] an algorithm is defined, which also is highly related to the Jacobi method with line

searches. Here, the separable approximation defining Φ is
∑

i∈C

∑

a∈A

∫ fai

0
ta(s)ds.

How the choice of separable functions Φ, i.e., of the form (4.1), induces parallel partial lineariza-
tion methods is shown below.
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4.2 Parallel asynchronous implementations of partial linearization methods

Partial linearization algorithms, when applied to problems over Cartesian product sets, may
also be implemented in a (partially) asynchronous manner. Assume that we have access to
a parallel computer, where we can allocate each of the |C| single-commodity problems to one
independent processor. In a synchronized implementation each processor must halt at predeter-
mined points to exchange information (in this context commodity flows). In an asynchronous
implementation local processors do not wait to receive the latest information available. The
advantage of such an approach is a minimal communication delay and a potential speed-up over
synchronized algorithms. The drawback is that the conditions of convergence are more severe
than for the synchronized version, and that the termination criteria are not as easily detected.
In a partially asynchronous implementation there is a bound on the communication delays, i.e.,
the information that any processor holds is not arbitrarily old. We follow the definition given
in [15, p. 483], and introduce a set T i of times at which xi is updated by processor i, variables
τ i
j(t) for each i, j ∈ C and t, measuring the amount by which the information used in an update

of xi is outdated, with 0 ≤ τ i
j(t) ≤ t. By partial asynchronism we mean that there exists a

positive constant B such that for each index i and for each t ≥ 0 at least one element in the set
{t, t + 1, . . . , t + B − 1} belongs to T i, t − B < τ i

j(t) ≤ t for each i, j and t ∈ T i, and τ i
i (t) = t

for all i and t ∈ T i. (Note the similarities between the definitions of partial asynchronism and
the essentially cyclic rule.)

To establish convergence of a (partially) asynchronous implementation of the partial linearization
algorithm, we make the additional assumptions that ∇T is Lipschitz continuous with modulus
K, and that the function Φ is of the form (4.1), where each function Φi (xi,y) is strongly convex
with modulus mΦi

, i.e.,

[

∇Φi

(

x1
i ,y

)

−∇Φi

(

x2
i ,y

)]T (

x1
i − x2

i

)

≥ mΦi

∥
∥
∥x1

i − x2
i

∥
∥
∥

2

2
,∀x1

i ,x
2
i ∈ Xi.

We also define mΦ = mini mΦi
. In order to carry out the computations in an asynchronous

fashion the line search is replaced by a predetermined step length, α > 0. The following conver-
gence result extends the ones obtained in [15, Props. 3.3.4 and 7.5.3] for a general algorithmic
scheme in unconstrained optimization and for gradient projection type methods, respectively.
(The fact that gradient projection is an instance of the partial linearization algorithm is shown
in Section 4.3.) Since the theorem is easily established from these propositions, the proof is
omitted.

Theorem 4.1 Assume that T is pseudo-convex and has a Lipschitz continuous gradient, and
that the functions Φi are strongly convex. Then the synchronized partial linearization algorithm
using fixed step lengths α converges globally if 0 < α < 2mΦ

K . In the partially asynchronous
version, we obtain the same result if steps are chosen in the interval 0 < α < mΦ

K
1

1
2
+(n+1)B

.

For a discussion on the roles of the different parameters in the step length restriction, see [15,
Section 7.5.2]. In particular, if the problem is weakly coupled with respect to the commodities,
i.e., the interaction between commodity flows in the network is modest, then the second result
obtained in Theorem 4.1 may be improved in the sense that a longer step α is allowed. In the
special case of gradient projection type methods [56, 8], which is also the algorithm considered in
[15, Section 7.5], Tseng [94] establishes a linear convergence rate for the partially asynchronous
version. (This result extends the linear convergence result obtained in e.g. [58], for the basic
method.)
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We conclude this section by studying Newton type approaches for separable traffic assignment
problems.

4.3 Newton-type methods

We first show that the constrained Newton method is an instance of the partial linearization
algorithm.

Given y ∈ X, let the function Φ be given by Φ(x,y) = 1
2 (x − y)T ∇2T (y) (x− y). The sub-

problem of the partial linearization algorithm corresponding to this function then is to minimize
∇T (y)T(x−y)+ 1

2 (x− y)T ∇2T (y) (x− y) over x ∈ X, which is equivalent to the constrained
Newton subproblem.

The function Φ(x,y) defined above is convex with respect to x for all values of y if the Hessian
matrix ∇2T (y) is positive semidefinite for all feasible points, which holds for convex functions
T . The convergence of the constrained Newton algorithm is then guaranteed by the convergence
of the partial linearization method. Furthermore, if T is strongly convex, this convergence
is known to be superlinear [85, Theorem III.3.6]. If the Hessian is also Lipschitz continuous
everywhere on X, the convergence is quadratic [85, Theorem III.3.5]. Hence, the class of partial
linearization methods define methods with convergence rates ranging from sublinear (the Frank-
Wolfe method, by the choice of Φ ≡ 0) to quadratic (the constrained Newton method). It is also
possible to show that for a convex problem [P] with a sharp minimum [84], i.e., if there exists
an α > 0 such that, for all x ∈ X,

T (x) − T (x∗) ≥ α ‖x − x∗‖ ,

then the partial linearization algorithm is finite, whenever ∇T is Lipschitz continuous, and the
function Φ is chosen convex with a Lipschitz continuous gradient ∇xΦ(·,y). (This result gener-
alizes those obtained for the proximal point algorithm [86], gradient projection [84], constrained
Newton [84] and Frank-Wolfe [84].)

From the above discussion on regularizations of the Frank-Wolfe algorithm we may interpret the
Newton method as a special case, where the regularizing term is given by a particular matrix
norm, see [69].

Approximate Newton methods are defined through approximations B(l) of the Hessian matrix,
for instance as block diagonal matrices, making the corresponding subproblems separable with
respect to the commodities, when applied to traffic equilibrium. In [40, 56] the matrix is chosen
as the identity matrix, while in [8] it is chosen positive diagonal. (These methods are often
referred to as (scaled) gradient projection algorithms.) Such algorithms are seen to be instances

of the partial linearization methods, by replacing ∇2T
(

x(l)
)

with B(l) in the above derivation

of Newton’s method.

Newton algorithms of the types mentioned above have been applied to routing and traffic
equilibrium (e.g. [9, 28]), and incorporating simplicial decomposition/column generation in
[10, 13, 79, 45, 46, 51]. Dembo and Tulowitzki [28] present a Newton method for the arc-
node formulation of [TAP], based on the use of truncated Frank-Wolfe iterations. Using a
subproblem termination criterion based on decreasing relative errors, the algorithm is shown to
converge with a superlinear rate. They do not address the problem with negative arc costs (cf.
Section 3.2), which could imply that in practice this is not an issue. It is interesting to note their
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conclusion regarding the number of Frank-Wolfe iterations that should be considered to maxi-
mize the efficiency of the algorithm. Their conclusion is that not more than four Frank-Wolfe
steps should be considered in any iteration.

5 Partial linearization for variational inequalities

In this section we consider the variational inequality formulation of the general traffic equilib-
rium problem, arising from the first Wardrop conditions when the cost interactions between user
classes, or between the flows on different links, are not symmetric. The possibility of formulating
merit functions for asymmetric variational inequalities are also discussed. The partial lineariza-
tion algorithm will then be extended to variational inequality problems, and some algorithmic
equivalence results will be given. Based on these results we will, in the next section, give a
unified description of some well known traffic equilibrium methods. The extension to descent
methods through the use of merit functions will also be addressed.

It is shown in e.g. [22] that the Wardrop conditions of user equilibrium may be reformulated
as a convex mathematical program under the assumption that the travel time function t has
a symmetric Jacobian matrix for all feasible flows, i.e., t′(f) is symmetric for all feasible f .
When, in the general case, arc costs are asymmetric, an equivalent mathematical program cor-
responding to user equilibrium can not be derived by using the same arguments as used when
formulating [TAP]. The Wardrop conditions can instead be reformulated into other well known
problem types, such as variational inequality, nonlinear complementarity or fixed point prob-
lems. In this paper we consider the variational inequality formulation. Through the variational
inequality concept equivalent mathematical programs have been presented. Algorithms based
on merit functions are typically based on the solution of convex subproblems or affine variational
inequalities, and nontrivial line searches with respect to these functions.

Before formulating the variational inequality problem, equivalent to the Wardrop conditions
for user equilibrium, we will discuss some important properties of variational inequalities in
finite-dimensional space.

5.1 Variational inequalities

Consider a continuous mapping F(x) : X 7→ ℜn. Throughout this exposition X will be assumed
nonempty, closed and convex.

The Variational Inequality Problem is defined as

[VIP] find x∗ ∈ X such that F(x∗)T(x − x∗) ≥ 0,∀x ∈ X.

A solution to [VIP] exists under certain regularity assumptions on X and F, and a solution x∗

to [VIP] is unique under the condition that F is strictly monotone, i.e., that

[F(x) − F(y)]T (x − y) > 0,∀x,y ∈ X and x 6= y.

The problem [VIP] is related to nonlinear programming by the following.
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Theorem 5.1 [6, Theorem 4.2] Let T be continuously differentiable with F(x) = ∇T (x). If x∗

solves min
x∈X

T (x), then x∗ solves [VIP]. The converse holds whenever T is convex.

F(x) is a gradient of a function T (x) under the condition that the Jacobian, F′(x), is symmetric
for all x ∈ X [75, Theorem 4.1.6], and the problem [VIP] can hence be put into an equivalent
mathematical programming problem as follows:

[P] min
x∈X

T (x) ⇔ min
x∈X

∮ x

0
F(s)ds.

The following two theorems provide basic tools in algorithmic procedures for solving [VIP].

Theorem 5.2 [75, Theorem 5.1.3] Let X be closed in ℜn and let T : X 7→ X be a contraction
mapping with modulus K, i.e., that ‖T(x) − T(y)‖ ≤ K‖x − y‖,∀x,y ∈ X, where K ∈ [0, 1)
and ‖ · ‖ is some norm. Then T has a unique fixed point, and the sequence x(l+1) = T(x(l)), l =
0, 1, . . . , converges to the fixed point geometrically.

Theorem 5.3 [29] Let γ be a positive constant and G a symmetric and positive definite matrix.
Then x∗ solves [VIP] if and only if x∗ = PG

X

[
x∗ − γG−1F(x∗)

]
, where PG

X [·] is the projection
on X with respect to the norm ‖x‖G = (xTGx)1/2.

Theorem 5.3 provides a fixed point characterization of a solution to [VIP]. Furthermore, since

T(x)
def
= PG

X

[
x − γG−1F(x)

]
is a contraction mapping if F is strongly monotone and Lipschitz

continuous, and if γ is sufficiently small, a convergent algorithm may be defined by employing
the iterations

x(l+1) = T
(

x(l)
)

, l = 0, 1, . . . . (5.1)

This methodology is referred to as the projection algorithm (e.g. [23]).

Another fixed point characterization of solutions to variational inequalities is given below.

Theorem 5.4 Let the problem [VIP] be given as above. Define the point-to-set mapping

W (x) = arg max
y∈X

F(x)T(x − y). (5.2)

Then x∗ solves [VIP] if and only if x∗ is a fixed point of the mapping W (x), i.e., x∗ ∈ W (x∗).

The theorem is developed from the text given in Zuhovickǐı et al. [102] (see also [43, 62]). The
latter fixed point formulation does not directly define an algorithm as the projection character-
ization does, since the mapping W cannot be shown to be contractive. (In the context of traffic
equilibrium, the algorithm is equivalent to the heuristic, iterated all-or-nothing assignment al-
gorithm. However, it provides a nice interpretation of the Wardrop conditions of equilibria, see
[80, Section 5.4].) Both above fixed point characterizations will be shown to be special cases of
a general fixed point characterization, given by a generalization of Theorem 3.1.

For further discussions on variational inequalities we refer to the book by Kinderlehrer and
Stampacchia [48], and the recent survey by Harker and Pang [42].
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5.2 Traffic equilibria via variational inequality and mathematical program-
ming reformulations

We begin by stating the Wardrop conditions of user equilibrium, and state the equivalent vari-
ational inequality formulation.

[W] h∗
pqr (cpqr(h

∗) − πpq) = 0 ∀r ∈ Rpq ∀(p, q) ∈ C (1)

cpqr(h
∗) − πpq ≥ 0 ∀r ∈ Rpq ∀(p, q) ∈ C (2)
∑

r∈Rpq

h∗
pqr = dpq ∀(p, q) ∈ C (3)

h∗
pqr ≥ 0 ∀r ∈ Rpq ∀(p, q) ∈ C (4)

where πpq denotes the equilibrium travel time on the utilized routes for commodity (p, q), dpq

the demand for commodity (p, q) and Rpq the set of simple routes between p and q, and cpqr the
travel time on route r resulting from the route flow h∗.

The Wardrop conditions of user equilibrium can be shown (see e.g. [90]) to be equivalent to the
following variational inequality formulation, defining the general Traffic Equilibrium Problem:

[TEP-VIP] find h∗ ∈ X such that c(h∗)T(h− h∗) ≥ 0,∀h ∈ X,

where X is defined by the demand feasibility constraints, i.e., the constraints (3) and (4) of [W].
Using the arc-route flow relationship, the problem of traffic assignment with fixed demands and
additive costs can be cast in terms of arc flows:

[TEP-VIP] find f∗ ∈ X such that t(f∗)T(f − f∗) ≥ 0,∀f ∈ X,

where X is defined by the commodity flow conservation constraints and nonnegativity restric-
tions. The first to formulate this problem as a variational inequality are Smith [90] and Dafermos
[23]. The existence and uniqueness properties of traffic equilibria are analyzed by studying the
properties of the corresponding formulation as a variational inequality, nonlinear complemen-
tarity or fixed point problem.

We now turn our attention to the possible reformulations of variational inequalities as math-
ematical programs, without imposing a symmetry restriction on the Jacobian of the mapping
F.

5.3 A class of generalized gap functions

When the Wardrop conditions for traffic equilibrium problems with asymmetric travel costs
were equivalently formulated as variational inequalities, and other problem types, the lack of
equivalent mathematical programming formulation was taken almost as self-evident. However,
such formulations had, in saddle point problems and game theory, been known for more than ten
years among Soviet researchers, see e.g. [102]. Because of the fact that variational inequalities
are special cases of games, mathematical programming formulations existed even before models
involving asymmetry had become a research topic. For relations between saddle point problems,
variational inequalities and games, in general terms as well as for traffic equilibria, the reader is
referred to [80].

The reformulation of asymmetric variational inequalities as mathematical programs involves the
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use of so called gap functions as valid merit functions. As defined in [52], a gap function is a
function from X to ℜ that is nonnegative for all feasible arguments, and equals zero exactly at
solutions to [VIP]. The consequence of this definition is that by minimizing a gap function, a
solution to the variational inequality is obtained. Even though these functions are nonconvex in
general, under appropriate assumptions stationary points to the minimization problem can be
shown to coincide with solutions to the variational inequality.

Gap functions are highly related to the partial linearization algorithm, as will be shown below.
The following is developed from two recent papers on gap functions and variational inequalities,
Auchmuty [5] and Larsson and Patriksson [52].

If ∇T is replaced by F in [PL-SUB(l)], the subproblem is equivalent to the convex problem of
calculating

G̃
(

x(l)
)

= sup
x∈X

L̃
(

x,x(l)
)

,

where
L̃(x,y) = Φ(y,y) − Φ(x,y) + [F(y) −∇xΦ(y,y)]T (y − x).

We will show that the class of functions G̃ define a class of gap functions.

Theorem 5.5 Let Φ(x,y) be convex and continuously differentiable with respect to x, and con-
tinuous with respect to y. Then G̃ is a gap function.

Proof For any x ∈ X, G̃(x) ≥ 0, since L̃(x,x) = 0.

Assume that x∗ solves [VIP]. Then

L̃ (x,x∗) = Φ (x∗,x∗) − Φ (x,x∗) + [F (x∗) −∇xΦ (x∗,x∗)]T (x∗ − x)

≤ F (x∗)T (x∗ − x)

≤ 0,∀x ∈ X,

due to the convexity of Φ(x,y) with respect to x, and the fact that x∗ solves [VIP], respectively.
Since L̃ (x∗,x∗) = 0, we have that G̃ (x∗) = 0.

Conversely, assume that G̃ (x∗) = 0. Then L̃ (x,x∗) ≤ 0,∀x ∈ X. But since L̃ (x∗,x∗) = 0, x∗

must be a solution to the inner problem defined in the calculation of G̃ (x∗). The variational
inequality that is defined by this inner problem then yields that x∗ solves [VIP]. 2

Special cases of this class of gap functions are recovered for Φ ≡ 0 [102, 43, 44, 61, 62, 66] (cf.
Theorem 5.4), Φ(x,y) = 1

2 ‖x‖
2
G [38] (cf. Theorem 5.3) and Φ(x,y) ≡ Φ(x) [5, 52], where G is

a positive definite and symmetric matrix. In [98] the algorithmic class of [69, 93] is extended
to variational inequalities, and the gap functions developed in these references are therefore
equivalent to the ones given here in the sense of Theorem 5.7 below.

The following theorem provides a new fixed point characterization of solutions to [VIP]. (The
characterization extends the ones given in Theorems 5.3 and 5.4, and is a generalization of the
first part of Theorem 3.1.) The proof follows immediately from Theorem 5.5.

Theorem 5.6 x∗ solves [VIP] ⇔ x∗ ∈ arg max
x∈X

L̃ (x,x∗).
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The basis for the convergence results in gap minimization methods is the fact that a local min-
imum to minx∈X G̃(x) is a global one under suitable assumptions on the function Φ defining G̃
[52]. The convergence analysis made in [52] thus suggests the possibility of extending algorithms
for variational inequalities by including line searches with respect to a gap function. The class of
gap functions given here are given through the subproblem of the partial linearization algorithm.
Gap decreasing algorithms can therefore be seen as a natural extension of partial linearization
methods to asymmetric variational inequalities.

The most practical cases of gap functions are, seemingly, those described by functions Φ(x)
rather than by functions Φ(x,y). This is because the convergence conditions in the former
case can be formulated in terms of the original data [52]. This is not the case for functions
Φ(x,y), where convergence conditions are rather difficult to verify (see [98]). Note here that, for
a Cartesian product feasible set, by choosing the function Φ as a separable function with respect
to this set, i.e., a function of the form (4.1), the calculation of G̃ can be done in parallel. An
algorithm based on the minimization of such a gap function is therefore highly parallelizable,
also in the line search phase.

5.4 The partial linearization algorithm extended to variational inequalities

In this section we extend the partial linearization algorithm to asymmetric variational inequal-
ities. We will also establish some algorithmic equivalence results, in that we show that the
generic subproblems of Dafermos [24] and Tseng [93] are equivalent to the subproblem of the
partial linearization algorithm. These three algorithmic classes are thus equivalent apart from
the inclusion of line searches with respect to a merit function.

Let the function ϕ : X × X 7→ ℜn be continuously differentiable and monotone with respect to
its first argument and continuous with respect to its second. In iteration l rewrite

F(x) = ϕ

(

x,x(l)
)

+
(

F(x) − ϕ

(

x,x(l)
))

.

The error in approximating the original mapping F by ϕ is taken into account by fixing the
values of x to x(l) within the parenthesis. (This approximation is equivalent to the one made
in Section 3.1, with F being the gradient of a function T ). A choice of ϕ(x,y) as a gradient
mapping with respect to x, i.e., with ϕ(x,y) = ∇xΦ(x,y) for some function Φ : X × X 7→ ℜ,
convex and continuously differentiable with respect to x and continuous with respect to y, results
in a subproblem equivalent to the calculation of a gap function G̃.

The subproblem solved in iteration l is the following variational inequality.

[PL-SUB-VIP(l)] Find x(l) ∈ X such that

[

ϕ

(

x(l),x(l)
)

+ F
(

x(l)
)

− ϕ

(

x(l),x(l)
)]T (

x− x(l)
)

≥ 0,∀x ∈ X

Dafermos [24] defines a smooth function g : X×X 7→ ℜn, with the properties (i) g(x,x) = F(x)
for all x ∈ X, and (ii) ∇xg(x,y) is symmetric and positive definite for any fixed x,y ∈ X. She
then defines a successive approximation algorithm through the following variational inequality:

[DAF(l)] find x(l+1) ∈ X such that

g
(

x(l+1),x(l)
)T (

x − x(l+1)
)

≥ 0,∀x ∈ X.
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The sequence of points generated by the algorithm is proven convergent towards the solution to
[VIP] under the assumption that

∣
∣
∣

∣
∣
∣

∣
∣
∣∇xg

−1/2
(

x1,y1
)

· ∇yg
(

x2,y2
)

· ∇xg
−1/2

(

x3,y3
)∣
∣
∣

∣
∣
∣

∣
∣
∣ < 1,∀xi,yi ∈ X, (5.3)

for i = 1, 2, 3, and where |||·||| denotes the operator norm on L (ℜn,ℜn) induced by the Euclidean
norm ‖·‖2 on ℜn.

It will be shown below that this class of methods is, in a particular sense, equivalent to the
partial linearization methods and also to the algorithms defined by Tseng [93], extended to
variational inequalities.

For easier reference we state again the generic subproblem of Tseng [93], for the case of a single

block component, and applied to variational inequalities (cf. [GS-NPD
(l)
i ] and the variational

inequality characterization of (3.2)).

[NPD(l)] Find x(l) ∈ X such that

[

ϕ

(

x(l),x(l)
)

+ F
(

x(l)
)]T (

x− x(l)
)

≥ 0,∀x ∈ X

Theorem 5.7 The generic subproblems of Dafermos [24] and Tseng [93] are equivalent to that
of the partial linearization algorithm.

Proof We will establish the equivalence through three inclusions.

1. ( [NPD(l)] ⊆ [PL-SUB-VIP(l)] ) If the mapping ϕ(x,y) is chosen so that ϕ(x,x) = 0,
[PL-SUB-VIP(l)] reduces to [NPD(l)].

2. ( [PL-SUB-VIP(l)] ⊆ [DAF(l)] ) For a given choice of mapping ϕ(x,y), choose the
mapping g(x,y) = ϕ(x,y) + F(y) − ϕ(y,y). We then observe that g(x,x) = F(x), so
that we recover a subproblem of the type [DAF(l)].

3. ( [DAF(l)] ⊆ [NPD(l)] ) For a given choice of mapping g(x,y), choose the mapping
ϕ(x,y) = g(x,y) − F(y). From the property (i) of g above, ϕ(x,x) = 0, so that a
subproblem of the type [NPD(l)] is defined. 2

There are several implications of this algorithmic equivalence result. A variety of algorithms
for variational inequalities have been analyzed in the framework of [24], especially different
equilibrium problems in traffic networks, spatial oligopolistic markets and Walrasian price and
general economic equilibrium problems (see e.g. [26, 101] and the references cited therein).
The convergence condition (5.3) may, in some cases, be too restrictive (see e.g. [76]), and are,
in general, difficult to establish to hold in a practical application. The discussions made in
Section 5.3 imply the possibility of including line searches in successive approximation methods,
and thereby obtain a potential speed-up as well as both less restrictive and more easily examined
convergence conditions. (An example of such an algorithm is Newton’s algorithm, for which line
search rules have been proposed in e.g. [62, 63, 64, 65, 66, 77, 91].)

The fixed point characterization given in Theorem 5.6 carries over to the more general algorithm
treated here. The proof follows also easily from Theorem 5.5.
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Theorem 5.8 x∗ solves [VIP] ⇔ x∗ solves [PL-SUB-VIP(l)] defined at x∗.

As an example of the partial linearization algorithms for variational inequalities, we show that
the proximal minimization algorithm [67] is an instance of this class of methods. The algorithm
proceeds as follows.

Find x(l+1) ∈ X such that
[

F
(

x(l+1)
)

+
(

x(l) − x(l+1)
)]T (

x − x(l+1)
)

≥ 0,∀x ∈ X.

Let ϕ (x,y) = F(x) + (y − x). Then [PL-SUB-VIP(l)] is equivalent to the above variational
inequality problem, with x(l) = x(l+1), so that the proximal minimization algorithm is a special
case of partial linearization methods for variational inequalities.

We next show that a number of well known successive approximation algorithms applied to
[TEP-VIP] may be recognized as partial linearization algorithms, excluding line searches.

6 Partial linearization for asymmetric traffic equilibria

6.1 Diagonalization/Relaxation methods

The class of Jacobi/Gauss-Seidel methods discussed earlier have also been extended to general
traffic equilibria. The methods are referred to as diagonalization methods or relaxation methods,
since the approximation of the mapping F in Jacobi/Gauss-Seidel methods define mappings
with block diagonal Jacobians, and since the interaction between commodities, user classes or
arc flows are relaxed. The corresponding variational inequality then is equivalent to a convex
mathematical program or a sequence of such programs, solvable by the same methods as applied
to [TAP]. Replacing ∇T by F in the analysis made in Section 4.1, we conclude that these
methods may be seen as instances of the partial linearization methods for variational inequalities.
This result may be applied to traffic equilibrium where the index i may be associated with
different user classes, commodities or arcs.

Jacobi methods for asymmetric traffic equilibrium problems are discussed in [4, 35, 89, 41, 60].
Sheffi [89] and Mahmassani and Mouskos [60] suggest using truncated Frank-Wolfe steps on the
convex subproblems, i.e., these are instances of the truncated partial linearization algorithm for
variational inequalities. Sheffi suggests using only one iteration of the Frank-Wolfe algorithm in
his streamlined approach. In their tests, Mahmassani and Mouskos conclude that not more than
four steps of the Frank-Wolfe algorithm should be considered; this result complies with that of
Dembo and Tulowitzki [28] for the separable case (see Section 4.3).

Linearized Jacobi are considered e.g. in [79, 12, 53], in combination with simplicial decomposi-
tion/column generation. As in the separable case, this methodology has also been applied in a
Gauss-Seidel framework. Examples are found in [25, 70].

6.2 Linearization methods

The class of linearization methods defines special cases of partial linearization. As described by
e.g. Pang and Chan [78], the class of linearization methods is based on an affine approximation
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of the mapping F around the iteration point x(l):

F(l) (x) = F
(

x(l)
)

+ A
(

x(l)
) (

x − x(l)
)

,

and a linearization method is defined by the choice of map A, and the variational inequality

find x(l+1) ∈ X such that F(l)
(

x(l+1)
)T (

x− x(l+1)
)

≥ 0,∀x ∈ X.

Let ϕ(x,y) = A(y)(x − y). Then [PL-SUB-VIP(l)] is equivalent to the above problem, by
letting x(l+1) = x(l). Hence, the generic subproblem of linearization methods is a special case
of the subproblem of the partial linearization methods. Based on the exposition of Pang and
Chan, we list some well known linearization methods below.

Let the Jacobian of F at x ∈ X be written as F′(x) = L(x) + D(x) + U(x), where D(x) is the
diagonal part of F′(x), and L(x) and U(x) the lower and upper triangular parts, respectively.
Also, let γ > 0, 0 < ω < 2, and G a positive definite symmetric matrix. The following well
known algorithms are instances of the linearization method:

A (x) = F′ (x) Newton’s method

≈ F′ (x) Quasi-Newton methods

=

{
L (x) + D (x) /ω or

U (x) + D (x) /ω
SOR; Linearized Gauss-Seidel (ω = 1)

= D (x) Linearized Jacobi

= 1
γG Projection method

The projection algorithm was one of the first methods applied to general traffic equilibria, and
may be viewed as the successive approximation algorithm based on the fixed point Theorem 5.3.
References include [23, 33, 41].

In the case where the map A is symmetric, the affine variational inequality subproblem reduces
to a quadratic program. Various choices of symmetric approximations of the Jacobian matrix F′

define the so called quasi-Newton methods. One example of approximations is the symmetrized

Newton method, where A(x) = 1
2

(

F′(x) + F′(x)T
)

, i.e., the symmetric part of the Jacobian

matrix. In the traffic equilibrium context, where the subproblem is a quadratic multicommodity
flow problem, such a method is applied in e.g. [23, 33].

Newton algorithms in combination with simplicial decomposition/column generation are pre-
sented in e.g. [1, 3, 53, 46]. A gap-decreasing algorithm (for Φ ≡ 0, see Section 5.3) based on
Newton’s method is given in [66].

7 Conclusions and further research

In this paper we have shown that a number of algorithms frequently applied to symmetric and
asymmetric traffic equilibrium problems may be described in a unified manner as instances of the
partial linearization algorithm. Examples include the standard Frank-Wolfe algorithm, Newton-
type methods, projection methods and Jacobi/Gauss-Seidel methods. For the separable model
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we also validated truncated solutions of the subproblems and asynchronous implementations
of the partial linearization algorithm. An equivalence result was also obtained, relating the
frameworks of Dafermos and Tseng to the class of partial linearization methods. Through the
framework of partial linearization the theoretical (as well as the practical) convergence rate
obtained for different properties of T (x) and Φ(x,y), and the effects of different truncation
strategies, would be of interest to investigate.

Historically, methods used for asymmetric traffic equilibria have almost all been based on suc-
cessive approximation. The use of merit functions in descent algorithms opens up possibilities
for speeding up the practical convergence rate of these algorithms as well as weakening the con-
vergence conditions. The line searches can also ensure global convergence where else only local
convergence can be ensured. (An example is Newton’s method, which is not globally convergent
in its successive approximation version, but globally convergent under an additional line search
with respect to a gap function [66].) The possibility of solving subproblems in gap-decreasing al-
gorithms only approximately [52, 98] and still ensuring global convergence makes the algorithms
even more interesting for practical use. It would also be interesting to study the convergence
properties of methods based on line searches on the variational inequality as is done in the
symmetric case; this has been done to a very limited extent [41] but showing promising results.
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Linköping, Sweden. Revised Spring 1992.

[53] Lawphongpanich, S. and Hearn, D.W. (1984), Simplicial decomposition of the asymmetric traffic
assignment problem. Transportation Research 18B, pp. 123-133.

[54] LeBlanc, L.J., Morlok, E. and Pierskalla, W.P. (1975), An efficient approach to solving the road
network equilibrium traffic assignment problem. Transportation Research, 9, pp. 308-318.

[55] Leventhal, T., Nemhauser, G. and Trotter, jr., L. (1973), A column generation algorithm for optimal
traffic assignment. Transportation Science 7, pp. 168-176.

[56] Levitin, E.S. and Polyak, B.T. (1966), Constrained minimization methods. USSR Computational
Mathematics and Mathematical Physics 6, pp. 1-50.

[57] Lin, Y.Y. and Pang, J.-S. (1987), Iterative methods for large scale convex quadratic programs: a
survey. SIAM Journal on Control and Optimization 25, pp. 383-411.

[58] Luo, Z.-Q. and Tseng, P. (1992), On the linear convergence of descent methods for convex essentially
smooth minimization. SIAM Journal on Control and Optimization 30, pp. 408-425.

[59] Lupi, M. (1986), Convergence of the Frank-Wolfe algorithm in transportation networks. Civil En-
gineering Systems 3, pp. 7-15.

[60] Mahmassani, H.S. and Mouskos, K.C. (1989), Vectorization of transportation network equilibrium
assignment codes. Conference Paper, presented at the ORSA Conference, Williamsburg, Virginia.
Also as Report, Department of Civil Engineering, University of Texas, Austin.

[61] Marcotte, P. (1985), A new algorithm for solving variational inequalities with application to the
traffic assignment problem. Mathematical Programming 33, pp. 339-351.

[62] Marcotte, P. (1986), Gap-decreasing algorithms for monotone variational inequalities. Conference
Paper, presented at the ORSA/TIMS Joint National Meeting, Miami Beach, FL.

[63] Marcotte, P. and Dussault, J.-P. (1985), A modified Newton method for solving variational inequal-
ities. In: Proceedings of the 24th IEEE Conference on Decision and Control, Fort Lauderdale, FL,
pp. 1433-1436.

[64] Marcotte, P. and Dussault, J.-P. (1987), A note on a globally convergent Newton method for solving
monotone variational inequalities. Operations Research Letters 6, pp. 35-42.

[65] Marcotte, P. and Dussault, J.-P. (1989), A sequential linear programming algorithm for solving
monotone variational inequalities. SIAM Journal on Control and Optimization 27, pp. 1260-1278.
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[70] Nagurney, A. (1988), An equilibration scheme for the traffic assignment problem with elastic de-
mands. Transportation Research 22B, pp. 73-79.

[71] Netter, M. and Sender, J.G. (1970), Equilibre offre-demande et tarification sur un réseau de trans-
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[73] Nguyen, S. (1974), An algorithm for the traffic assignment problem. Transportation Science 8, pp.
203-216.

[74] Nguyen, S. (1976), A unified approach to equilibrium methods for traffic assignment. In: Traffic
Equilibrium Methods, Proceedings of the International Symposium in Montreal, M.A. Florian
(ed.), Lecture Notes in Economics and Mathematical Systems 118, Springer-Verlag, New York,
NY, pp. 148-182.

[75] Ortega, J.M. and Rheinboldt, W.C. (1970). Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York, NY.

[76] Pang, J.-S. (1985), Asymmetric variational inequality problems over Cartesian product sets: appli-
cations and iterative methods. Mathematical Programming 31, pp. 206-219.

[77] Pang, J.-S. (1990), Newton’s method for B-differentiable equations. Mathematics of Operations
Research 15, pp. 311-341.

[78] Pang, J.-S. and Chan, D. (1982), Iterative methods for variational and complementarity problems.
Mathematical Programming 24, pp. 284-313.

[79] Pang, J.-S. and Yu, C.-S. (1984), Linearized simplicial decomposition methods for computing traffic
equilibria on networks. Networks 14, pp. 427-438.

[80] Patriksson, M. (1990), The traffic assignment problem - theory and algorithms. Report LiTH-MAT-
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