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Abstract

This paper presents a new solution technique for the traffic assignment problem. The

approach is based on an iteratively improved nonlinear and separable approximation of

the originally nonseparable objective function, and resembles the Frank-Wolfe algorithm

in the sense that the subproblem separates with respect to commodities. Since the single-

commodity subproblems are strictly convex, the new algorithm will not suffer from the

poor convergence behaviour of the Frank-Wolfe algorithm, which is a consequence of the

extreme solutions of its linear subproblems. The solution method is outlined along with

convergence results, and a dual approach to the solution of the strictly convex subproblems

is described. The performance of the algorithm is illustrated with two numerical examples.
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1 Introduction

The traffic assignment problem is used for determining a traffic flow pattern given a

set of origin-destination travel demands and flow-dependent link performance functions

of a road network. The two conditions of optimal assignment mainly considered were

enunciated by Wardrop (1952), although perhaps Pigou (1920) formulated the first notion

of traffic equilibrium in his simple description of road traffic behaviour under congestion.

The two Wardrop conditions are the user equilibrium condition, and the system optimum

condition, respectively. The principle of user equilibrium corresponds to the individual

users choosing routes minimizing their own travel time. In the system optimum case, the

routes are imposed on the users by a decision-maker, minimizing the total cost incurred

in the system.

First to consider an optimization formulation of the traffic equilibrium problem and to

present necessary conditions for the existence and uniqueness of equilibria are Beckmann

et al. (1956). The optimization formulation given by Beckmann et al. exists if the partial

derivatives of the link performance functions form a symmetric Jacobian. In the asym-

metric case, the equilibrium problem has been reformulated as a variational inequality

problem (Smith, 1979 and Dafermos, 1980), and also as a nonlinear complementarity

problem (Aashtiani, 1979), a fixed point problem (Netter and Sender, 1970 and Asmuth,

1978), and as nonconvex optimization problems by the use of so called gap functions (see

e.g. Hearn et al., 1984). Dafermos and Sparrow (1969) show that the user equilibrium

problem may be formulated as a convex program, under the assumptions that the link

performance functions are monotone and form a symmetric Jacobian. In this paper, we

consider the user equilibrium problem with fixed travel demands, and assume that the

performance function for a specific link is independent of the flow on other links, thus

creating a diagonal Jacobian of the cost functions. The proposed method is, however,

also valid for the system optimum case.

The development of formalized methods for the solution of traffic assignment problems

arose in the middle of the 1960’s. The most influential and well known algorithm is an

adaptation of the method of Frank and Wolfe (1956), first suggested for use in this field

by Bruynooghe et al. (1969) and implemented for a small city by LeBlanc et al. (1975).

The Frank-Wolfe algorithm will in the subproblem preserve the network structure of the

problem, but it is well known that the speed of convergence is far from satisfactory. This

emerges from the low quality of the search directions generated by the linear subproblems.

To overcome this problem, there have been many suggestions for modifications of the

original algorithm; among these are away steps (Wolfe, 1970), the accelerated Frank-

Wolfe algorithms of Meyer (1974) and simplicial decomposition (von Hohenbalken, 1975,

1977). Specialized implementations of these modified algorithms for the case of traffic

assignment have also been presented.

Another important class of algorithms employed to traffic assignment is the class of block
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Gauss-Seidel, or cyclic decomposition, methods (see e.g. Ortega and Rheinboldt, 1970).

A cyclic decomposition method is a block-coordinatewise search procedure, where sets of

variables are fixed at feasible values. The problem is solved in the non-fixed variables by

standard nonlinear techniques, and the optimal values of the non-fixed variables are used

in the cyclic block fixing scheme. In the traffic assignment context, the cyclic decompo-

sition is made over flow commodities (see e.g. Nguyen, 1974 and Petersen, 1975). The

advantage of these algorithms, as compared to the Frank-Wolfe approach, is that the non-

linearity of the objective is preserved, thus better retaining the properties of the original

problem. A disadvantage, however, is that these algorithms are inherently sequential, as

opposed to the Frank-Wolfe algorithm.

The algorithm to be presented in this paper is an application of a general solution method

for nonlinear programs over Cartesian product sets, proposed by Larsson and Migdalas

(1990). It is a generalization of the Frank-Wolfe algorithm that avoids extreme point

solutions to the subproblems by retaining them nonlinear. In this way, the subproblems

will better resemble the original problem, and therefore hopefully provide better search

directions. By making the subproblems separable with respect to the flow commodities,

the algorithm will avoid the sequential character of cyclic decomposition schemes, and

hence, the algorithm may utilize parallel computing environments. The reader may note

that the solution method applies to general convex multi-commodity network flow prob-

lems, but we limit ourselves to the problem of traffic assignment for the simplicity of the

presentation.

In the next section, the traffic equilibrium problem is formulated. Then in Section 3 the

algorithm is presented, with convergence results. A dual approach for the subproblems is

given in Section 4, and in Section 5, some computational experience is given. Finally, we

draw some conclusions and suggest topics for further research.

2 The traffic equilibrium model

Using the notation of Table 1, the problem of determining the assignment according to

user equilibrium can be stated as the following convex multi-commodity network flow

problem (Nguyen, 1974).

[TAP] min T (f) =
∑

(i,j)∈A

∫ fij

0
tij(s)ds

s.t.
∑

j∈Wi

fk
ij −

∑

j∈Vi

fk
ji =



















∑

i∈Dk

rki if i = ok

−rki if i ∈ Dk

0 otherwise

∀ i ∈ N ∀ k ∈ C

∑

k∈C

fk
ij = fij ∀ (i, j) ∈ A

fk
ij ≥ 0 ∀ (i, j) ∈ A ∀ k ∈ C
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Notation Definition
N set of nodes
A set of links
C set of commodities; defined by the set of origins
ok origin of commodity k

Dk set of destination nodes for commodity k

Wi subset of nodes being terminal nodes of links initiated at node i

Vi subset of nodes being initial nodes of links terminating at node i

rki desired flow for destination i in commodity k

fk
ij flow on link (i, j) for commodity k

fij total flow on link (i, j); equals
∑

k∈C fk
ij

tij(fij) link performance function for link (i, j)

Table 1: Notation

Because of congestion the travel times on streets and intersections are strictly increasing

functions of link flows. Several types of link performance functions have been suggested

in order to capture this relationship. The model used in this paper is a generalization of

the commonly used standards of the Bureau of Public Roads (1964)

tij(fij) = t0ij

[

1 + p

(

fij

cij

)mij
]

.

Here, t0ij is the free-flow travel time on link (i, j), and cij is its so called practical capacity;

p is a nonnegative constant, and mij ≥ 1 is an integer.

The reader should note that an inherent property of [TAP] is that its objective function

is nonseparable with respect to commodity flows.

3 The partial linearization algorithm

The partial linearization algorithm (Larsson and Migdalas, 1990) will, for simplicity, first

be described for a general problem over Cartesian product sets. The problem is stated as

[P] min T (x) =
n
∑

j=1

Tj(xj) + g(x1, . . . ,xn)

s.t. xj ∈ Xj, j = 1, . . . , n,

where Xj ⊆ ℜpj , pj ≥ 1. It is assumed that the feasible set
∏n

j=1 Xj is compact, convex

and nonempty, and that the objective function T (x) is continuously differentiable and

convex. The functions Tj(xj), j = 1, . . . , n, are assumed strictly convex whereas the

function g(x1, . . . ,xn) is allowed to be nonconvex.
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Given a feasible point x(l), the first step of the algorithm is to approximate the function

g(x) by a first order Taylor expansion at x(l). This gives rise to the subproblem

[SUB] min T (l)(x) =
n
∑

j=1

Tj(xj) + g(x(l)) + ∇g(x(l))T(x − x(l))

s.t. xj ∈ Xj, j = 1, . . . , n.

Clearly, [SUB] is separable into n problems. Letting ∇g(x(l))T = (cT
1 , . . . , cT

n ) and drop-

ping the constant term, the j:th subproblem can be written as

[SUBj] min Tj(xj) + cT
j xj

s.t. xj ∈ Xj.

Let x(l) be the unique solution of [SUB] at iteration l. Then d(l) = x(l) −x(l) is a feasible

descent direction for T (x), unless d(l) = 0, in which case x(l) is an optimal solution to

[P]. The final step of the algorithm is to determine a maximal steplength with respect to

the feasible set and perform a line search along d(l) to give a new iteration point x(l+1).

It can be shown that this procedure either terminates in a finite number of iterations,

in which case an optimal solution has been found, or it generates an infinite sequence
{

x(l)
}∞

l=1
such that any accumulation point is optimal to [P]. For proofs concerning the

properties of the algorithm the reader is referred to Larsson and Migdalas (1990). The

algorithm is clearly a generalization of the Frank-Wolfe method, in the sense that only

a part of the objective function is linearized. Below, we apply the partial linearization

algorithm to the program [TAP].

In order to apply the algorithm, the objective function T (f) is restated as

T (f) =
∑

k∈C

∑

(i,j)∈A

∫ fk
ij

0
tij(s)ds + g(f), (1)

where

g(f) =
∑

(i,j)∈A







∫ fij

0
tij(s)ds −

∑

k∈C

∫ fk
ij

0
tij(s)ds







. (2)

Here, the first term in T (f), as expressed in (1), is a separable approximation of the

originally nonseparable objective function, and the second term may be interpreted as

an error function. The main idea of our approach is then to use this separable objective

function instead of the original one, and to take the error function into account by means

of a linear approximation of it, as in the general algorithm outlined earlier.

The linearization of g(f) at a feasible solution gives rise to |C| problems of the form
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[SUBk] min
∑

(i,j)∈A

∫ fk
ij

0

(

tij(s) + ak
ij

)

ds

s.t.
∑

j∈Wi

fk
ij −

∑

j∈Vi

fk
ji =



















∑

i∈Dk

rki if i = ok

−rki if i ∈ Dk

0 otherwise

∀ i ∈ N

fk
ij ≥ 0 ∀ (i, j) ∈ A,

where ak
ij is the partial derivative of g(f) with respect to fk

ij , evaluated at the linearization

point.

The objective function of [SUBk] has a nice interpretation; it fully captures the inter-

actions between travelers from the same origin, while the interactions between travelers

from different origins are approximated only. It is also worth noting that when a solu-

tion is approached, the algorithm will in fact produce an iteratively improved separable

approximation of the original nonseparable objective function, so that, in the limit, the

solution to the |C| subproblems [SUBk] also solves [TAP]. This is evident from the con-

vergence proof in Larsson and Migdalas (1990), which states that the sequence
{

x(l)
}∞

l=1
of subproblem solutions also tends towards an optimal solution to [P].

Each subproblem [SUBk], k ∈ C, is a strictly convex single-commodity flow program,

and can be solved using some primal method, like the network convex simplex method

(Kennington and Helgason, 1980) or the network reduced gradient method (Beck et al.,

1983). An alternative is to utilize dual techniques, which are here advantageous because of

the structure of [SUBk]. Such techniques for the solution of convex network optimization

problems have been thoroughly discussed in several recent papers, e.g. by Zenios and

Mulvey (1985/86), Bertsekas and El Baz (1987), Bertsekas et al. (1987) and Zenios and

Mulvey (1988).

4 A dual approach to the subproblem

Because of the separability of the subproblem, each commodity forms an independent

problem. In the further discussions in this section only we will, for notational simplicity,

therefore drop the index k that denotes the commodity. Hence, fij will denote the single-

commodity flow on the link (i, j), ri the desired flow to destination i, and so on. To even

more distinguish the problem of this section from the problem [SUBk] in the last section,

the problem will be referred to as [PR].

Introducing Lagrangean multipliers (dual variables) π ∈ ℜ|N |, the Lagrangean function

of [PR] with respect to the network constraints is given by

L(f , π) =
∑

(i,j)∈A

∫ fij

0
(tij(s) + aij) ds +

∑

(i,j)∈A

(πi − πj) fij +
∑

i∈D

(πi − πo)ri,
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where πo is the dual variable corresponding to the origin node. The Lagrangean dual of

[PR] can then be written as

[PR-LD] max θ(π), where

θ(π) =
∑

i∈D

(πi − πo)ri +
∑

(i,j)∈A

min
fij≥0

∫ fij

0
(tij(s) + aij + πi − πj) ds.

Here, θ(π) is finite, concave and differentiable (e.g. Bazaraa and Shetty, 1979, Theorems

6.3.1 and 6.3.3). The unique minimizer for each of the |A| single-variable Lagrangean

subproblems can be explicitly expressed as

fij(πj − πi) =

{

t−1
ij (πj − πi − aij) if t−1

ij (πj − πi − aij) ≥ 0
0 otherwise,

(3)

where t−1
ij (·) is the inverse function of tij(·). (Note that the arc flows are nondecreasing

functions of the differences ∆πij = πj − πi.)

The problem [PR] always has a bounded solution and the below standard results follow

(see e.g. Bazaraa and Shetty, 1979, Theorems 6.2.4 and 6.5.2). Here, v [·] denotes the

optimal value of a program.

1. v[PR-LD] = v[PR]

2. If π
∗ solves [PR-LD] then f∗ = arg min

f≥0

L(f , π∗) solves [PR].

These results imply the possibility of solving the primal problem [PR] implicitly by instead

solving the dual problem [PR-LD]. How the network structure may be utilized in the

solution of [PR-LD] will be described in more detail.

As a direct consequence of the strict convexity of [PR-LD] the gradient ∇θ(π) is every-

where continuous and its i:th element is given by

∇θ(π)i =
∑

j∈Wi

fij(πj − πi) −
∑

j∈Vi

fji(πi − πj) − r, where r =



















∑

i∈D

ri if i = o

−ri if i ∈ D
0 otherwise.

Algorithms for unconstrained nonlinear programming can thus be adopted to solve the

Lagrangean dual [PR-LD]. Equivalently, the equation system

[S] ∇θ(π) = 0

can be solved. Because of the linear dependence of the constraints of [PR], the solution is

never unique; however, the optimal differences πj − πi will be unique, due to the strictly

increasing property of tij(fij).
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We have applied a coordinatewise ascent method to maximize the dual objective; this

corresponds to solving [S] by satisfying one equation at a time by an update of the

corresponding dual variable (e.g. Bregman, 1967). Bregman’s method, closely related to

the Gauss-Seidel method (e.g. Ortega and Rheinboldt, 1970), has for a long period of

time been used in the solution of flow distribution problems (Bregman, 1967 and Lamond

and Stewart, 1981) and image reconstruction problems (e.g. Censor, 1981). In terms of

network flows in our application, Bregman’s method corresponds to balancing the flow

through one node at a time.

Let the arc flows be defined according to (3) for (i, j) ∈ A. Then ∇θ(π)i is said to be the

divergence of node i. If ∇θ(π)i > 0, the flow leaving node i is strictly greater than the flow

arriving at it, and node i is then called a deficit node. If ∇θ(π)i < 0, then the situation

is the opposite, thus making node i a surplus node. If ∇θ(π)i = 0, we say that node

i is balanced. A deficit node is balanced by increasing the corresponding dual variable,

and for a surplus node the dual variable is instead decreased in order to obtain balance.

Given some vector π
(l), the procedure continues by selecting an unbalanced node il and

balancing it by changing the corresponding dual variable. The balancing is performed

in two stages; first a search interval is identified and the new dual variable value is then

obtained through a line search within the interval. A new vector π
(l+1) is obtained and

everything is repeated iteratively.

First, we will present the algorithmic concept. Then possible implementations are dis-

cussed and justified.

Input is the network (N ,A) with flow demands and the dual function θ(π). Output is a

vector of approximately optimal dual variables corresponding to an ε-feasible approxima-

tion of the optimum of [PR].

Flow balancing algorithm

• Initialization:

Let π
(0) be any vector of |N | elements; ε > 0; l = 0 and let ω ∈ (0, 2).

• Node selection and balancing:

Choose il ∈ N such that
∣

∣

∣∇θ(π(l))il

∣

∣

∣ > ε.

If ∇θ(π(l))il > ε then find πmax
il

defining the search interval, and balance

equation il by increasing πil .

If ∇θ(π(l))il < −ε then find πmin
il

defining the search interval , and balance

equation il by decreasing πil.

The solution is δ(l).

• Dual update:
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Let

π
(l+1)
il

= π
(l)
il

+ ω(δ(l) − π
(l)
il

), (4)

and for all i ∈ N , i 6= il, let π
(l+1)
i = π

(l)
i .

• Convergence check:

If
∣

∣

∣∇θ(π(l+1))i

∣

∣

∣ ≤ ε for all i ∈ N , then terminate with π
(l+1) being an

approximate solution.

Otherwise, let l := l+1 and go to the node selection and balancing phase.

The steps of the algorithm can be carried out in several different ways, which are outlined

below.

Let {il}
∞
l=0 be the sequence of nodes as they are visited. We have considered two ordering

strategies: cyclic order and most unbalanced node (or Gauss-Southwell) order. The latter

criterion selects the steepest coordinate ascent direction. There are of course other possible

orderings, among those threshold order and forward/backward order (e.g. Luenberger,

1984). A survey of orderings is found in Censor (1981).

The value of the potential of node i, here called δ∗, balancing the node, must be such that

for fixed π,

[Ei] θ
′

i(δ
∗)

def
= ∇θ(π + (δ∗ − πi)ei)i = 0,

where ei is the i:th unit vector. Solving the equation [Ei] is equivalent to perform a line

search along ei, i.e.,

[Di] max
δ

θi(δ)
def
= θ(π + (δ − πi)ei).

The concavity of θ(π) implies the concavity of θi(π). Therefore θ
′

i(δ) is decreasing with

respect to δ (see Bazaraa and Shetty, 1979, Theorem 6.3.1).

The solution δ∗, to [Ei], is not surely unique, since θ
′

i(δ) is not strictly decreasing. Now,

suppose that we have selected a node i for which |∇θ(π)i| > ε. The algorithm proceeds

by determining a point δ̂ equal to πmax
i or πmin

i , such that ∇θ(π)i and θ
′

i(δ̂) have different

signs. The points πi and δ̂ are used to bracket the range of values of δ where [Ei] or [Di]

is solved, using some technique for one-dimensional search. Because of the non-negativity

restrictions on the primal variables, ∇θ(π)i is not everywhere differentiable. It is therefore

natural to utilize line-search algorithms requiring only objective function evaluation and

first order information.

The bracket is constructed using a simple algorithm, where inputs are πi, the sign of

∇θ(π)i, and a priori set parameters α > 0 and h > 0. The parameter α is used to indicate

how much the length of the interval is to be increased in each step of the algorithm; often
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used is α = 2. Initially δ̂i = πi and δi = πi is set. According to the sign of ∇θ(π)i,

the search direction is determined. Assume that ∇θ(π)i > 0. If θ
′

i(δ̂ + h) and θi(δ) have

different signs we terminate with δ̂ := δ̂ + h and δ as end points of the interval. If not,

δ := δ̂, δ̂ := δ̂+h and h := αh is set and the algorithm proceeds iteratively. The algorithm

performs analogously for a negative sign of ∇θ(π)i. Important to note here is that the

step h may be a constant in every main iteration of the algorithm of partial linearization,

but as the iterations proceeds it is appropriate to replace it with a sequence {hl}
∞
l=1 such

that liml→∞ hl = 0.

Assume now that δ(l) is provided. The value of πi is updated according to the formula (4).

In general, three choices of the value of ω are considered (see e.g. Ortega and Rheinboldt,

1970): projection (ω = 1), underrelaxation (0 < ω < 1), and overrelaxation (1 < ω < 2).

For the dual flow balancing algorithm the following convergence theorem is valid.

Theorem 1 Let
{

π
(l)
}∞

l=1
be the sequence of dual points generated by the algorithm, us-

ing the most unbalanced node ordering and ω = 1 as relaxation parameter. Then the

corresponding sequence of primal solutions converges to the optimal solution f∗ of [PR].

Proof To prove the theorem, we will apply a result by Bertsekas et al. (1987). First, let

us assume that all nodes πi, i ∈ N , are selected by the algorithm an infinite number of

times. The problem [PR] is strictly convex as shown above. Using ω = 1 as steplength

in the updating formula (4), i.e. exact projection, our procedure qualifies as a relaxation

method according to Bertsekas et al. Using Proposition 2.4 in the same reference, the

result follows.

Now, suppose that a subset of the nodes of the network, Ñ , is visited only in a finite

number of iterations. Then, after some iteration L, no node in Ñ is selected by the

algorithm. The complementary set of nodes, N \ Ñ , is selected an infinite number of

times, so that the conclusion above holds for this subset. It then follows that the whole set

of nodes must be balanced, because otherwise, using the most unbalanced node ordering,

one of the nodes in Ñ would be selected again. This contradicts the assumption that the

nodes of Ñ ceased to be selected after iteration L. This completes the proof. 2

The update of πi can be performed using other formulas than (4). Because the flow

balancing algorithm will be used many times while solving [TAP], it is of great interest

to minimize the cost of satisfying [S]. An algorithm not using an exact flow balancing has

therefore also been considered. One example of such updating formulas is

[M] π
(l+1)
i = 1

2

(

δ + δ̂
)

.

Numerical tests actually indicate that the formula [M] has a practical advantage over (4),

both with respect to time requirements and the number of iterations. To explain this

intuitively, the formula [M] can be expected to give a stochastic distribution of over- and
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underrelaxation, respectively, which improves the rate of convergence. It is also obvious

that a very accurate balancing of a node is of little advantage, since its balance will be

destroyed in a later iteration when the potential of an adjacent node is adjusted.

It should be noted that it is, in practice, impossible to obtain an optimal dual solution

π
∗ in a finite number of iterations by the flow balancing algorithm. Accordingly, in

our presentation of the dual flow balancing algorithm we only looked for some π-values

satisfying |∇θ(π)i| ≤ ǫ, ∀ i ∈ N . Using Everett’s main theorem (Everett, 1963) it can be

shown that a near optimal dual solution π satisfying the above inequalities corresponds

to a near feasible solution, f , which is an optimal solution to a primal problem where

the right hand side vector of the flow conservation constraints have been perturbated by

∇θ(π) exactly. This indicates that the dual approach may be acceptable in practice.

Otherwise, one can invoke a heuristic for generating primal feasible solutions within the

dual scheme, see e.g. Curet (1992).

5 Computational experience

In order to illustrate the performance of the proposed algorithmic concept, two test prob-

lems have been solved, one small and one medium scale problem. The method of partial

linearization was coded in FORTRAN-77 on a SUN 4/390 computer, using the suggested

dual technique for the solution of the subproblems. For both problems, we compare the

performance of the proposed method with that of the Frank-Wolfe algorithm. Both al-

gorithms were initiated by the flow given by an all-or-nothing assignment at the zero

flow. The dual solution technique was coded using the most unbalanced node selection

and updating formula [M]. (We have also tested cyclic node selection and exact solution

of [Ei] combined with under- or overrelaxation, respectively, but the above choices seem

superior.)

The small test example, given in Nguyen and Dupuis (1984), is a quadratic problem

of 13 nodes, 19 arcs and 4 origin-destination pairs. Table 2 shows the convergence of

the partial linearization versus the Frank-Wolfe method, and two other algorithms; these

are the so called restricted simplicial decomposition algorithm of Hearn et al. (1987),

and a cutting plane approach, presented by Nguyen and Dupuis (1984). The results in

the table are taken from Nguyen and Dupuis (Frank-Wolfe, Cutting Plane) and from a

private communication with S. Lawphongpanich (Simplicial Decomposition). The results

from the simplicial decomposition algorithm are worth noting. In the original reference

(Lawphongpanich and Hearn, 1984), the algorithm was implemented in single precision,

causing the algorithm to generate infeasible points. The figures shown in the table below

are obtained by double precision arithmetic. The other results shown in the table are all

obtained from single precision arithmetic. After six iterations of the partial linearization

method, the deviation from optimality was 4.5 · 10−5%, while the Frank-Wolfe method
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Iter. P.L. F.-W. C.P. S.D.
0 125 500.00 125 500.00 125 500.00 125 500.00
1 87 162.65 94 253.37 94 253.37 94 253.38
2 85 192.95 86 847.30 86 847.30 86 560.91
3 85 035.47 86 447.56 86 294.06 85 895.14
4 85 028.98 86 229.62 86 082.69 85 513.68
5 85 028.20 85 939.96 85 963.00 85 215.00
6 85 028.11 85 047.23
7 85 028.07
8 85 028.07

10 85 555.79 85 210.60
15 85 392.72 85 061.23
20 85 329.47 85 035.67
25 85 273.72 85 030.39
30 85 241.00 85 028.53
35 85 212.33 85 028.14
40 85 102.52

Table 2: Comparisons between various methods for the Nguyen/Dupuis problem

reached 8.8 · 10−2% after 40 iterations.

The second test example is a randomly generated grid network of 64 nodes, 112 arcs and 8

origin-destination pairs. The link performance functions used were of the form described

in Section 2. In Table 3 we show the performance of the proposed method, and that

of the Frank-Wolfe algorithm. The partial linearization method was terminated after 10

iterations, giving a relative accuracy of 0.016%, whereas the Frank-Wolfe method reached

a relative accuracy of 0.13% after 50 iterations.

6 Conclusions and further research

The proposed feasible direction method acts as a decomposition scheme on partially sepa-

rable problems, and resembles the Frank-Wolfe algorithm while at the same time differing

from it in retaining nonlinear subproblems. The numerical examples illustrate that the

new algorithm can be expected to perform considerably better than the Frank-Wolfe al-

gorithm with respect to the number of main iterations. Because of the more information

kept in the subproblems, this was expected. The better convergence of the proposed

algorithm compared to the Frank-Wolfe method is paid by an increased computational

effort required for the subproblem solution. This effort can, however, be reduced by using

the optimal dual solution from the previous main iteration as starting solution, since the

successive subproblems will differ only slightly in later iterations.
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Iter. P.L. F.-W.
0 81 070.00 81 070.00
1 37 076.17 46 845.00
2 30 783.53 40 126.25
3 29 975.64 36 014.45
4 29 555.77 32 660.24
5 29 499.12 31 538.79
6 29 474.68 30 830.22
7 29 469.55 30 452.90
8 29 465.46 30 155.26
9 29 463.55 29 896.63

10 29 462.90 29 814.75
20 29 533.08
30 29 505.26
40 29 498.32
50 29 495.36

Table 3: Comparisons between partial linearization and Frank-Wolfe for the grid network

A nice property of the Frank-Wolfe algorithm is that, for convex problems, a termination

criterion is available through the lower bound, on the optimal objective value, obtained

from the linear subproblem. In the partial linearization algorithm, this termination cri-

terion is, in general, not valid since the function g(x) is not surely convex. It is, however,

easy to show that T
(

x(l)
)

− T (l)
(

x(l)
)

> 0 whenever x(l) is not a solution to [P], and

that this difference tends towards zero when the iterations proceed. Hence, the difference

between the objective value and the corresponding optimal subproblem value may still be

utilized as a termination criterion.

During the computational experimentation with our algorithm, we have observed that the

dual problems are sometimes rather badly conditioned, leading to numerical difficulties

in the flow balancing method. This happens when the partial linearization is made at

a point where some arc flows are small while others are large, so that the second order

derivatives of the subproblem objective are of different magnitudes. As a result, the

corresponding Lagrangean dual problem becomes ill-conditioned; a similar observation

is made by Bertsekas et al. (1987, p. 1241). A possible counter-measure is to consider

the use of primal methods for solving the subproblems. One such alternative is to solve

the subproblems approximately by the utilization of a truncated Frank-Wolfe method,

that is to make a few Frank-Wolfe iterations only. The application of truncated primal

algorithms will be further studied in the near future.

An interesting observation, and a possible subject for further research, is that the given

restatement of the original objective function T (x) is by no means the only possible. One

12



can in fact rewrite T (x) as

T (x) = h(x) + (T (x) − h(x)) ,

where h(x) is an arbitrary separable strictly convex function, and still use the same

algorithmic framework by making linear approximations of the term T (x) − h(x). As an

example, we consider the choice of h(x) = 1
2
xTGx, where G = diag

(

∇2T
(

x(0)
))

, which

leads to the separable subproblem

min
xj∈Xj ,∀j

T (l)(x) = T
(

x(l)
)

+ ∇T
(

x(l)
)T (

x − x(l)
)

+
1

2

(

x − x(l)
)T

G
(

x − x(l)
)

.

Hence, an approximate Newton algorithm is defined. Through various choices of h(x)

the complexity of the subproblem spans from the difficulty of the linear Frank-Wolfe

subproblem (by the choice of h(x) = 0), to a subproblem, as difficult to solve as the

original problem (by the choice of h(x) = T (x)).

A further generalization of the partial linearization principle is obtained by defining a se-

quence of function h(l)(x), thus introducing an iteration dependency in the above approx-

imation concept; such schemes are studied in Patriksson (1991a, 1991b). The application

of these schemes to traffic assignment problems is a subject for future research.
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de transport. Institut de Recherche des Transport, Arcueil, France.

[29] Nguyen, S. (1974), An algorithm for the traffic assignment problem. Transportation Science,
8, pp. 302–216.

[30] Nguyen, S. and Dupuis, C. (1984), An efficient method for computing traffic equilibria in

networks with asymmetric transportation costs. Transportation Science 18, pp. 185–202.

[31] Ortega, J.M. and Rheinboldt, W.C. (1970). Iterative Solution of Nonlinear Equations in
Several Variables. Academic Press, New York, NY.

[32] Patriksson, M. (1990), The traffic assignment problem—theory and algorithms. Report
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Notation Definition
N set of nodes
A set of links
C set of commodities; defined by the set of origins
ok origin of commodity k

Dk set of destination nodes for commodity k

Wi subset of nodes being terminal nodes of links initiated at node i

Vi subset of nodes being initial nodes of links terminating at node i

rki desired flow for destination i in commodity k

fk
ij flow on link (i, j) for commodity k

fij total flow on link (i, j); equals
∑

k∈C fk
ij

tij(fij) link performance function for link (i, j)

Table 1: Notation
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Iter. P.L. F.-W. C.P. S.D.
0 125 500.00 125 500.00 125 500.00 125 500.00
1 87 162.65 94 253.37 94 253.37 94 253.38
2 85 192.95 86 847.30 86 847.30 86 560.91
3 85 035.47 86 447.56 86 294.06 85 895.14
4 85 028.98 86 229.62 86 082.69 85 513.68
5 85 028.20 85 939.96 85 963.00 85 215.00
6 85 028.11 85 047.23
7 85 028.07
8 85 028.07

10 85 555.79 85 210.60
15 85 392.72 85 061.23
20 85 329.47 85 035.67
25 85 273.72 85 030.39
30 85 241.00 85 028.53
35 85 212.33 85 028.14
40 85 102.52

Table 2: Comparisons between various methods for the Nguyen/Dupuis problem
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Iter. P.L. F.-W.
0 81 070.00 81 070.00
1 37 076.17 46 845.00
2 30 783.53 40 126.25
3 29 975.64 36 014.45
4 29 555.77 32 660.24
5 29 499.12 31 538.79
6 29 474.68 30 830.22
7 29 469.55 30 452.90
8 29 465.46 30 155.26
9 29 463.55 29 896.63

10 29 462.90 29 814.75
20 29 533.08
30 29 505.26
40 29 498.32
50 29 495.36

Table 3: Comparisons between partial linearization and Frank-Wolfe for the grid network
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