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Abstract

Recently, Auchmuty (1989) has introduced a new class of merit functions, or op-
timization formulations, for variational inequalities in finite-dimensional space. We
develop and generalize Auchmuty’s results, and relate his class of merit functions to
other works done in this field. Especially, we investigate differentiability and con-
vexity properties, and present characterizations of the set of solutions to variational
inequalities. We then present new descent algorithms for variational inequalities
within this framework, including approximate solutions of the direction finding and
line search problems. The new class of merit functions include the primal and dual
gap functions, introduced by Zuhovickǐı et al. (1969a, 1969b), and the differentiable
merit function recently presented by Fukushima (1992); also, the descent algorithm
proposed by Fukushima is a special case from the class of descent methods devel-
oped in this paper. Through a generalization of Auchmuty’s class of merit functions
we extend those inherent in the works of Dafermos (1983), Cohen (1988) and Wu
et al. (1991); new algorithmic equivalence results, relating these algorithm classes
to each other and to Auchmuty’s framework, are also given.
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1 Introduction

Let X be a nonempty, closed and convex subset of ℜn, and F : X 7→ ℜn be a continuous
mapping. The variational inequality problem is to find an x∗ ∈ X such that

[VIP] F (x∗)T (x − x∗) ≥ 0, ∀ x ∈ X.

Here, T denotes transpose. We will throughout the paper assume that [VIP] admits at
least one solution, and denote the solution set of [VIP] by Ω. The assumptions made on
X and F are assumed to hold throughout the paper.

Variational inequality problems occur in a number of applications, and were first studied
in infinite-dimensional space in connection with nonlinear partial differential equations.
More recently, finite-dimensional applications of variational inequality theory, such as
non-cooperative games and other equilibrium problems, have arisen.

The solution set is nonempty if, for instance, the feasible set, X, is bounded or if F is
coercive on X, i.e., if there is a vector x ∈ X such that

lim
x∈X

‖x‖→+∞

{

F (x)T (x − x) / ‖x‖
}

= +∞,

where ‖·‖ is some appropriate vector norm, see, e.g., Kinderlehrer and Stampacchia
(1980). Moreover, the set Ω is a singleton if it is nonempty and if F is strictly monotone
on X, i.e., if

[F (x) − F (y)]T (x − y) > 0, ∀ x, y ∈ X and x 6= y.

The mapping F is said to be monotone on X if the strict inequality above is replaced by
an inequality, and strongly monotone (with modulus mF ) on X if, in addition, the right
hand side of the inequality is replaced by mF ‖x − y‖2. (Note that strong monotonicity
implies both coercivity and strict monotonicity, so that strong monotonicity implies the
existence of a unique solution to [VIP].) If F is the gradient of a function φ : ℜn 7→ ℜ, then
the above properties are equivalent to strict convexity, convexity and strong convexity of
φ on X, respectively, and, if F is continuously differentiable on an open neighbourhood
of X, then the monotonicity properties of F on X may be characterized in terms of the
positive definiteness of its Jacobian, ∇F , see e.g. Ortega and Rheinboldt (1970, Section
5.4). For an overview of theory, algorithms and applications of [VIP], we refer to the
recent survey by Harker and Pang (1990).

It is well known that the problem [VIP] is equivalent to the first order optimality conditions
for the convex problem

[P] min
x∈X

φ(x)
def
=

∫ x

0
F (s)Tds,

if the Jacobian, ∇F , of the mapping F is symmetric and positive semidefinite on an
open neighbourhood of X. If the mapping F has a Jacobian which is not symmetric, the
integral in [P] is not unambiguously defined, and [VIP] can in this case not be converted
into an equivalent minimization problem of the form [P]. (In this case, we say that [VIP]
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is asymmetric.) It is the purpose of this paper to review and develop reformulations of
asymmetric variational inequalities as equivalent minimization problems, investigate their
properties, and derive descent methods for the solution of [VIP], utilizing a class of such
optimization formulations. The basis for our development is the article by Auchmuty
(1989).

We shall make use of the following conventions. All vectors are assumed to be column
vectors, ‖·‖ denotes the Euclidean vector norm in ℜn, and its induced matrix and operator
norms. For a given function h : X 7→ ℜl the Lipschitz constant is denoted by Mh.
The constant in the definition of strong monotonicity will be denoted by mh, and the
same notation will be used for the constant in the definition of strong convexity of h
(when l = 1). We shall make use of the abbreviations u.s.c. and l.s.c. for upper and
lower semicontinuity, respectively, and write h ∈ Cp on X meaning that h is p times
continuously differentiable on an open neighbourhood of X. (We write h ∈ Cp if this
holds on ℜn.)
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The remainder of the paper is organized as follows. In Section 2 we present a class of
merit functions for asymmetric variational inequalities, originally proposed by Auchmuty
(1989). We summarize some of the most important results of that paper, and provide
an interpretation and a motivation of the use of these merit functions. In Section 3 we
review and relate to Auchmuty’s class of merit functions some earlier developed merit
functions, with the common feature that they can be described as gap functions. In
particular, we show that the primal and dual gap functions, which were introduced by
Zuhovickǐı et al. (1969a, 1969b), and the recently presented differentiable merit function
of Fukushima (1992), belong to this class. In Section 4 we further investigate properties
of Auchmuty’s merit functions, provide equivalent characterizations of the solution set,
and establish descent algorithms, constructed in a manner similar to Fukushima’s. In
Section 5 we present a generalization of his merit functions, and give some algorithmic
equivalence results, relating our work to that of Dafermos (1983), Cohen (1988) and Wu
et al. (1991). Finally, in Section 6 we make some concluding remarks and present research
opportunities.

2 Background and motivation

The merit functions discussed in this paper are all of the type given by the following
definition.

Definition 2.1 (Gap function) A function γ : X 7→ ℜ ∪ {−∞, +∞} is a gap function
for [VIP] if

1. γ is restricted in sign on X, and

2. γ(x) = 0 ⇔ x ∈ Ω.

A gap function γ provides a measure of the violation of [VIP] at any point x ∈ X, and
by minimizing γ over X (assuming γ(x) ≥ 0 on X) a point in Ω is obtained. Therefore,
gap functions may be used as merit functions for variational inequalities.

We now summarize the results of Auchmuty (1989). Auchmuty develops merit functions
for [VIP], based on a function L̃ : X × X 7→ ℜ, with

L̃(x, y) = f(x) − f(y) + [F (x) −∇f(x)]T (x − y), (2.1)

where f : ℜn 7→ ℜ ∪ {+∞} is convex and l.s.c., and f ∈ C1 on X.

The following theorem relates saddle points to L̃ to the set of solutions to [VIP]. [For
proofs of the theorems stated in this section, we refer to Auchmuty (1989).]

Theorem 2.1 (Saddle points are in Ω) If (x∗, y∗) ∈ X × X satisfies

L̃ (x∗, y) ≤ L̃ (x∗, y∗) ≤ L̃ (x, y∗)

for all (x, y) ∈ X × X, then x∗ solves [VIP].
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Remark 2.1 The point y∗ does not, in general, solve [VIP] and, since L̃(x, y) is not
convex in the x argument, it is, in general, not a true saddle function.

The saddle point characterization of a solution to [VIP] defines two possible optimization
formulations for the variational inequality problem by the introduction of two different
gap functions. The first, which we will refer to as the primal generalized gap function, for
reasons to be evident later, is defined as

[PGG] G̃(x)
def
= sup

y∈X
L̃(x, y), x ∈ X,

and the corresponding optimization formulation is

[OPGG] inf
x∈X

G̃(x).

Note that [PGG] is a convex program, since L̃ is concave in y, and that L̃ is invariant
under the addition of an affine function to f . For the primal generalized gap function
G̃ : X 7→ ℜ ∪ {+∞}, Auchmuty’s results are summarized in the following theorem.
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Theorem 2.2 (Properties of G̃)

1. G̃(x) is l.s.c. and nonnegative for all x ∈ X, and

2. G̃ (x) = 0 ⇔ x ∈ Ω.

In particular, when X is bounded, G̃ is finite on X.

Remark 2.2 Finiteness of G̃ may be accomplished also for unbounded sets for instance
by imposing strong convexity of f . Since a minimum of G̃ over X always exists whenever
G̃ is finite, [OPGG] can be used also to detect the non-existence of a solution to [VIP],
since, in this case, minx∈X G̃(x) > 0; the properties of such minimizers are subjects for
further research.

Hence, solving [VIP] is equivalent to minimizing G̃ over X, so that G̃ is a merit function
for variational inequalities.

Turning to the dual formulation, we introduce the function g̃ : X 7→ ℜ ∪ {−∞} through

[DGG] g̃(y)
def
= inf

x∈X
L̃(x, y), y ∈ X,

and the resulting optimization formulation is

[ODGG] sup
y∈X

g̃(y).

For the function g̃ we have the following results, corresponding to Theorem 2.2.

Theorem 2.3 (Properties of g̃)

1. g̃(y) is nonpositive for all y ∈ X, and

2. g̃ (y) = 0 ⇒ y ∈ Ω.

In general, the converse of 2. does not hold, as the example below shows. A consequence
of this is that g̃ is not a gap function. (However, for pseudo-monotone maps F and with
f ≡ 0, the converse of 2. does hold, see Section 3.)

Example 2.1 Let F (x) = x and X = {x | 0 ≤ x ≤ 1}. The problem is then equivalent
to minimizing 1

2
x2 over X, with the unique solution x∗ = 0 [Ω = {0}]. Choose f(x) = x4,

which is strictly convex. Then g̃(0) = −2 6= 0. 2

We end this section by motivating the use of G̃ as a merit function, by providing an
interpretation of it in terms of cost approximations of [VIP].

5



Since [PGG] is a convex program, evaluating G̃(x) is equivalent to finding a solution y(x)
to the following variational inequality, defining the first order optimality conditions of
[PGG] (e.g., Bazaraa and Shetty, 1979, Theorem 3.4.3).

∇yL̃ (x, y(x))T (y − y(x)) ≤ 0, ∀ y ∈ X (2.2)

Here, ∇y denotes differentiation with respect to y.

Now, assume that, in [VIP], the mapping F is approximated by the gradient of a convex
function f . Obviously, the error made when replacing the original map is F − ∇f . If,
for some fixed x ∈ X, this error is taken into account by adding to ∇f the error term
F (x)−∇f(x), then the approximate symmetric variational inequality is to find a y(x) ∈ X
such that

[AVIP] [∇f (y(x)) + F (x) −∇f(x)]T (y − y(x)) ≥ 0, ∀ y ∈ X.

But from (2.1) it then follows that (2.2) and [AVIP] are equivalent. We may thus conclude
that the calculation of G̃(x) amounts to solving an approximate, symmetric, variational
inequality obtained through a cost approximation. [This interpretation was first made by
Patriksson (1991b).] Obviously, the better the gradient ∇f approximates the, possibly
asymmetric, mapping F , the closer y(x) will be to Ω. This is further illustrated below.

Assume now that ∇F is symmetric on X. We may then choose the function f such that
∇f = F , and [AVIP] reduces to [VIP]. [Also, G̃(x) = f(x) + c, where c = − infx∈X f(x),
so that minimizing G̃ is equivalent to minimizing f over X, see Auchmuty (1989).] This
possibility of choosing ∇f so as to approximate F exactly for symmetric variational in-
equalities suggests a symmetrization strategy for the asymmetric case. The non-existence
of the optimization problem [P] is due to the fact that the value of the line integral in [P]
is dependent of the curve, Γ, taken from 0 to x ∈ X. To define an unambiguous integral,
we may choose the curve Γ to be the straight line from 0 to x, and hence introduce a
parametrization s = s(t) = tx, with t ∈ [0, 1]. We then define

f(x)
def
=

∫

Γ
F (s)Tds =

∫ 1

0
Ψ(t)dt, (2.3)

where Ψ : ℜ 7→ ℜ is given by Ψ(t) = F (tx)Tx. This approximation is exact (f ≡ φ in [P])
if F is the gradient of f , and should be a good approximation for modest asymmetries of
∇F . The following example shows that a well known symmetrization of affine variational
inequalities is obtained from the application of (2.3).

Example 2.2 Consider the asymmetric and affine variational inequality, i.e., F (x) =
Ax − b, where A is an asymmetric matrix in ℜn×n. By the choice of f as in (2.3), we
obtain that

f(x) =
∫ 1

0
(tAx − b)Txdt =

1

2
xTAx − bTx,

which indeed defines a symmetrization of ∇F , since ∇2f = 1
2

(

A + AT
)

is the symmetric
part of ∇F = A. 2

6



In the next section we relate the results obtained by Auchmuty to some earlier results on
merit functions for [VIP].

3 Gap functions for variational inequalities

3.1 The primal and dual gap functions

We begin by studying the important special case of Auchmuty’s merit functions, resulting
from letting f ≡ 0 in (2.1). (Auchmuty treats this case separately, but studies into the
resulting merit functions in fact traces back to the late 1960’s.) The corresponding saddle
function to (2.1) then is

L(x, y)
def
= F (x)T(x − y). (3.1)

In the context of non-cooperative game theory this function was studied already by
Zuhovickǐı et al. (1969a, 1969b, 1970, 1973); they showed that, under a monotonicity
assumption on F , a solution to the equilibrium problem is found by searching for a saddle
point to L, i.e., a point (x∗, y∗) such that

[SP] sup
y∈X

inf
x∈X

F (x)T(x − y) = F (x∗)T (x∗ − y∗) = inf
x∈X

sup
y∈X

F (x)T(x − y).

Exploring the rightmost equality of [SP] we obtain the primal gap function G : X 7→
ℜ ∪ {+∞} defined by

[PG] G(x)
def
= sup

y∈X
F (x)T(x − y),

which has been extensively studied in various contexts. Below we summarize its most
important properties.

Theorem 3.1 (Properties of G) For any x ∈ X, let Y (x) denote the (possibly empty)
set of optimal solutions to the problem [PG].

1. G is a gap function.

2. G is l.s.c. on X.

3. If X is bounded and F ∈ C1 on X, then G is Lipschitz continuous on X, i.e., there
exists a constant MG ≥ 0 such that, for all x1, x2 ∈ X,

∥

∥

∥G
(

x1
)

− G
(

x2
)∥

∥

∥ ≤ MG

∥

∥

∥x1 − x2
∥

∥

∥ .

4. If F ∈ C1 on X, then G is differentiable at x ∈ X if Y (x) = {y(x)}, with ∇G(x) =
F (x) + ∇F (x)T(x − y(x)).
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5. If F ∈ C1 on X, and monotone on X, then if x /∈ Ω and Y (x) = {y(x)}, the
direction d = y(x) − x is a feasible direction of descent with respect to G at x, and
the directional derivative G′ (x; d) = ∇G(x)Td ≤ −G(x).

6. G is convex on X if F (x)Tx is convex on X and each component of F is concave
on X.

7. (A fixed point characterization of Ω) x ∈ Ω ⇔ x ∈ Y (x).

8. (A stationary point characterization of Ω) Under the conditions on F in 5., x ∈
Ω ⇔ G′(x; y − x) ≥ 0, ∀ y ∈ X.

Proof

1. See Zuhovickǐı et al. (1969a, 1969b, 1970, 1973). See also Demyanov and Rubinov
(1970, Section 3.1) and Hearn (1978, 1982).

2. See Dunn (1980).

3. See Marcotte (1985).

4. See Demyanov and Pevnyi (1972). See also Zuhovickǐı et al. (1973), Auslender
(1976, Section VII.3), Hearn (1978, 1982) and Hearn et al. (1984).

5. See Demyanov and Pevnyi (1972). See also Hearn (1982) for the first result, and
Marcotte (1985).

6. See Hearn (1978, 1982) and Hearn et al. (1984).

7. See Marcotte (1985). See also Evtushenko (1985, p. 34).

8. See Marcotte (1985). 2

Thus, if [VIP] has a solution, the set of solutions to

[OPG] inf
x∈X

G(x)

equals the set Ω. Note that when X is polyhedral, [PG] reduces to a linear program
which, in the symmetric case, is equivalent to that solved in the Frank-Wolfe algorithm,
see e.g. Hearn (1978, 1982). The function G has been used as a merit function in several
algorithms for the solution of [VIP], see e.g. Zuhovickǐı et al. (1970, 1973), Demyanov
and Pevnyi (1972), Primak (1975), Lawphongpanich and Hearn (1984), Marcotte (1985,
1986), Marcotte and Dussault (1985, 1987, 1989), and Marcotte and Guélat (1988).

In the next section we will extend the results given in Theorem 3.1 to the function G̃.

Turning to the leftmost equality of [SP] we obtain the dual gap function g : X 7→ ℜ∪{−∞}
defined by
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[DG] g(y)
def
= inf

x∈X
F (x)T(x − y).

As established earlier, in the general case (f 6≡ 0) the dual formulation does not constitute
a proper gap function. For the case f ≡ 0, however, it is possible to show that g is a gap
function, provided that the mapping F is pseudo-monotone on X, i.e.,

F (y)T(x − y) ≥ 0 ⇒ F (x)T(x − y) ≥ 0, ∀ x, y ∈ X. (3.2)

(This property is, for instance, implied by monotonicity.) Under this condition [VIP] is
equivalent to finding an x∗ ∈ X such that

[VIP’] F (x)T (x − x∗) ≥ 0, ∀ x ∈ X,

see e.g. Karamardian (1976) and Auslender (1976, Section VII.1). We summarize some
properties of g below.

Theorem 3.2 (Properties of g) Let F : X 7→ ℜn be pseudo-monotone on X. Also, for
any y ∈ X, let X(y) denote the (possibly empty) set of optimal solutions to the problem
[DG].

1. g is a gap function.

2. g is concave on X.

3. If F ∈ C1 on X, then g is differentiable at y ∈ X if X(y) = {x(y)}, with ∇g(y) =
−∇F (x(y)).

Proof

1. See Zuhovickǐı et al. (1969a, 1969b). See also Demyanov and Pevnyi (1972) and
Auslender (1976, Section VII.5).

2. See Hearn and Nguyen (1982), Hearn et al. (1984) and Nguyen and Dupuis (1984).

3. See Hearn and Nguyen (1982) and Hearn et al. (1984). 2

As a consequence of the gap function properties of g, the set of solutions to

[ODG] sup
y∈X

g(y)

equals the set Ω. Methods developed for [ODG] mostly apply constraint generation tech-
niques to the semi-infinite linear program

[SIP] max z

s.t. z ≤ F (x)T(x − y), ∀ x ∈ X

y ∈ X.
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A line of development of such methods can be traced in Zuhovickǐı et al. (1969a, 1969b,
1973), Demyanov and Pevnyi (1972), Auslender (1976, Section VII.5), Nguyen and Dupuis
(1984) and Hearn and Lawphongpanich (1989).

Summarizing the properties of the saddle function L, although it is not convex in the x
argument, we have, for pseudo-monotone F ,

g(y) ≤ 0 ≤ G(x) ∀ (x, y) ∈ X × X, and

sup
y∈X

g(y) = 0 = inf
x∈X

G(x),

and (x∗, y∗) is a saddle point to L if and only if x∗, y∗ ∈ Ω.

One may note the nice symmetry in the properties of G and g. While the calculation
of G(x) is a convex problem, the minimization of G is in general both a nonconvex and
nondifferentiable problem; on the other hand, while the evaluation of g(y) is, in general, a
nonconvex problem, the maximization of g is always a convex problem. Also, convexity of
G holds for affine and monotone maps F , and under the same conditions the calculation
of g(y) is a convex problem.

Finally, it can be mentioned that subgradient optimization methods have been devised
for the reformulations [OPG] and [ODG], see e.g. Hearn (1978, 1982) and Hammond and
Magnanti (1987).

3.2 Smith’s class of gap functions

In the context of traffic equilibrium, Smith (1983a, 1983b) has developed a family of
gap-type merit functions for variational inequalities on polyhedral sets. If we define

[x]+ = max {0, x} ,

the family of objectives can be written as:

Gp(x) =
∑

i∈E

(

[

F (x)T
(

x − ŷi
)]

+

)p

, x ∈ X,

where p > 0 and {ŷi : i ∈ E} is the set of extreme points of the bounded polyhedron X.
The functions have the following properties, similar to the ones for G̃, G and g: for all
p ≥ 1, Gp(x) > 0, ∀ x /∈ Ω and Gp (x∗) = 0 ⇔ x∗ ∈ Ω. Further studies of the properties
of Gp(x) are made by Hearn et al. (1984). They show that the primal gap function G is
a limiting case of this class of functions, since, for all x ∈ X,

lim
p→+∞

(Gp(x))1/p = max
i∈E

F (x)T
(

x − ŷi
)

= G(x).

They proceed to show that Gp(x) is differentiable for 2 ≤ p < +∞, and convex for p ≥ 2
and p = +∞ e.g. if F is affine and monotone. Note that the extreme points must be known
explicitly in order to evaluate Gp(x), for p < +∞. The practical use of these gap functions
is thus limited to polyhedral sets, in combination with simplicial decomposition/column
generation techniques, see Smith (1983a, 1983b).
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3.3 Fukushima’s special case of gap function

Fukushima (1992) introduces a gap function, which may be identified as a special case from

Auchmuty’s class, by using f(x) = 1
2
‖x‖2

Q
def
= 1

2
xTQx, where Q is a given symmetric and

positive definite matrix in ℜn×n. The problem [PGG] is shown to reduce to a projection
problem, i.e., to find the unique point y(x) minimizing ‖y − (x − Q−1F (x))‖Q over y ∈ X.
[This problem is equivalent to that solved iteratively in the projection algorithm, see e.g.
Dafermos (1983).] Introducing the notation G̃Fu for Fukushima’s special case of gap
function, we have the following results. [For proofs of the results in this section, we refer
to Fukushima (1992).]

Theorem 3.3 (Properties of G̃Fu)

1. G̃Fu is a gap function.

2. (A fixed point characterization of Ω) x ∈ Ω ⇔ x = y(x).

3. If F : ℜn 7→ ℜn is continuous, then G̃Fu is also continuous.

4. If F : ℜn 7→ ℜn is in C1 then G̃Fu is also in C1.

5. (Stationary points are in Ω) If F ∈ C1, with a positive definite Jacobian ∇F on
X, we have that

∇G̃Fu(x)T(y − x) ≥ 0, ∀ y ∈ X ⇒ x ∈ Ω. (3.3)

Fukushima also devises descent methods for asymmetric variational inequalities with pos-
itive definite Jacobian. Global convergence is guaranteed from the stationary point prop-
erty (3.3), and the fact that the direction y(x) − x is a feasible direction of descent with
respect to G̃Fu whenever x /∈ Ω. We summarize these results below.

Theorem 3.4 (Descent properties) Let F : ℜn 7→ ℜn be in C1, with positive definite
Jacobian on X.

1. If x /∈ Ω, then

∇G̃Fu(x)T(y(x) − x) < 0.

2. If F also is strongly monotone on X, then for all x ∈ X,

∇G̃Fu(x)T(y(x) − x) ≤ −mF ‖y(x) − x‖2 .

Theorem 3.5 (Global convergence) Let X be bounded, and let F : ℜn 7→ ℜn be in C1

with positive definite Jacobian on X.
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1. Assume that x0 is chosen arbitrary in X, and that xk+1 is determined from xk

through the exact line search rule

min
0≤t≤1

G̃Fu

(

xk + t
(

y
(

xk
)

− xk
))

. (3.4)

Then, limk→+∞ xk = x∗, i.e., the unique solution to [VIP].

2. Assume, in addition, that both F and its Jacobian are Lipschitz continuous on X,
and that F is strongly monotone on X.

Replace the exact line search rule (3.4) by the Armijo (1964) step length rule, where
the step length tk in iteration k is chosen as tk = βlk , where lk is the smallest
nonnegative integer l such that

G̃Fu

(

xk + βl
(

y
(

xk
)

− xk
))

≤ G̃Fu

(

xk
)

− αβl
∥

∥

∥y
(

xk
)

− xk
∥

∥

∥

2
, (3.5)

with α > 0 and 0 < β < 1.

Then the same conclusions as above hold, provided that α < mF .

Fukushima’s special case of gap function has also been used in a descent algorithm based
on Newton’s method, see Taji et al. (1991). This algorithm extends the globally conver-
gent Newton methods by Marcotte and Dussault (1985, 1987, 1989), based on the primal
gap function, G.

Remark 3.1 The authors became aware of Fukushima’s work after the original manu-
script had been submitted. Some extensions (Theorems 4.4 and 4.9) of his results have
been added in this revised version. We would like to point out that, from the interpretation
and motivation made in Section 2, a gap function based on a symmetric approximation
∇f of F seems to be a more natural choice than a gap function based on a fixed matrix
Q.

4 The primal generalized gap function

Based on the discussions made in the previous sections, we will here further investigate
the characteristics of the primal generalized gap function and the mathematical program
[OPGG]. We will in particular provide characterizations of Ω in terms of fixed points and
stationary points, give sufficient conditions under which G̃ is continuously differentiable
and convex, and establish globally convergent descent algorithms.

4.1 The properties of the generalized gap function

The following theorem provides a new fixed point characterization of solutions to varia-
tional inequalities, and extends the results of Theorems 3.1.7 and 3.3.2.
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Theorem 4.1 (A fixed point characterization of Ω) For any x ∈ X, let Y (x) denote the
set of optimal solutions to [PGG]. Then,

x ∈ Ω ⇔ x ∈ Y (x).

Proof

⇒) If x ∈ Ω, then G̃(x) = 0. From L̃(x, x) = 0, the result then follows immediately.

⇐) If x ∈ Y (x), then from [AVIP] it follows that

[−∇f(x) − F (x) + ∇f(x)]T (y − x) = −F (x)T(y − x) ≤ 0, ∀ y ∈ X,

which implies that x ∈ Ω. 2

To simplify the subsequent discussion we shall henceforth let f be continuous on X. An
immediate consequence of this property is that G̃ then also is continuous whenever it is
everywhere finite; continuity of G̃ is important when developing descent algorithms, since
the algorithmic map associated with the line search with respect to G̃ then is closed in
the sense of Zangwill (1969).

Theorem 4.2 (Continuity properties of G̃ and Y )

1. For any x ∈ X, the set Y (x) is closed and convex, the mapping x 7→ Y (x) is closed
and G̃ is l.s.c.

2. If X is bounded or if f is strongly convex on X, then for any x ∈ X, Y (x) is
nonempty and bounded, and G̃ is continuous on X.

3. If X is bounded and F ∈ C1 on X, and f ∈ C2 on X, then G̃ is Lipschitz continuous
on X.

4. If X is bounded and f is strictly convex on X, or if f is strongly convex on X, then,
for any x ∈ X, Y (x) is a singleton and x 7→ Y (x) is continuous.

Proof

1. The closedness of Y (x) follows from the continuity of L̃ (Hogan, 1973), and its
convexity from the convexity of the problem [PGG] (e.g. Minty, 1962). The l.s.c.
property of G̃ is given in Theorem 2.2.

2. The first two results are well known. Continuity of G̃ follows from the continuity
and boundedness of L̃.
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3. The assumptions imply the continuity and boundedness of ∇xL̃(x, y), which in turn
implies the Lipschitz continuity of L̃ (Ortega and Rheinboldt, 1970, Corollary 3.2.4).
By Theorem 2.1 of Clarke (1975) G̃ is then also Lipschitz continuous.

4. The first result is obvious. For the second result, see e.g. Hogan (1973). 2

Under appropriate assumptions on F and f , it is also possible to show that the mapping
x 7→ Y (x) is Lipschitz continuous, and this is therefore also true for ∇G̃. This property
is crucial when establishing convergence using inexact line searches, see Lemma 4.1. The
next theorem gives sufficient conditions for G̃ to be continuously differentiable on X.

Theorem 4.3 (Differentiability of G̃) Let F ∈ C1 on X and f ∈ C2 on X. If X is
bounded and f is strictly convex on X, or if f is strongly convex on X, then G̃ ∈ C1 on
X, with

∇G̃(x) = F (x) +
[

∇F (x)T −∇2f(x)
]

(x − y(x)) , (4.1)

where y(x) is the unique solution to [PGG].

Proof G̃ is differentiable since Y (x) is a singleton from Theorem 4.2.4 [see also Rock-
afellar (1981, Proposition 3B)]. The continuity of ∇G̃ then follows from the continuity of
∇xL̃, and ∇G̃(x) is given by ∇xL̃(x, y(x)) [cf. Rockafellar (1981, Proposition 3H)]. 2

It is therefore possible to equivalently reformulate asymmetric variational inequalities,
with a differentiable mapping F , as a continuously differentiable minimization problem,
see Harker and Pang (1990, p. 165).

One may note the major difference between the differentiability properties of G̃ compared
to the ones for G. (Differentiability of G holds in general only under the restrictive
assumption that the set X is strongly convex in the sense of Zuhovickǐı et al. (1969a),
which excludes applications where X is polyhedral.)

The next theorem characterizes solutions to [VIP] as stationary points of the problem
[OPGG], for different monotonicity properties of F , and, correspondingly, different con-
vexity properties of f .

Theorem 4.4 (Stationary point characterization of Ω) Let F ∈ C1 on X, and f ∈ C2

on X. Under either one of the following three additional assumptions, x∗ solves [VIP] if
and only if x∗ is a stationary point of the problem [OPGG], i.e., if and only if

G̃′ (x∗; x − x∗) ≥ 0, ∀ x ∈ X. (4.2)

1. X is bounded, and the matrix ∇F (x∗)T −∇2f (x∗) is positive definite.

2. X is bounded, f is strictly convex on X, and the matrix ∇F (x∗)T − ∇2f (x∗) is
positive semidefinite.
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3. F is strongly monotone on X, f is strongly convex on X, ∇f is Lipschitz continuous
on X, and

M∇f − mf < mF . (4.3)

Proof Assume first that (4.2) does not hold for some x ∈ X. For a sufficiently small
ε > 0 it must then hold that G̃ (x∗ + ε (x − x∗)) < G̃ (x∗) = 0, which contradicts the
optimality of x∗. We have thus shown that a solution x∗ to [VIP] must satisfy (4.2).

We next turn to prove the reverse, for the three sets of assumptions, respectively. We
first note that the directional derivative G̃′ (x∗; x − x∗) is given by [e.g., Rockafellar (1981,
Proposition 3B)]

G̃′ (x∗; x−x∗)= sup
y∈Y (x∗)

(

F (x∗)+
[

∇F (x∗)T−∇2f (x∗)
]

(x∗−y)
)T

(x−x∗) ≥ 0, ∀ x ∈ X.

(4.4)

The set Y (x∗) is convex and compact, cf. Theorem 4.2.1 and Theorem 4.2.2. The re-
striction of (4.4) to x ∈ Y (x∗) defines a point-to-set map from Y (x∗) into itself, i.e., a
map of the form x 7→ S(x), where S(x) is the set of optimal solutions to the problem
defined in (4.4). The set S(x) inherits the properties of Y (x∗), and furthermore, the map
x 7→ S(x) is u.s.c., since the inner problem is linear in x. Using Kakutani’s (1941) fixed
point theorem, we conclude that there is a y ∈ Y (x∗) such that y ∈ S (y). From (4.4) we
then have that

(

F (x∗) +
[

∇F (x∗)T −∇2f (x∗)
]

(x∗ − y)
)T

(y − x∗) ≥ 0. (4.5)

(Note that for a strictly convex f this holds directly from ∇G̃ (x∗)T (y (x∗) − x∗) ≥ 0, by
replacing y with y (x∗), since, in this case, Y (x∗) is a singleton.)

Since y ∈ Y (x∗), we also have from (2.2) that

[−∇f (y) − F (x∗) + ∇f (x∗)]T (x − y) ≤ 0, ∀ x ∈ X. (4.6)

Combining (4.5) and (4.6), with x = x∗, we then have that

(y − x∗)T
[

∇F (x∗)T −∇2f (x∗)
]

(y − x∗) ≤ [∇f (y) −∇f (x∗)]T (x∗ − y) . (4.7)

We now turn to the three sets of assumptions.

1. From the positive definiteness of ∇F (x∗)T −∇2f (x∗) and the convexity of f , the
inequality (4.7) can only hold if y = x∗. Replacing y by x∗ in (4.6), we obtain that
x∗ solves [VIP].

2. Follows from the same line of arguments as in 1.
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3. Using the monotonicity and Lipschitz continuity properties of the maps F and ∇f
in (4.7), it follows that

(mF − M∇f + mf ) ‖y − x∗‖2 ≤ 0,

which, together with (4.3), yields y = x∗, and as in 1., we conclude that x∗ solves
[VIP]. 2

It is a direct consequence of this theorem, that if a feasible point x is not a solution to
[VIP], then there is a y ∈ Y (x) such that the direction y − x is a feasible direction of
descent with respect to G̃. Based on this observation we shall, later on, develop descent
algorithms.

Since the descent methods to be presented here are all asymptotically convergent, an
optimal solution is, in general, not reached finitely, and it is of great practical interest
to obtain a measure of the distance from an approximate solution point to the set Ω.
The following theorem establishes an a posteriori error bound for strongly monotone
variational inequalities, measured in terms of the value of the function G̃.

Theorem 4.5 (An a posteriori error bound) Let F be strongly monotone on X, and
f ∈ C2 on X, with a Lipschitz continuous gradient on X. If f is chosen such that
M∇f < 2mF , then for any x ∈ X,

‖x − x∗‖2 ≤
2G̃(x)

2mF − M∇f
. (4.8)

Proof Combining the inequalities obtained from the strong monotonicity of F , and the
fact that x∗ is the solution of [VIP], we obtain for any x ∈ X that

F (x)T (x − x∗) ≥ mF ‖x − x∗‖2 . (4.9)

Now,

G̃(x) = f(x) − f(y(x)) + [F (x) −∇f(x)]T (x − y(x))

≥ f(x) − f (x∗) + [F (x) −∇f(x)]T (x − x∗) (y(x) solves [PGG])

≥ f(x) − f (x∗) −∇f(x)T (x − x∗) + mF ‖x − x∗‖2 (Equation (4.9))

≥
(

mF −
M∇f

2

)

‖x − x∗‖2 , (∇f Lipschitz)

and the theorem is proved. 2

The error bound (4.8) generalizes those obtained by Pang (1987) for the choices of
f(x) = 1

2
‖x‖2 (projection measure, Theorem 3.1) and f ≡ 0 (linear programming

measure, Theorem 4.1), and the result obtained by Taji et al. (1991) for the choice
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of f(x) = 1
2
‖x‖2

Q. Notice that neither Lipschitz continuity [cf. Pang (1987)], nor differen-
tiability, of F is necessary, and that the result holds regardless of any convexity properties
of the function f .

The following corollary gives some interesting properties of G̃.

Corollary 4.1 (Coercivity of G̃) Under the assumptions of the theorem, G̃ has bounded
level sets and is weakly coercive on X, i.e.,

lim
x∈X

‖x‖→+∞

G̃(x) = +∞. (4.10)

Proof Follows directly from (4.8). 2

Remark 4.1 Although G̃ is, in general, not convex, the corollary establishes properties
of G̃ shared with convex functions. (Weak coercivity and boundedness of level sets are
well known properties of strongly convex functions.)

Below we show that, for affine variational inequalities, G̃ can be constructed strictly
convex.

Theorem 4.6 (Convexity of G̃) Let F be affine, i.e., F (x) = Ax − b. Let f be given by
f(x) = 1

2
xTQx, where Q is symmetric and positive definite. Then G̃ is convex on X if the

matrix A + AT − Q is positive semidefinite, and strictly convex if this matrix is positive
definite.

Proof If, for any fixed y ∈ X, the function L̃ is (strictly) convex in its x argument on
the set X, then G̃, which is defined as the pointwise supremum of L̃, is also (strictly)
convex. But

∇xL̃(x, y) =
[

A + AT − Q
]T

(x − y),

so that

∇2
xxL̃(x, y) = A + AT − Q,

and the result follows directly. 2

Note that the choice of f as the symmetrization made in Example 2.2 leads to a strictly
convex gap function whenever A is positive definite. Moreover, this condition also leads to
the stationary point property, see Theorem 4.4.2. Whether G̃ can be constructed convex
for non-affine mappings F is an open question.
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4.2 A descent algorithm for asymmetric variational inequalities

We conclude this section by developing descent algorithms, based on the stationary point
characterization of Theorem 4.4. We also investigate the possibility of obtaining descent
directions from inexact solutions of [PGG], and using inexact line searches; both these
extensions of the basic scheme are of interest in implementations.

Theorem 4.7 (Descent properties) Let F ∈ C1 on X and f ∈ C2 on X. Also, for any
x ∈ X, let Y (x) denote the set of optimal solutions to [PGG].

1. If X is bounded, x /∈ Ω, and the matrix ∇F (x)T −∇2f(x) is positive definite, then
there exists a y ∈ Y (x) such that

G̃′ (x; y − x) < 0.

2. If X is bounded, f is strictly convex on X, x /∈ Ω and the matrix ∇F (x)T −∇2f(x)
is positive semidefinite, then

∇G̃(x)T(y(x) − x) < 0.

3. Assume that F is strongly monotone on X, and that f is strongly convex with a
Lipschitz continuous gradient on X. Then, for any x ∈ X,

∇G̃(x)T(y(x) − x) ≤ − (mF + mf − M∇f ) ‖y(x) − x‖2 . (4.11)

Proof

1. Follows from expressing G̃′(x; y − x) as in (4.4), and using the same technique as
in the proof of Theorem 4.4, together with (2.2), to establish the existence of a
y ∈ Y (x) such that G̃′ (x; y − x) < 0.

2. Follows from the expression

G̃′ (x; y(x) − x) = ∇G̃(x)T(y(x) − x),

combined with (2.2).

3. Proven as in 2. 2

Note that for affine F and f quadratic, the conditions 2. reduce to the positive semidefi-
niteness of the matrix AT −Q. The symmetrization given in Example 2.2 has the descent
property whenever A is positive definite. Note also that, because of the generality of f ,
the conditions of Theorem 4.7 do not reduce to those of Theorem 3.4 when choosing f
quadratic.
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Using the stationary point property we have thus shown that the solution to [PGG],
obtained when calculating G̃(x), defines a feasible descent direction with respect to G̃,
whenever x /∈ Ω. We next show that, using an exact line search rule, the sequence
of iteration points converges towards the unique solution x∗, from any feasible starting
point.

Theorem 4.8 (Global convergence) Let F ∈ C1 on X and f ∈ C2 on X. Let x0 be
arbitrary in X, and let xk+1 be determined from xk through the exact line search rule

min
0≤t≤1

G̃
(

xk + tdk
)

,

where dk = y
(

xk
)

−xk with y
(

xk
)

∈ Y
(

xk
)

. Consider the following sets of assumptions.

1. X is bounded, the matrix ∇F (x)T −∇2f(x) is positive definite on X, and the point

y
(

xk
)

is chosen as in Theorem 4.7.1.

2. X is bounded, f is strictly convex on X, and the matrix ∇F (x)T−∇2f(x) is positive
semidefinite on X.

3. F is strongly monotone on X, f is strongly convex with a Lipschitz continuous
gradient on X and chosen such that (4.3) holds. Further, X is bounded or M∇f <
2mF holds.

Under either one of the above sets of assumptions, [VIP] has a unique solution, and the

sequence
{

xk
}

converges to it.

Proof We begin by showing that the assumptions of Theorem A of Zangwill (1969) are

fulfilled in all the three cases, i.e., i) that
{

xk
}

stay in a compact subset of X, ii) that

G̃
(

xk+1
)

< G̃
(

xk
)

whenever xk /∈ Ω, and xk ∈ Ω if G̃
(

xk+1
)

≥ G̃
(

xk
)

, and iii) that the
algorithmic map is closed.

i) For cases 1. and 2., this is obvious since X is compact. For case 3., either it
holds from the compactness of X, or from the compactness of the level sets (cf.
Corollary 4.1).

ii) Follows directly from Theorems 4.4 and 4.7, and the choice of step length.

iii) For case 1., it follows from Theorem 4.2.1 and the closedness of S(x) in the proof
of Theorem 4.4, that the point-to-set map assigning the search direction dk to the
point xk is closed. For cases 2. and 3., the continuity of this map follows from
Theorem 4.2.4. Since the exact line search is well known to be closed for a continuous
objective, the composite algorithmic map is closed for all three cases.
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Thus, by Zangwill’s Theorem A, every accumulation point [from i), at least one such
point exists] is optimal in [VIP]. For all three cases, it is straightforward to show that Ω

is a singleton, and we conclude that
{

xk
}

converges to the unique solution of [VIP]. 2

Remark 4.2 Boundedness of X, which was assumed by Fukushima (1992), is not re-
quired for the global convergence of the algorithm. If x0 is infeasible, x0 can be replaced
by y (x0).

Global convergence with an Armijo step length rule can also be established, extending
the result of Fukushima for the gap function G̃Fu. It is well known that the use of the
Armijo rule requires the gradient of the objective to be Lipschitz continuous; in this case,
this property is a consequence of the Lipschitz continuity of the map x 7→ Y (x), which is
established in the below lemma.

Lemma 4.1 (Lipschitz continuity of Y ) Let F be Lipschitz continuous on X, and f
strongly convex with a Lipschitz continuous gradient on X. Then the mapping x 7→ Y (x)

is Lipschitz continuous on X with modulus
MF +M∇f

mf
.

Proof Given arbitrary x1, x2 ∈ X, combining the two inequalities (2.2), where we choose
y = y (x2) and y = y (x1), respectively, and rearranging terms, we obtain

[F (x2) − F (x1)]
T

(y (x2) − y (x1))+

[∇f (x1)−∇f (x2)]
T

(y (x2)−y (x1)) ≤ [∇f (y (x1))−∇f (y (x2))]
T

(y (x2)−y (x1))

≤ −mf ‖y (x2) − y (x1)‖
2
,

which implies that

mf ‖y (x2) − y (x1)‖
2

≤ (‖F (x2) − F (x1)‖ + ‖∇f (x1) −∇f (x2)‖) ‖y (x2) − y (x1)‖

≤ (MF + M∇f) ‖x
2 − x1‖ ‖y (x2) − y (x1)‖ ,

and the result follows. 2

Global convergence under an Armijo step length rule is shown below for the case of
strongly monotone variational inequalities.

Theorem 4.9 (Global convergence under Armijo rule) Let the assumptions of Theo-
rem 4.8.3 and Lemma 4.1 hold. Furthermore, let ∇F and ∇2f be Lipschitz continuous
on X, and replace the exact line search with the Armijo step length rule (3.5), where G̃

replaces G̃Fu. Letting µ
def
= mF + mf − M∇f > 0, the conclusions of Theorem 4.8.3 hold

if α is chosen such that α < µ.
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Proof From Lemma 4.1 and the Lipschitz continuity of ∇F and ∇2f , it follows that
∇G̃ is also Lipschitz continuous on X. Using this fact together with (4.7), we obtain, for
all 0 ≤ t ≤ 1, that

G̃
(

xk + tdk
)

− G̃
(

xk
)

≤ −t
(

µ −
t

2
M∇G̃

)

∥

∥

∥dk
∥

∥

∥

2
,

where dk = y
(

xk
)

− xk. Tracing the proof of Theorem 4.2 of Fukushima (1992) we may

conclude that the step length tk = βlk satisfies

tk > min {β, 2β(µ − α)/M∇G̃} , (4.12)

and
G̃

(

xk+1
)

≤ G̃
(

xk
)

− αtk
∥

∥

∥dk
∥

∥

∥

2
. (4.13)

Since, from (4.13), the sequence
{

G̃
(

xk
)}

is monotonically decreasing, it follows from

(4.12) that limk→+∞

∥

∥

∥dk
∥

∥

∥ = 0.

The sequence
{

xk
}

is contained in a compact subset of X, and hence has at least one

accumulation point, say x. From the continuity property of y(x) (cf. Theorem 4.2),
x = y(x), so that, by Theorem 4.1, x solves [VIP]. The strong monotonicity of F then
implies that x must be the unique accumulation point, and we conclude that the sequence
{

xk
}

converges to the unique solution to [VIP]. 2

Remark 4.3 The subproblem solution y
(

xk+1
)

is obtained in the Armijo line search for
tk, and is therefore provided with no extra computation.

Assume now that the algorithm for solving [PGG] is truncated prematurely, in the sense
that it is terminated when, for some a priori determined ε > 0, a point yε(x) is found,
satisfying

∇yL̃ (x, yε(x))T (y − yε(x)) ≤ ε, ∀ y ∈ X. (4.14)

This implies, by the concavity of L̃ with respect to y, that G̃(x) ≤ L̃ (x, yε(x))+ε, i.e., that
yε(x) is an ε-optimal solution to [PGG]. [Note that when X is polyhedral the termination
criterion (4.14) is easily checked by solving the linear subproblem of the Frank-Wolfe
algorithm, see, e.g., Migdalas (1990).] An interesting question then is if a point yε(x)
satisfying (4.14) also satisfies ∇G̃(x)T (yε(x) − x) < 0, for all sufficiently small ε. If the
assumptions of Theorem 4.7.3 are satisfied, the theorem below establishes an affirmative
answer.

Theorem 4.10 (Descent obtained from truncated subproblems) Let the assumptions of
Theorem 4.7.3 be satisfied. Then, for any x ∈ X and ε ≥ 0,

‖y(x) − yε(x)‖2 ≤
ε

mf

. (4.15)
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Furthermore, if x /∈ Ω, (4.3) holds, and ε > 0 is chosen small enough (dependent of x),
then

∇G̃(x)T (yε(x) − x) < 0.

Proof From (2.2) and (4.14) we have

1. [−∇f(y(x)) − F (x) + ∇f(x)]T (y − y(x)) ≤ 0, ∀ y ∈ X, and

2. [−∇f (yε(x)) − F (x) + ∇f(x)]T (y − yε(x)) ≤ ε, ∀ y ∈ X.

Combining these inequalities, with y = yε(x) and y = y(x), respectively, we obtain, also
using the strong convexity of f , that

mf ‖y(x) − yε(x)‖2 ≤ [∇f(y(x)) −∇f (yε(x))]T (y(x) − yε(x)) ≤ ε,

which yields (4.15).

Now, from Theorems 4.3 and 4.7.3,

∇G̃(x)T(yε(x) − x) = ∇G̃(x)T(y(x) − x) + ∇G̃(x)T(yε(x) − y(x))

≤ − (mF + mf − M∇f) ‖y(x) − x‖2 + F (x)T(yε(x) − y(x))

+(x − y(x))T
[

∇F (x)T −∇2f(x)
]

(yε(x) − y(x))

≤ − (mF + mf − M∇f) ‖y(x) − x‖2 +
(

‖F (x)‖ +
∥

∥

∥∇F (x)T −∇2f(x)
∥

∥

∥ · ‖x − y(x)‖
)

‖yε(x) − y(x)‖

< 0,

if

‖yε(x) − y(x)‖ < −
(mF + mf − M∇f ) ‖y(x) − x‖2

‖F (x)‖ + ‖∇F (x)T −∇2f(x)‖ · ‖x − y(x)‖
. (4.16)

Since the right hand side of this strict inequality is strictly positive whenever x /∈ Ω, it
follows from (4.15) that (4.16) holds by choosing ε small enough. 2

Remark 4.4 By further imposing Lipschitz continuity of f on X, the term ‖y(x) − x‖
may be estimated both from above and below by bounded positive measures in x, ε and
yε(x) only, thus enabling the right hand side of (4.16) to be bounded from below. The
resulting bound may then be used in a termination criterion for the solution of [PGG].
Also, this bound tends to zero when x approaches Ω, so that, in effect, the condition in
(4.16) amounts to solving [PGG] accurately in the limit. Introducing a sequence {εk}
with εk → 0, the global convergence of the overall scheme is also easily established from
Theorem 4.8.

In the next section we shall extend Auchmuty’s class of gap functions, by introducing
a sequence of functions fk, with the same properties as the function f in Auchmuty’s
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framework. By associating with each step k in an iterative algorithm an appropriate
function fk, the problem [PGG] may thus even better approximate [VIP]. The introduction
of this more general class of gap functions also results in interesting relationships with
successive approximation-based algorithms of Cohen (1988), Noor (1992) and Dafermos
(1983), and with the descent algorithms of Wu et al. (1991).

5 Generalizations of Auchmuty’s class of gap func-

tions

Cohen (1988) develops an iterative algorithm for [VIP] using a successive approximation
approach. Below we show that the subproblem solved in this algorithm is equivalent to
[PGG], so that, immediately, a successive approximation algorithm based on the calcula-
tion of G̃ is established.

In our notation the subproblem, given xk ∈ X, is to find xk+1 ∈ X solving

[C] min
x∈X

{

f(x) +
[

εF
(

xk
)

−∇f
(

xk
)]T (

x − xk
)

}

,

where ε is a positive constant. (Cohen refers to this problem as the auxiliary problem,
and to the algorithm as the auxiliary problem principle.) If we, in Auchmuty’s framework,
replace f by 1

ε
f , then it is not difficult to see that [PGG] is equivalent to [C]. The successive

approximation algorithm, which thus is defined by letting xk+1 = y
(

xk
)

in [PGG], is

globally convergent through Cohen’s analysis. (A successive approximation algorithm
can then be seen as an alternative to the descent approach, if the line search with respect
to G̃ is considered computationally too expensive.)

The global convergence of the successive approximation variant of the descent methods
of Section 4.2 is given below. The proof follows from Theorem 2.2 of Cohen (1988).

Theorem 5.1 (A successive approximation algorithm) Let F be strongly monotone and
Lipschitz continuous on X, and let f be strongly convex on X. Let x0 be arbitrary in X,
and let xk+1 be the (unique) solution to [PGG], defined at xk. Then the sequence

{

xk
}

converges towards the unique solution to [VIP], provided that

2mf >
M2

F

mF
. (5.1)

Remark 5.1 The algorithm defined in the theorem includes well known algorithms such
as the projection algorithm [e.g. Dafermos (1983)]. It is interesting to note that the
convergence criterion (5.1) amounts to choosing the function f so that it, in a sense,
dominates the original mapping F , while in the descent approach the convergence criteria
[e.g. (4.3)] amounts to precisely the opposite.
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Remark 5.2 Noor (1992) recently extended Cohen’s algorithm to allow for variational
inequality subproblems [cf. Remark 2.4 in Cohen (1988)]. This means that, in [AVIP],
∇f is replaced by a mapping a : ℜn 7→ ℜn that is not necessarily a gradient; thus [AVIP]
does not reduce to the problem [PGG], i.e., to the calculation of a gap function.

Cohen develops his approach to also allow for F being a point-to-set map, and a varying
parameter, εk, in [C]. Global convergence is now ensured by also letting {εk} fulfill the
conditions

εk > 0,
+∞
∑

k=0

εk = +∞ and
+∞
∑

k=0

ε2
k < +∞.

This result of course carries over directly to Auchmuty’s framework, provided that the

function f is allowed to change with iteration (which would correspond to letting fk
def
=

1
εk

· f).

From the above discussion we are led to introduce a sequence {fk} of functions, where each
function fk inherits the properties of f in Auchmuty’s framework. The rationale behind
this generalization is that the gradients ∇fk can be chosen so as to better approximate
F

(

xk
)

than the fixed gradient ∇f (cf. Section 2).

Introducing the sequence {fk} thus introduces a sequence of gap functions
{

G̃k

}

, where

each function G̃k inherits the properties of G̃, given in Theorems 2.1, 2.2 and 4.1. With-
out imposing a continuity assumption [such as equicontinuity in the sense of Rockafellar
(1970)] on the sequence of functions fk, the gap decreasing algorithms of Section 4.2 can
not be easily extended to the more general case. Global convergence under equicontinuity
assumptions is an open problem.

A natural way of ensuring continuity is to restrict the functions fk to vary continuously,
in the following sense. Introduce f : ℜn × X 7→ ℜ as a continuous function with respect
to its second argument, and convex and continuously differentiable with respect to its
first. In the point xk, the function fk = f

(

·, xk
)

then replaces f in [PGG]. Since this
function defines a special case of the sequence of functions fk, the Theorems 2.1, 2.2 and
4.1 apply directly. [A proof of this fact is given in Patriksson (1991b).] Furthermore, the

gap function G̃, defined through this special case of
{

G̃k

}

, is continuous under the same
conditions as in Theorem 4.2.2.

In the rest of this section we shall assume f to be a continuous function on ℜn × X
as defined above (and let G̃, [PGG] and [AVIP] be defined accordingly), and consider
this generalization of Auchmuty’s framework. We will show that the descent algorithms
derived in Section 4.2 may be extended to the more general case of function f , and relate
this class of algorithms to those of Dafermos (1983) and Wu et al. (1991). We first
consider the works of Dafermos (1983).

Dafermos presents a general framework of successive approximation algorithms for [VIP].
Dafermos defines a smooth function h : X × X 7→ ℜn, with the properties i) h(x, x) =
F (x), ∀ x ∈ X, and ii) ∇xh(x, y) is symmetric and positive definite for any x, y ∈ X. A
successive approximation algorithm is then defined through the subproblem
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h
(

xk+1, xk
)T (

x − xk+1
)

≥ 0, ∀ x ∈ X. (5.2)

(Due to assumption ii) above, (5.2) reduces to a strictly convex minimization problem.)

The sequence
{

xk
}

is convergent towards the unique solution of [VIP] if

∥

∥

∥∇xh
−1/2

(

x1, y1
)

· ∇yh
(

x2, y2
)

· ∇xh
−1/2

(

x3, y3
)∥

∥

∥ < 1, ∀ xi, yi ∈ X, (5.3)

for i = 1, 2, 3. (Dafermos shows that Condition (5.3) implies strict monotonicity of F .)
Several variational inequality algorithms have been analyzed in Dafermos’ framework,
especially for economic equilibrium problems, see, e.g., Zhao and Dafermos (1991), and
the references cited therein.

Patriksson (1991b) shows that the subproblem (5.2) and [PGG] are equivalent, in the sense
that for any choice of function f , a function h may be chosen so that the subproblem
(5.2) equals [PGG], and vice versa. (Dafermos’ class of methods may therefore be viewed
as successive approximation variants of the descent algorithms presented in this paper,
for the choice of functions f : ℜn × X 7→ ℜ.) The class of algorithms defined by Cohen
(1988) is then clearly a special case of Dafermos’ class of algorithms. Since her convergence
results actually do not require the mapping h to be symmetric [cf. Remark 2.2 in Dafermos
(1983)], the same conclusion follows for Noor’s class of methods.

An interesting question provoked by this algorithmic equivalence result is whether the gap
decreasing algorithms of Section 4.2 can be extended to include functions f : ℜn×X 7→ ℜ,
and thereby introduce an accelerating line search in Dafermos’ class of algorithms. As is
shown below (through another interesting algorithmic equivalence result), the answer is
in the affirmative, at least for some choices of such functions f .

Let f be such that ∇yf(x, x)
def
= ∇yf(y, x)|y=x = 0, for all x ∈ X. Then [PGG] may be

written as
min
y∈X

{

f(y, x) + F (x)T(y − x)
}

, (5.4)

which is the subproblem of Wu et al. (1991). [Actually, Patriksson (1991b) shows that
[PGG] and (5.4) are equivalent, in the same sense as for [PGG] and (5.2).] Wu et al.
develop descent algorithms for [VIP] through the subproblem (5.4), and exact line searches
with respect to the corresponding gap function. In the convergence analysis they consider
the special case of choosing f(y, x) = 1

2
(y−x)TQ(x)(y−x), where Q(x) is a symmetric and

positive definite matrix on X. (This implies a direct generalization of Fukushima’s (1992)
algorithm, where the matrix Q is fixed.) Their basic convergence result (Proposition 3.11)
requires the matrix ∇Q(x)(y(x)− x) to be positive definite for all x ∈ X. This condition
is, however, difficult to verify in practice.

Remark 5.3 In the case of nonlinear programming, the algorithmic classes of Cohen
(1988) and Wu et al. (1991) reduce to the ones of Cohen (1980) and Patriksson (1991a),
and to the ones of Migdalas (1990) and Tseng (1991), respectively. A partial list of
corresponding algorithmic equivalence results can be found in Patriksson (1991b); further
studies of algorithmic equivalence results are made in Patriksson (1993).
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Remark 5.4 It seems, from the discussions made above, that it is an inherent property
of the algorithms that their convergence conditions are severe and very difficult to verify
in cases when f is allowed to be iteration dependent [cf. Condition (5.3) in Dafermos’
successive approximation method and the conditions in Wu’s et al. descent method], while
the conditions in the case of iteration independent functions f may be stated in terms
of the original data (including, typically, Lipschitz and strongly monotone constants) [cf.
Condition (4.3) in Auchmuty’s framework, Condition (5.1) in Cohen’s framework and the
conditions of Theorem 3.1 of Noor (1992)].

6 Concluding remarks

In this paper we have developed and unified mathematical programming reformulations
of variational inequalities, as well as proposed new descent algorithms derived from these
reformulations. We have also provided algorithmic equivalence results, relating Auch-
muty’s framework to the algorithm classes of Dafermos (1983), Cohen (1988), Wu et al.
(1991) and Noor (1992).

The framework of Auchmuty extends hitherto proposed optimization formulations, in
the sense that the function f defining [OPG] may be chosen rather arbitrarily, and may
therefore be used to more closely approximate the original mapping F (cf. Section 2).
Moreover, it is possible to take problem structure into account when choosing the function
f . As an example [due to Cohen (1988)], consider the case where the feasible set X is
a Cartesian product, i.e., X =

∏

i∈C Xi, where Xi is a closed and convex set in ℜni , and
∑

i∈C ni = n. [A variety of equilibrium problems can be cast in terms of such variational
inequalities; see Pang (1985), Bertsekas and Tsitsiklis (1989, Section 3.5), and Harker and
Pang (1990).] It may then be appropriate to choose

f(x) =
∑

i∈C

fi (xi) ,

where each function fi : Xi 7→ ℜ is convex and continuously differentiable on Xi. The
evaluation of G̃(x), i.e., the solution of the convex problem [PGG], then decomposes into
|C| problems of smaller dimensions. Since a decomposition takes place in the line search
phase also, the computations involved in the descent algorithms of Section 4.2 could in
this example effectively utilize parallel computing environments.

Patriksson (1993) combines the gap decreasing algorithm outlined above with cyclic de-
composition with respect to the individual sets Xi. In this combined algorithm, search
directions for G̃ are defined through the solution of [PGG] where, in some iteration k, all
variables but xik , ik ∈ C, are fixed to their current values. The algorithm, which gen-
eralizes the standard cyclic (Gauss-Seidel) decomposition methods (see, e.g., Dafermos,
1983) to a descent algorithm, can be established convergent under conditions similar to
those of Theorem 4.9, and if further each index i ∈ C is chosen at least once every B ≥ |C|
successive iterations.

If the feasible set X is a closed and convex cone, then [VIP] reduces to the nonlinear
complementarity problem, i.e., to find x∗ ∈ X such that
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[NCP] F (x∗) ∈ X∗ and F (x∗)T x∗ = 0,

where X∗ is the polar set of X. In the special case of X = ℜn
+, Cottle (1966) (see also Kara-

mardian, 1971) shows that x∗ solves [NCP] if and only if x∗ minimizes F (x)Tx on the set
{x ≥ 0 | F (x) ≥ 0}, and F (x∗)T x∗ = 0. Auchmuty shows that [OPG] extends this opti-
mization reformulation to a general nonlinear complementarity problem, by establishing
that [OPG] in fact is equivalent to minimizing F (x)Tx on the set {x ∈ X | F (x) ∈ X∗},
and that x∗ solves [NCP] if and only if F (x∗)T x∗ = 0 (i.e., if and only if G (x∗) = 0). Not-
ing that, in this case, f ≡ 0, we may therefore conclude that the generalized gap function
G̃ provides a means for making optimization reformulations of nonlinear complementarity
problems; the one of Cottle is indeed a very special case of such an optimization refor-
mulation. (New descent algorithms for [NCP] may thus be constructed, by specializing
those algorithms developed in this paper that are valid also for variational inequalities
over unbounded feasible sets.)

An interesting question for further studies regards the convexity properties of the gap
function G̃. There are, seemingly (see Section 4.1), some connections between the descent,
convexity and coercivity properties of G̃ that is not covered by the existing theory. Is it
possible to characterize these connections, and to extend them to non-affine variational
inequalities?

Some extensions of the developed theory and algorithms would be of interest to investigate.
Such extensions include infinite-dimensional settings, as considered by Cohen (1988) and
Noor (1992), an introduction of point-to-set maps F , as in Cohen (1988), equicontinuity of
fk, and the possibility to combine approximate line searches and truncated subproblems.
Newton methods with line searches on gap functions have been shown to be globally
convergent for the two special choices of f ≡ 0 and f(x) = 1

2
xTQx (see, e.g., Marcotte

and Dussault, 1985, and Taji et al., 1991). The possibility of extending these algorithms
to more general functions f is currently under investigation. Finally, the practical as well
as the theoretical convergence rates obtained for various choices of functions f , and line
search and subproblem truncation strategies, must be studied further.
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