On the Convergence of Descent Methods

for Monotone Variational Inequalities
M. PATRIKSSON!

Abstract. Recently, Zhu and Marcotte [15] established the convergence of a modified de-
scent algorithm for monotone variational inequalities. Using algorithmic equivalence results
due to Patriksson [10, 11] and Larsson and Patriksson [7], we show that this convergence
result may be used to establish the convergence of slightly modified versions of the classi-
cal successive approximation algorithms of Dafermos [2] and Cohen [1], and of the descent
algorithms of Wu et al. [14], Patriksson [10, 11], and Larsson and Patriksson [7], under as-
sumptions that are both much milder and much easier to verify than those for their original
statements.

Key Words. Monotone variational inequalities, successive approximation algorithms,
merit functions, descent methods, algorithmic equivalence, convergence

1 Introduction

Let X be a nonempty, closed and convex set in R”, and F : X — R" a continuous and
monotone mapping on X. Consider the variational inequality problem of finding an x* € X
such that

[VIP(F, X)) Fa)(z—2")>0, VreX.

The variational inequality problem (and its special cases) has a large variety of applications
in the mathematical and engineering sciences, for example in partial differential equations,
equilibrium problems in games, economics and transportation analysis, and nonlinear pro-
gramming.

It is a well-known fact that the problem [VIP(F, X)] describes the first-order optimality con-
ditions of a convex optimization problem if F' is the gradient of a convex function f : X +— R,
and of a convex-concave saddle point problem if F(z,y)" = [V.L(z,y)", —V,L(z,y)"] for
some convex-concave function L : Z x Y — R. (Here, 27 = (2T,yT) and X = Z x Y.)
In these cases, many iterative algorithms are immediately available for the solution of
[VIP(F, X)] where, in each iteration, a sufficient decrease in a merit function is obtained
through a line search in a feasible descent direction; natural choices of merit functions are
fand f(-) = sup,cy L(-,y), respectively. In other cases (in which the term asymmetric
variational inequality is frequently used) there is no merit function immediately available
for monitoring the convergence of an iterative algorithm.
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The classical approach to solving an asymmetric variational inequality is to replace the
mapping F with a sequence {F*} of simpler mappings, and define the iterate z**! by
the solution to [VIP(F¥, X)]. Such successive approzimation approaches include linear
approximation methods [F*(z) = F(2%) + A¥(x — 2%), where A* is a positive definite
matrix|, among which we find Newton-type approaches, linearized Jacobi methods and the
projection algorithm, and nonlinear approximation algorithms, such as the Jacobi method
[FF(x;) = Fi(a} @i, 2f ), i € {1,...,n}, where ;_ denotes the subvector of z with indices
lower than 7, and ;, , correspondingly, the subvector with higher indices], the Gauss—Seidel
approach [F}(z;) = Fi(z,_,z;, 2} ), i € {1,...,n}], and regularization methods [F*(z) =
F(z) + v.R(z, "), where {v;} is a sequence of positive parameters and x +— R(z,z") is a
strongly monotone mapping]; see [9, 4] for surveys of successive approximation methods for
[VIP(F, X)].

The convergence of such classical approaches is often based on a guaranteed monotone
decrease of a merit function which is artificial in the sense that it is not possible to evaluate
and therefore possible to utilize neither to monitor the convergence of the algorithm nor in
line searches for accelerating its convergence. One example of an artificial merit function is
the (unknown) Euclidean distance from a given iterate to the solution set §2 of [VIP(F, X)].

Recently, reformulations of asymmetric variational inequalities as, in general nonconvex,
optimization problems have been shown to naturally lead to convergent descent algorithms
(e.g., [3, 7]). In such reformulations, the problem [VIP(F, X)] is supplied with a specially
constructed (calculable) merit function, 1, whose (local) minima coincide with the solution
set Q of [VIP(F, X)]. In algorithms based on the direct minimization of ¢, the solution
y¥ to an approximate variational inequality [VIP(F*, X)] defines a descent direction, d* %
y* — 2%, for 1); the next iterate is defined as the (approximate) solution to the problem
. k k
£>0: igi?dkex¢(x ).

The first known descent algorithm of this type is given by Zuhovickii et al. [16]; see [10, 11,
7, 12] for surveys of descent methods for variational inequalities. Some of these algorithms
are convergent under weaker conditions on the problem data than the classical successive
approximation approaches, and the introduction of the line search may also lead to a higher
practical convergence rate.

In general, however, in order to establish the convergence of either one of the two types
of algorithms a strict or strong monotonicity assumption on F is required. [Examples
of algorithms that require only monotonicity of F' are the extragradient method [6] (a
modification of the projection method), the descent method of Smith [13], and descent
algorithms based on Newton’s method (e.g., [8]).] In addition, the convergence conditions
frequently include the required knowledge of certain problem parameters, such as the strong
monotonicity and Lipschitz constants of F', which may be difficult to estimate, and further
conditions which are difficult to verify in practice. This is in contrast to the mild (and
in many cases easily verified) conditions that guarantee the convergence of these types of
algorithms in the case of convex programming [11].

The need for these strong assumptions to hold in order to guarantee the convergence of
iterative algorithms for [VIP(F, X)] is very unfortunate, in view of the fact that important
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applications of variational inequalities may fail to satisfy them; one example is traffic equi-
librium models with detailed representations of junctions which, according to Heydecker [5],
can not satisfy a strict monotonicity assumption.

Recently, Zhu and Marcotte [15] established the convergence of a general descent algorithm
for variational inequalities, which requires only monotonicity of F'. The purpose of this
note is to show that this algorithm may be shown to be a slight modification of classical
successive approximation schemes as well as descent algorithms recently presented for the
solution of [VIP(F, X)], which all require strict or strong monotonicity of F'in their original
statements. Thus, by introducing the proper modifications of these algorithms, convergence
may be established under much milder assumptions on F'. Furthermore, the additional
technical conditions present for the original algorithms may be removed, thus enabling a
much easier verification of the convergence conditions.

In the next Section, we give a short description of the algorithm of Zhu and Marcotte,
and the requirements for its convergence. In Section 3, we relate the algorithm classes of
Dafermos [2], Cohen [1], Wu et al. [14], Patriksson [10, 11], and Larsson and Patriksson [7]
to each other and to the algorithm of Zhu and Marcotte. Utilizing these relationships
we establish the modifications to these algorithms that are necessary in order to yield
convergence under only a monotonicity assumption on F'.

2 The algorithm of Zhu and Marcotte

Henceforth, we shall assume that X is bounded. (This ensures that the solution set (2 is
nonempty. )

Let ¢ : X x X — R be a continuously differentiable function on X x X of the form ¢(x,y),
strictly convex with respect to y. Further, let ¢ be such that V,¢(z, z) =0, for all z € X.

Let a > 0, define .
Gale) = max { F@)"(e = 9) = ~o(x0)} 1

yeX

and let y,(x) denote the (unique) solution to the inner problem of (1).

The algorithm of Zhu and Marcotte proceeds as follows.

Step 0 (Initialization) Choose 2° € X, €, a9, Ay > 0, and 0 < 3,v,0 < 1. Let k = 0.

Step 1 (Search direction generation) Evaluate G, (z%), and let d* = y,, (2%) — z*.

Step 2 (Stopping criterion) If G, (%) < €, then stop. If

T (T 0 0 0 0) = ) = 00, ()}

then let ap; = ap + A, ¥ = 2% and go to Step 1; otherwise, let a1 = oy,
and go to Step 3.

Goy (2) <



Step 3 (Armijo-type line search) If G, (z* + d*) < G, (z*), then let t;, = 1; otherwise, let
m be the smallest positive integer such that

G, (2%) = G, (2% + pmd*) > —a 3"V Gy, (F) T dF, (2)

and t, = 8. Let 2! = 2% +¢,d* k:=k + 1, and go to Step 1.
The convergence of the algorithm is given by the below theorem.

Theorem 1 [15] (Convergence of the algorithm of Zhu and Marcotte) Let F' be continu-
ously differentiable, monotone and Lipschitz continuous on X. Let 2° be arbitrary in X.
Then either the algorithm terminates at a solution to [VIP(F, X)] or it generates an infinite
sequence {x*} such that any limit point is a solution to [VIP(F, X)].

In the next section we relate some earlier proposed iterative schemes for the solution of
[VIP(F, X)] to each other and to the algorithm of Zhu and Marcotte. We finally describe
the modifications to these algorithms that are necessary in order to ensure convergence
under only a monotonicity assumption on F'.

3 Algorithmic equivalence results and modified de-
scent algorithms

We first state the generic cost approximation algorithm for [VIP(F,X)], introduced by
Patriksson [10, 11] and Larsson and Patriksson [7].

Choose a sequence {p*} of strictly convex and continuously differentiable functions " :
X — R" and a merit function .

Step 0 (Initialization) Choose 2° € X, and let k = 0.

Step 1 (Search direction generation) Let y(z"*) be the solution to

ma {[F(2") = Vo' ()] (2" —y) = ")} (3)

yeX
Let d* = y(a*) — a*.
Step 2 (Stopping criterion) If y(z*) = 2%, then stop.
Step 3 (Line search) Find a step length, 5, which (approximately) solves the problem

min  (2F + tdb). (4)

t>0: ak+tdkeX

Let 21 = 2% 4+ t,.d*, k:= k + 1, and go to Step 1.
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Below, we state an algorithmic equivalence result, which establishes the close relationships
among iterative methods for [VIP(F, X)], including the one of Zhu and Marcotte.

Theorem 2 (Algorithmic equivalence results)

(a) If the sequence {©F} is given by ©* = @(-,2%), where ¢ : X x X — R is continu-
ous on X x X, then the resulting subproblem (3) is equivalent to the subproblems of
Dafermos [2] and Wu et al. [14].

(b) If the sequence {p*} is given by ©* = agp, where ap > 0 and ¢ : X — R is strictly
convet, then the resulting subproblem (3) is equivalent to the subproblem of Cohen [1].

(c) If the sequence {©*} is given by oF = aikqﬁ(a:k, -), where ap > 0 and ¢ : X x X — R
is given as in Section 2, then the resulting subproblem (8) is equivalent to the inner

problem of (1).

Proof.

(a) See [10, 11, 7].
(b) See [11, T7].
(c) Let o* = a—1k¢(x"‘, -). Then V*(zF) = 0, and (3) equals (1). O

To describe the above mentioned algorithms as instances of the generic cost approximation
algorithm, we need only to specify the choices of step lengths in Step 3. The successive
approximation algorithms of Dafermos and Cohen correspond to taking unit steps, while
the descent algorithms of Wu et al. and Larsson and Patriksson include line searches with
respect to merit functions of the form (3). The generic algorithm includes a wide variety
of classical algorithms for variational inequalities; for instance, with ¢, = 1, the projection
algorithm results from the choice ¢*(z) = ;27 Bz, where B € R™*" is symmetric and posi-
tive definite, and the symmetrized Newton method from the choice ¢*(z) = 22TV F (2%)x.
Further examples are found in [10, 11, 7.

The convergence of the algorithms of Cohen, Dafermos, Wu et al., and Larsson and Pa-
triksson all require F' to be at least strictly monotone. (In the case of Cohen, F' must be
strongly monotone.) Further, the convergence conditions of all these algorithms include
additional assumptions on the relationships among problem parameters, such as the strong
monotonicity and Lipschitz constants of F' and of the respective choices of ©*. By intro-
ducing the proper modifications of these algorithms, so that they fall into the framework of
Zhu and Marcotte, all these assumptions may be replaced by only monotonicity, according
to Theorem 1.

In the case of Cohen’s [1] algorithm (the auziliary problem principle), the sequence {ay}
of parameters would be governed by the scheme of Section 2. In the case of Dafermos [2],



Wu et al. [14], Patriksson [10, 11], and Larsson and Patriksson [7], the function ¢ would
be replaced by a sequence {aikcp} of functions. In all these algorithms, a line search of the
type given in Step 3 of the algorithm of Zhu and Marcotte would replace a line search of
the form (4) or a unit step.

Disregarding the line search step of the algorithm of Section 2, which is only considered when
it is necessary in order to guarantee global convergence, the algorithm contains the same
steps as the successive approximation version of the generic cost approximation algorithm;
an implementation of, for instance, a modified version of an instance of the algorithm class of
Dafermos would therefore amount to only minor adjustments of an existing implementation.

4 Conclusion

In this note, we have established that with only minor adjustments, classical successive
approximation algorithms and descent algorithms for variational inequalities, which re-
quire the problem defining mapping to be at least strictly monotone, can be made globally
convergent under only a monotonicity assumption. Furthermore, with these minor ad-
justments, the additional technical assumptions and the required knowledge of estimates
of certain problem parameters, which are present in the convergence conditions of their
original statements, may be removed; thus, a much easier verification of the convergence
conditions is enabled.
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