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Abstract

As a means to obtain a more accurate description of traffic flows than that provided by
the basic model of traffic assignment, there have been suggestions to impose upper bounds
on the link flows. This can be done either by introducing explicit link capacities or by
employing travel time functions with asymptotes at the upper bounds. Although the latter
alternative has the disadvantage of inherent numerical ill-conditioning, the capacitated
assignment model has been studied and applied to a limited extent, the main reason
being that the solutions can not be characterized by the classical Wardrop equilibrium
conditions; they may, however, be characterized as Wardrop equilibria in terms of a well-
defined, natural generalized travel cost.

The introduction of link capacity side constraints makes the problem computationally
more demanding. The availability of efficient algorithms for the basic model of traffic
assignment motivates the use of dualization approaches for handling the capacity con-
straints. We propose and evaluate an augmented Lagrangean dual method in which the
uncapacitated traffic assignment subproblems are solved with the disaggregate simplicial
decomposition algorithm. This algorithm fully exploits the subproblem’s structure and
has very favourable reoptimization capabilities; both these properties are necessary for
achieving computational efficiency in iterative dualization schemes. The dual method
exhibits a linear rate of convergence under a standard nondegeneracy assumption. The
efficiency of the overall algorithm is demonstrated through experiments with capacitated
versions of well-known test problems, with the conclusion that the introduction of link
capacities increases the computing times with no more than a factor of four.

The introduction of capacities and the algorithm suggested can be used to derive tolls for
the reduction of flows on overloaded links. The solution strategy can be applied also to
other types of traffic assignment models where side constraints have been added in order
to refine a descriptive or prescriptive assignment model.

Keywords: Capacitated Traffic Assignment, User Equilibrium, Generalized Wardrop

Conditions, Queue Equilibrium, Augmented Lagrangean, Disaggregate Simplicial De-

composition.
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1 Introduction

1.1 Background and motivation

A class of mathematical models which is frequently studied in the field of urban traffic
planning is the traffic assignment problems. These models may, depending of the charac-
teristics of the real-world situation to be modelled and the purpose of the model, include
a variety of different aspects, but they all have in common that they aim at describing,
predicting or prescribing a traffic flow pattern in a road network where there is some (fixed
or elastic) travel demand and where congestion effects result in flow-dependent link travel
times. The flow pattern is determined according to a prescribed performance criterion
which, typically, involves a measure of the disutility, e.g., cost, of the total traffic flow in
the urban area. Often, the travel cost is set equal to the travel time, and these terms are
therefore mostly used interchangeably.

The two most commonly employed performance criteria are the two optimality principles
of Wardrop (1952). The first one is based on the intuitive behaviour of traffic, i.e., that
each user of the congested traffic network seeks to minimize his/her own travel time, and
it is therefore also known as the user optimum, or equilibrium, principle. If the vector of
functions describing the travel times on the links of the road network is integrable and
monotone, then Wardrop’s first principle of optimality gives rise to a convex mathematical
program (e.g., Dafermos, 1972), which was first formulated by Beckmann et al. (1956)
for the case of separable travel cost functions. Non-integrable travel cost functions have
asymmetric Jacobian matrices and the resulting traffic assignment problems are therefore
called asymmetric. Such problems typically arise when modelling flows of different modes
(e.g., Dafermos, 1972) or when link travel times depend on traffic flows on other links, and
it may be formulated as, for example, a variational inequality problem (Smith, 1979, and
Dafermos, 1980), a nonlinear complementarity problem (Aashtiani, 1979, and Aashtiani
and Magnanti, 1981), or as a, generally nonconvex, mathematical program by the use of
so called gap functions (e.g., Hearn et al., 1984). Wardrop’s second principle, the system
optimum principle, corresponds to minimizing the total travel time. If the travel time
functions are separable, monotonically increasing and convex, traffic flows in agreement
with this principle can be found through the solution of a convex mathematical program.

The well-known basic model of traffic assignment has received a lot of attention and several
highly efficient solution methods have been developed for it. (See Patriksson, 1994, for a
thorough review of traffic assignment models and methods.) One important reason for this
attention is that its simplicity and nice interpretations makes it attractive for practitioners,
and that its very special structure together with its large size in practical applications
makes it a challenge for academic research aiming at the development of efficient special-
purpose algorithms. The reader should in particular recall that all efficient algorithms
for the basic model exploit its inherent Cartesian product structure (e.g., Larsson and
Patriksson, 1992).

A fundamental principle underlying the basic model is the steady-state assumption of
the Wardrop conditions; thus, the model’s validity and applicability rest heavily on the
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stability (as well as, of course, the knowledge) of its components. In a practical application
it is not a trivial task to well estimate the data involved. Considering the link travel cost
functions, their estimation involves the choice of a functional form and the calibration of
the resulting functional parameters. The classical BPR formula [see (19)], for example,
is based on the estimation of a practical capacity, which measures the maximal flow on a
link that does not cause any significant congestion effect; the proper estimation of these
capacities is, of course, not obvious. Furthermore, some quantities which highly influence
the travel time on a link may vary in an unpredictable manner (e.g., the travel demand,
the weather conditions and the proportion of different types of vehicles in the traffic flow);
consequently, under some circumstances the model may yield traffic flows which are far
from correct. If the deviation is unacceptable from the practical viewpoint, then the
model needs to be refined in order to capture variations in the real-world traffic system.
An example of such an improvement is the introduction of time-slices to capture variations
in travel demands and travel time characteristics.

Another limitation of the basic model is that its inherent simplicity may make it inap-
plicable to more complex real-world traffic problems (e.g., Sender and Netter, 1970). For
example, it does not capture the interactions between the flows on intersecting links, or
between vehicles of different types.

Such flow relationships may be captured through the introduction of non-separable, and
usually asymmetric, travel time functions. The resulting class of models has been ex-
tensively studied from a theoretical and algorithmical point of view (see, e.g., Nagurney,
1993, and Patriksson, 1994, and the references cited therein). [The asymmetric mod-
els have received a lot of attention mainly due to their mathematical elegance and nice
interpretations; real-world applications are scarce, however.]

While improving the basic model’s ability to accurately describe and predict a real-world
traffic situation, modifications of the travel time functions are, however, not natural and
adequate means for incorporating traffic flow restrictions such as link capacities, joint
capacities in junctions or on two-way streets, or the presence of a traffic control policy;
a fundamental reason for the inadequacy is the difficulty in estimating proper travel
cost functions for describing such restrictions. The natural alternative for describing and
capturing these supplementary flow restrictions is to introduce side constraints, which may
have immediate physical interpretations. (We believe that these interpretations make it
easier for a traffic engineer to identify a set of side constraints than to make proper
estimates of parameter values in complex travel time functions.)

Although this approach seems to be useful from a practical point of view, it has received
very little attention; the main reason for this is that the solutions to the resulting models
can no longer be given characterizations as Wardrop equilibria in the classical sense.
Moreover, as a result of the addition of the side constraints the Cartesian product structure
of the feasible set of the basic model is lost, thus obtaining a computationally more
demanding model.

We study a special side constrained model: the capacitated traffic assignment problem.
The steady-state solutions to this model is known to have a characterization as a Wardrop
equilibrium flow in terms of the sum of travel times and queueing delays on saturated links.
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This generalized travel cost is, in fact, the natural one to be minimized by the individual
travellers in a capacitated network with queueing. (This characterization is in Larsson
and Patriksson, 1995, generalized to a class of convexly side constrained traffic assignment
models, thereby showing that solutions to side constrained models have characterizations
as Wardrop equilibrium flows in terms of natural cost functions.)

The objective of this paper is to establish that the capacitated traffic assignment problem
may be efficiently solved through a combination of an augmented Lagrangean dualization
scheme (see Bertsekas, 1982, for a comprehensive introduction to this class of methods)
and an efficient solution method for the basic model, the disaggregate simplicial decompo-
sition method (Larsson and Patriksson, 1992), thereby showing that the traffic assignment
model may be computationally tractable even though it is extended with side constraints.

1.2 A review of capacitated assignment

To model congestion effects on road links many classes of travel cost functions have been
suggested (see, e.g., Branston, 1976), but in practice the ones most frequently used are
polynomial functions. These yield travel times that are finite for all link flows, so that
the roads are implicitly modelled to be able to carry arbitrarily large volumes of traffic;
in practice, however, road links of course have some finite limits on traffic flows. To
cite Hearn (1980), this deficiency of the model causes that “the predicted flow on some
links will be far lower or far greater than the traffic engineer knows they should be if all
assumptions of the model are correct. In practice, the result is that the model predictions
are ignored, or, more often, the user will perturb the components of the model (trip table,
volume delay formulas, etc.) in an attempt to bring the model output more in line with
the anticipated results.” A simple way of enhancing the quality of an assignment model
would thus be to include upper bounds on link flows. This can be done either explicitly,
through the introduction of link capacities , or implicitly, through the use of asymptotic
travel time functions, i.e., functions describing that a link’s travel time goes to infinity
when its flow approaches its upper bound (Daganzo, 1977a and 1977b), but neither of
these two methodologies have been studied to any greater extent. It is then interesting to
note that in some of the first mathematical models of traffic assignment problems (e.g.,
Jorgensen, 1963 and Tomlin, 1966), link flow capacity constraints were used to model
congestion effects.

Link flow capacity constraints typically arise from traffic control policies or as a result
of congestion. Examples of the first are speed limit regulations and cycle times of traffic
signals (e.g., Yang and Yagar, 1994). These are prescribed capacities which are imposed
upon the users of the traffic system, and they are therefore usually known exactly; they
are also hard, in the sense that they can never be violated (unless, perhaps, by traffic
offenders). [This type of capacity restrictions may cause steady-state queues to appear
on the capacitated links; see Section 2.1 for a discussion on steady-state link queueing
delays in capacitated networks.]

The second type of capacity restrictions is of a descriptive nature, and results from and
varies with the prevailing traffic conditions. Under steady-state conditions, the link flows
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are usually much lower than the practical capacities. During peak-hours, however, the
link flows are unstable and the resulting capacities (which may be taken as the estimated
maximal average values of the fluctuating link flows) may be violated; when a link flow
exceeds the capacity a queue is building up at the link’s exit, while, during periods when
the flow falls below the capacity the queue is dissolving. Obviously, no link capacity of
this type is valid for every possible traffic condition; hence, the traffic model must be
supplied with different capacity levels for different traffic situations (for example time-
slices). [Compare with the use of different travel time functions in different time-slices,
as mentioned in Section 1.1.]

Note that while the prescriptive (i.e., hard) capacity constraints of course need to be
fulfilled exactly in a calculated solution, the flows resulting from a model with descriptive
(i.e., weak) link capacities (which, in general, are known only approximately) may be
allowed to slightly exceed their capacity restrictions. (In the latter case, the heuristic
procedure outlined in Section 4.4 need not be included in the algorithm.)

From a modelling point of view, capacity constraints have the advantage of allowing the
link flows to reach their upper bounds, whereas asymptotic travel time functions yield
flows that are strictly below their bounds. Moreover, Boyce et al. (1981) have empiri-
cally found that asymptotic travel time functions yield unrealistically high travel times
and devious rerouting of trips. A disadvantage of imposing explicit link capacities is
that the Cartesian product structure of the uncapacitated problem is lost, thus making
the problem more demanding computationally. Especially, the linear subproblem of the
Frank–Wolfe and simplicial decomposition type methods will, instead of a set of shortest-
route problems, become a linear multicommodity minimum cost network flow problem
(Klessig, 1974), which is computationally burdensome. Under strong assumptions on the
travel time functions and the choice of initial point, the multicommodity flow subproblem
of the Frank–Wolfe method may be relaxed into shortest-route subproblems while main-
taining convergence to an optimal flow pattern (Daganzo, 1977a and 1977b, and Hearn
and Ribera, 1981). A solution to an explicitly capacitated user equilibrium assignment
problem will not comply with Wardrop’s first principle (Hearn, 1980); however, it will
satisfy a modification of this principle where the usual travel costs are replaced by well-
defined generalized travel costs. Computationally, the asymptotic travel time functions
have the disadvantage that they may result in numerical difficulties. Also, whenever the
problem is solved by a feasible-direction algorithm (e.g., the Frank–Wolfe method), these
travel time functions make it necessary to initialize the algorithm through the calculation
of a flow pattern which is strictly feasible with respect to the implicit upper bounds on
the link flows (Daganzo, 1977b); this task is non-trivial though (e.g., Inouye, 1986).

1.3 Preview

Since an uncapacitated assignment problem may be solved very efficiently, a natural
solution strategy for the capacitated model is to transform it into a sequence of un-
capacitated problems, tending to one which is equivalent to the original, capacitated,
problem. Most methods suggested for the capacitated model are therefore based on pe-
nalization/dualization concepts, see Section 2.2.
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We employ an augmented Lagrangean dual scheme. Such schemes combine traditional
exterior penalty methods with Lagrangean dual schemes; typically, they yield faster
multiplier convergence than in ordinary dual schemes and also avoid the numerical ill-
conditioning inherent in penalty methods. A major difference between the proposed
augmented Lagrangean scheme and the ones previously studied for the capacitated model
is that the uncapacitated subproblems are solved much more efficiently, using the disag-
gregate simplicial decomposition algorithm. This algorithm fully exploits the underlying
problem structure and has very good reoptimization properties; both these facilities are
of outmost importance in order to reach computational efficiency.

Because of the dual character of augmented Lagrangean schemes, feasible solutions to
the original problem will, generally, be found in the limit only, even though the primal
solutions’ infeasibilities will in later iterations be small. We show that this weakness
of augmented Lagrangean schemes can be suitably dealt with, at least in this applica-
tion, through the inclusion of a heuristic procedure which constructs feasible solutions
by carefully manipulating the (slightly) primal infeasible solutions to the Lagrangean
subproblem.

The remainder of the report is organized as follows. In Section 2, we introduce the mathe-
matical model of capacitated user equilibrium assignment, state the optimality conditions
as a Wardrop-type principle in terms of generalized travel costs, give a queue equilibrium
characterization of its solution, and review the previously suggested solution methods. We
next establish a conceptual augmented Lagrangean scheme, provide convergence results,
and interpret the scheme as a mathematical simulation of a real-life traffic engineering
process. The fourth section describes an implementable version of the conceptual scheme.
Section 5 gives computational results for small and medium-size test problems derived
from well-known uncapacitated problems through the introduction of properly chosen ex-
plicit link capacities; the purpose of the experiments is to illustrate various characteristics
of the scheme and prove its viability. Finally, in Section 6 we draw conclusions and suggest
directions for future developments.

2 Capacitated traffic assignment

Let G=(N ,A) denote a strongly connected transportation network, with N and A being
the sets of nodes and links (arcs), respectively. For certain ordered pairs of nodes, (p, q) ∈
C, where node p is the origin, node q the destination, and C is a subset of N ×N , there
are given positive demands dpq for origin-destination (or commodity) flows which give rise
to a link flow pattern f = (fa)a∈A when distributed through the network. Associated
with each link a ∈ A is a link performance function, ta : ℜ+ 7→ ℜ++, which measures
the disutility of using the link as a function of its flow. Further, because of congestion
effects these functions are strictly monotonically increasing. We consider the problem of
determining a user equilibrium traffic flow pattern fulfilling the travel demands.

The first to clearly formulate the user equilibrium route choice criterion was Wardrop in
1952, although it already in 1920 was touched upon by Pigou.
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Wardrop’s first principle: The journey times on all the routes actually used are equal,
and less than those which would be experienced by a single vehicle on any unused route.

Let cpqr denote the travel time on route r in origin-destination pair (p, q) ∈ C resulting
from a given feasible flow pattern, and assume, without any loss of generality, that the
first l routes are actually used, i.e., carry positive flows. Then, the flow pattern is a user
equilibrium if and only if

cpq1 = cpq2 = . . . = cpql,

and the unused routes in the origin-destination pair have travel times that are at least as
large as that of the used routes, for any pair (p, q) ∈ C.

Letting Rpq be the set of simple routes in origin-destination pair (p, q) ∈ C, hpqr the
flow on route r, and πpq the least travel time from node p to node q, the Wardrop user
equilibrium conditions may equivalently be stated as

hpqr > 0 =⇒ cpqr = πpq,
hpqr = 0 =⇒ cpqr ≥ πpq,

to hold for all pairs (p, q) ∈ C. As was established by Beckmann et al. (1956), one may also
derive a linearly constrained convex mathematical program whose Karush–Kuhn–Tucker
conditions are equivalent to the Wardrop conditions.

2.1 The capacitated model and its optimality conditions

Introducing link capacities ua ∈ ℜ++ ∪ {+∞}, a ∈ A, the arc-route formulation (e.g.,
Dafermos and Sparrow, 1969) of the capacitated user equilibrium traffic assignment prob-
lem is

[TAP-C]

min T (f) =
∑

a∈A

∫ fa

0
ta(s)ds, (1a)

subject to

∑

r∈Rpq

hpqr = dpq, ∀(p, q) ∈ C, (1b)

hpqr ≥ 0, ∀r ∈ Rpq, ∀(p, q) ∈ C, (1c)
∑

(p,q)∈C

∑

r∈Rpq

δpqrahpqr = fa, ∀a ∈ A, (1d)

fa ≤ ua, ∀a ∈ A, (1e)

with

δpqra =

{

1, if route r from node p to node q contains arc a,
0, otherwise

defining the arc-route incidence matrix. Dropping the capacity side constraints (1e),
the basic model of traffic assignment, to be referred to as [TAP], is obtained. We will
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throughout the paper presume that the link capacities are large enough to allow all travel
demands to be distributed through the network, so that [TAP-C] has a feasible solution.

The problem [TAP-C] is a convex mathematical program which, because of the strict
convexity of the objective with respect to the link flows, has a unique optimal link flow
solution, denoted f ∗, although there are, in general, alternative optimal route-flow solu-
tions. Let πpq, (p, q) ∈ C, and βa, a ∈ A, denote optimal values of the Lagrange multipliers
for the demand feasibility constraints (1b) and the capacity constraints (1e), respectively.
Since the Abadie constraint qualification is always fulfilled for linearly constrained pro-
grams (e.g., Bazaraa et al., 1993, Lemma 5.1.4), the Karush–Tuhn–Tucker conditions
stated below are both necessary and sufficient for the optimality of h in [TAP-C]; similar
optimality conditions have been stated by Jorgensen (1963), Hearn (1980), and Inouye
(1986).

cpqr +
∑

a∈A

δpqraβa ≥ πpq, ∀r ∈ Rpq, ∀(p, q) ∈ C,

βa ≥ 0, ∀a ∈ A,
∑

r∈Rpq

hpqr = dpq, ∀(p, q) ∈ C,

hpqr ≥ 0, ∀r ∈ Rpq, ∀(p, q) ∈ C,
∑

(p,q)∈C

∑

r∈Rpq

δpqrahpqr ≤ ua, ∀a ∈ A,

hpqr(cpqr +
∑

a∈A

δpqraβa − πpq) = 0, ∀r ∈ Rpq, ∀(p, q) ∈ C,

βa(ua −
∑

(p,q)∈C

∑

r∈Rpq

δpqrahpqr) = 0, ∀a ∈ A

Introducing a generalized route travel cost

cpqr = cpqr +
∑

a∈A

δpqraβa, r ∈ Rpq, (p, q) ∈ C,

a capacitated user equilibrium flow satisfies, for all (p, q) ∈ C, the conditions

hpqr > 0 =⇒ cpqr = πpq,
hpqr = 0 =⇒ cpqr ≥ πpq,

i.e., all routes utilized in an origin-destination pair have equal generalized travel costs,
which are given by the optimal multiplier value πpq, and no non-utilized route in the pair is
cheaper. Hence, by replacing the actual travel costs with generalized ones, a capacitated
user equilibrium state satisfies a Wardrop-type condition. (The converse conclusion is
invalid since the complementarity conditions for the link flow capacity constraints are not
necessarily satisfied whenever the above Wardrop-type conditions hold; however, a partial
converse will be established below.)

The reader should note that although the equilibrium generalized route travel costs πpq,
(p, q) ∈ C, are unique, this is not true in general for the optimal multipliers βa, a ∈ A; in
the sequel, βa, a ∈ A, will denote some arbitrary optimal multiplier values.
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One can, in general, not relate the actual travel costs of the unused routes to those of the
used ones; for example, the cheapest route in an origin-destination pair may be unused
because its generalized cost is too high. Furthermore, the Wardrop principles for [TAP]
are intimately associated with the Cartesian product structure of its feasible set, and one
can for the capacitated problem not state similar optimality conditions in terms of actual
travel costs. (The extensions of Wardrop’s first principle given by Anantharamaiah, 1974,
and Stefek, 1989, are incorrect or, possibly, poorly formulated.) However, the following
condition bears a strong resemblance to Wardrop’s first principle (cf. Jorgensen, 1963, for
the case of constant travel times).

Theorem 2.1 (A Wardrop-type principle) Consider an arbitrary optimal route flow so-
lution to [TAP-C] and let (p, q) ∈ C. Assume, without any loss of generality, that the first
l routes are actually used, and that among these the first m are unsaturated, i.e., contain
no link which carries flow at its capacity level. Then,

cpq1 = . . . = cpqm ≥ cpq,m+1 ≥ . . . ≥ cpql,

and no unused route has a lower generalized cost than the used ones.

It should be noted that the capacitated equilibrium link flow pattern found by solving
[TAP-C] may also be found by solving an uncapacitated equilibrium problem [TAP] with
travel time functions

ta(·) + βa, a ∈ A. (2)

In the words of Jorgensen (1963), the optimal multipliers βa, a ∈ A, “measure the time
gained by users of routes filled to capacity compared to the fastest route still available.”
Equivalently, they are the link tolls that drivers on saturated routes are willing to pay for
letting them continue to use routes that are faster than the non-saturated ones. Beck-
mann and Golob (1974) make a similar observation for a capacitated, system optimum
assignment model, where the multipliers are interpreted as link tolls which produce a sys-
tem optimum when the individual travellers minimize their respective generalized travel
costs.

In a network where saturated links have queues at their exits, the multipliers may be
interpreted as the equilibrium time delays caused by the queuing. Specifically, we then
assume that each link is in two distinct regimes. In the first part of the link (which
includes its entrance), one observes a moving traffic stream; in the second part of the link
(which includes its exit), one observes a queue whenever the link is saturated. (The queue
is assumed to be short compared to the link’s total length, so that the travel time in the
moving stream can be considered to be unaffected by the presence of the queue.) It is
then natural to consider the value ta(fa) as being the travel time of the moving traffic
stream, while the value of the multiplier term in (2) is the waiting time in the queue at
the link’s exit, i.e., its queueing delay.
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In the special case when the link travel times are flow independent, Payne and Thompson
(1975) [see also Smith, 1987] use the concept of queue equilibrium to establish a charac-
terization of solutions to the capacitated problem; this result is extended to the case of
non-constant link travel times by Miller et al. (1975).

Specifically, a feasible link flow f to the capacitated traffic assignment problem together
with a vector q ∈ ℜ|A|

+ of link queueing delays is defined to be a queue equilibrium if the
links unsaturated at f carry no queues. Notice that this definition is merely a restatement
of the complementarity conditions for the link flow capacity constraints. Therefore, the
below characterization result is easily established.

Theorem 2.2 (A queue equilibrium characterization of solutions to [TAP-C]) Let f be a
feasible link flow solution to [TAP-C]. It is then an optimal link flow if and only if there
is a vector β of non-negative Lagrange multipliers for the capacity constraints such that f
is a Wardrop equilibrium with respect to the generalized link travel costs ta(·)+βa, a ∈ A,
and (f, β) is a queue equilibrium.

Hence, the optimal values of the Lagrange multipliers β may be interpreted as equilibrium
link queueing delays.

The solution of a capacitated problem can be used as a means for guiding the traffic
engineer how to correct the travel time functions in order to bring the flow pattern into
agreement with the anticipated results (Hearn, 1980). As compared to heuristic ad-
justments of the travel time functions, the described strategy has the advantage that it
is certainly easier for the engineer to give reasonable estimates of link capacities than
to estimate how an adjustment of the travel time functions will affect the uncapacitated
equilibrium flow pattern. The solution method to be presented can actually be interpreted
as an automatized process of adjusting the travel time functions towards the correct ones,
which are reached in the limit.

Moreover, in a traffic situation in which some link flows exceed desired maximal traffic
volumes (which, for example, may emanate from maximal allowed concentrations of ex-
haust fumes or levels of noise in sensitive areas), the solution of [TAP-C] may be used
for constructing price-directive traffic control schemes through link tolls given by optimal
values of the multipliers β; by introducing these tolls, the flows on the overloaded links
are reduced to within the desired ranges.

2.2 Review of previous solution methods

When solving [TAP] with a Frank–Wolfe type algorithm, the subproblem separates into a
number of shortest route problems. However, if applying such an algorithm to [TAP-C],
the subproblem becomes a linear multicommodity flow problem (Klessig, 1974), which is
prohibitively expensive to solve repeatedly. Solution methods proposed for [TAP-C] are
often based on the recognition of this fact; they may be divided into two categories.
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In the first, attempts are made to use shortest route subproblems to generate search
directions. The algorithm is initialized at an inner point with respect to the link capacities,
and to ensure convergence the travel time functions must satisfy the coercivity condition

lim
fa→ua

∫ fa

0
ta(s)ds = +∞, ∀a ∈ A, (3)

which effectively reduces the problem to an uncapacitated problem with asymptotic cost
functions (Daganzo, 1977a and 1977b). Hearn and Ribera (1981) instead assume that
the sequence {lk} of step lengths is bounded from below by some positive number. One
sufficient condition for this assumption to be fulfilled is that the initial point is strictly
better (in terms of the objective value) than any feasible solution at which some capacity
constraint is active; the existence of such an initial point is not guaranteed for the travel
time formulae most often used [such as the BPR formula (19)]. However, it is implied
by the condition (3). A possibility to ensure convergence when using general travel time
formulae is to invoke a Frank–Wolfe subproblem (a linear multicommodity flow problem)
whenever the shortest route solution does not yield a sufficient progress (i.e., when a step
length lk falls below some prespecified parameter l > 0); see the dissertation by Stefek
(1989).

Stefek’s main theme is the development of simplicial decomposition type algorithms
(Hearn et al., 1987) for the capacitated problem. In these algorithms, the line search
step of his Frank–Wolfe type method is replaced by a multi-dimensional search over the
intersection of the convex hull of the hitherto generated subproblem solutions and the
set defined by the capacity constraints. The safe-guarding strategy of the Frank–Wolfe
type algorithm is used also in these methods; whenever the extreme points corresponding
to the shortest route patterns do not provide sufficient descent in the restricted master
problem, a linear multicommodity flow subproblem is invoked. (In a direct application of
simplicial decomposition, subproblems would always be multicommodity flow problems
and the master problem would not include the capacity constraints; such a scheme would,
however, not be efficient, because of the high computational cost of the subproblems.)
Stefek also presents a variation in which Lagrange multipliers for the capacity constraints
of the master problem are used to price-out those constraints in the subproblem, thereby
reducing the number of iterations in which a multicommodity flow subproblem have to be
invoked. Computational experiments with three medium-scale problems show that these
extensions of the simplicial decomposition principle are for lightly capacitated problems
superior to a straightforward application of this principle (where the multicommodity flow
subproblems are solved by a Dantzig–Wolfe decomposition, i.e., a column generation, ap-
proach), but inferior for heavily capacitated ones.

In the second approach, the capacitated problem is converted into a sequence of uncapac-
itated problems through a penalization/dualization of the capacity constraints (1e), so
that efficient methods for [TAP] may be applied for the solution of [TAP-C]. (Of course,
[TAP-C] may be relaxed in alternative ways; in Hearn and Lawphongpanich, 1989, and
Larsson et al., 1992, the definitional constraints (1d) are Lagrangean dualized, and in
Inouye, 1986, all constraints but (1d) are augmented Lagrangean dualized.)

10



For the case of constant travel times, Jorgensen (1963) suggests applying the Dantzig–
Wolfe decomposition method (which may be interpreted as a cutting plane method applied
to a dual problem), but does not give any computational results. For the case of flow-
dependent travel times, he suggests using approximating piece-wise constant travel time
functions; the approximate problem may then be restated as a problem with constant
travel times in an enlarged network. Miller et al. (1975) also present a column generation
approach for the case of constant travel costs, in which the restricted master problems
are solved using a generalized upper bounding technique (see, e.g., Lasdon, 1970).

Hearn (1980) proposes to include the explicit link flow capacities in an extended objec-
tive function by means of an exterior penalty function, thereby obtaining an uncapaci-
tated traffic assignment subproblem, which is solved by the Frank–Wolfe method. The
behaviour of the overall penalty method is illustrated through small-size numerical ex-
amples. Inouye (1986) applies an interior penalty method in which the subproblems are
solved using the Frank–Wolfe method, and presents results for a small example.

Vanderstraeten-Tilquin (1977), Hearn and Ribera (1980), and Polak (1983) all employ
iterative augmented Lagrangean schemes. In Vanderstraeten-Tilquin’s scheme, the unca-
pacitated subproblems are solved by the application of a non-linear version of the out-of-
kilter method to single-commodity problems obtained in a cyclic decomposition scheme.
In the algorithm of Hearn and Ribera, the subproblems are solved by the Frank–Wolfe
method. They consider two types of augmented Lagrangean functions and apply one of
them to a small numerical example. Vanderstraeten-Tilquin gives also two other solution
principles for the capacitated problem. The first is a subgradient optimization procedure
for finding optimal allocations of the total link capacities to the separate commodities;
this is essentially the same algorithm as the one for linear multicommodity network flows
proposed by Kennington and Shalaby (1977). The second involves the solution of a se-
quence of lower-dimensional subproblems obtained through partitionings of variables and
relaxations of non-negativity constraints (see also, e.g., Lasdon, 1970, Chapter 5). From
some experimentation with small-scale test problems, Vanderstraeten-Tilquin concludes
that the latter method is unfeasible for larger problems, and that the augmented La-
grangean scheme is the most viable among the two others (at least in the absence of an a
priori knowledge of a good estimate of the optimal objective value, which would improve
the performance of the subgradient optimization scheme).

3 The augmented Lagrangean scheme

Consider the problem [TAP-C] stated as

[TAP-C]

min T (f),

subject to

ga(fa) ≤ 0, ∀a ∈ A,

f ∈ F,

11



where
ga(fa) = fa − ua, a ∈ A

and
F =

{

f ∈ ℜ|A|
∣

∣

∣ ∃h such that (1b)–(1d) holds
}

.

If applying an exterior penalty method (e.g., Fiacco and McCormick, 1968) to [TAP-C],
the capacity constraints are included in an extended objective function by means of a
penalty function P : ℜ|A| 7→ ℜ satisfying

(1) P (f) ≥ 0 for all f ∈ F ,

(2) P (f) = 0 if and only if ga(fa) ≤ 0 for all a ∈ A,

(3) P is continuous on F .

An example of such a penalty function is

P (f) =
∑

a∈A

pa(fa), (4)

where
pa(fa) = ra[ga(fa)]

ma

+
def
= ra max{0, ga(fa)}

ma , ra > 0, ma ≥ 2, (5)

which was used by Hearn (1980) in a capacitated traffic assignment context.

Introducing a penalty parameter c > 0, the penalized objective

Pc(f) = T (f) + cP (f),

the penalty subproblem
Pc = min

f∈F
Pc(f),

which amounts to solving an uncapacitated traffic assignment problem, and its solution

f(c) = arg min
f∈F

Pc(f),

one may show that

(1) Pc ≤ T (f ∗) for all c > 0, and

(2) limc→+∞ f(c) = f ∗.

For a differentiable and separable penalty function, like (4), optimal Lagrange multipliers
for the penalized constraints may be estimated using the result (e.g., Hearn, 1980)

lim
c→+∞

c
dpa

dfa

∣

∣

∣

∣

∣

fa=fa(c)

= βa, ∀a ∈ A.
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In order to avoid the ill-conditioning inherent in the penalty approach, one may introduce
a Lagrangean term in the extended objective, thus creating an augmented Lagrangean
function (Hestenes, 1969, Powell, 1969, Rockafellar, 1973b, and Bertsekas, 1975 and 1982).
Letting µ denote the vector of Lagrange multipliers for the dualized constraints and using
the penalty function (4) with ra = 1

2
and ma = 2, a ∈ A, the augmented Lagrangean

function becomes (Rockafellar, 1973a)

Lc(f, µ) = T (f) +
∑

a∈A

pa(fa, µa, c), (6)

with

pa(fa, µa, c) =
1

2c
([µa + cga(fa)]

2
+ − µ2

a), a ∈ A. (7)

Defining the augmented Lagrangean dual objective function through the solution of the
uncapacitated traffic assignment subproblem

Lc(µ) = min
f∈F

Lc(f, µ) (8)

and denoting the subproblem solution by

f(µ, c) = arg min
f∈F

Lc(f, µ), (9)

we have that (Rockafellar, 1973a), for any c ≥ 0,

(1) Lc(µ) ≤ Lc(β) = T (f ∗) for all µ ≥ 0,

(2) limµ→β f(µ, c) = f(β, c) = f ∗.

Hence, the augmented Lagrangean dual objective function is, for any c ≥ 0, maximized
by arbitrary optimal values of the Lagrange multipliers, and the optimal flow pattern may
be obtained for finite values of the penalty parameter. Also, although the flow pattern
f(µ, c) is in general infeasible in [TAP-C] unless µ = β, it will become near-feasible for
near-optimal values of the multipliers.

The choice c = 0, which gives the ordinary Lagrangean dualization scheme, is feasible
because of the strict convexity of T ; see, e.g., the discussion following Theorem 6.5.1 in
Bazaraa et al. (1993). In general, however, the augmented Lagrangean schemes have
superior convergence characteristics, and from now on, we thus presume that c > 0.

Optimal multipliers may be found by solving the augmented Lagrangean dual problem

max
µ

Lc(µ), (10)

where Lc is concave and differentiable, with

∂Lc(µ)

∂µa

= max
{

ga(fa(µ, c)),−
µa

c

}

, a ∈ A. (11)

A steepest ascent multiplier update with step length c yields (see Bertsekas, 1982, p. 162)

µa := [µa + cga(fa(µ, c))]+, a ∈ A; (12)

13



if c is sufficiently small, the value of Lc will ascend. [One may also show (Bertsekas, 1982,
Proposition 5.8) that if µ is sufficiently close to an optimal dual solution, also the value
of the Lagrangean dual function L0 will always ascend.]

Although convergence is ensured for any positive value of c, a good practical performance
demands for a careful choice (e.g., Hestenes, 1975, and Bertsekas, 1982). Especially, there
is a trade-off between a high rate of convergence in the multiplier space and the degree
of ill-conditioning of the Lagrangean subproblem; see Luenberger (1984, Chapter 13).
Usually, the initial value of c chosen is small, and then increased whenever a measure of
the total infeasibility in the dualized constraints does not improve sufficiently fast (e.g.,
Powell, 1969). We thus introduce a non-decreasing sequence {ck} of positive penalty
parameters, and define a sequence of primal-dual iterates through the formulae

fk = f(µk, ck), (13)

µk+1
a = [µk

a + ckga(f
k
a )]+, a ∈ A, (14)

where k = 1, 2, . . ., with µ1 being some initial guess.

Theorem 3.1 (Convergence of the augmented Lagrangean scheme) Let µ1 be arbitrary,
{(fk, µk)} be given by (13), (14), and {ck} satisfy ck ≥ c > 0 for all k. Then, {fk} → f ∗

and every accumulation point of {µk} (at least one exists) is a vector of optimal Lagrange
multipliers for (1e).

Proof. Follows from, e.g., Kort and Bertsekas (1976). 2

Remark 3.1 If ck ≡ c > 0, then the sequence {µk} converges; furthermore, this is true
even when the subproblem (13) is solved inexactly only (Rockafellar, 1973b, 1976a).

Remark 3.2 As stated in Section 2.1, the optimal Lagrange multipliers for the capacity
constraints may be seen as link tolls which, when imposed upon the travellers, yield
an uncapacitated user equilibrium traffic flow pattern that fulfils the link capacities. The
iterative search procedure (13), (14) may thus be interpreted as a mathematical simulation
of a real-life process in which a traffic engineer attempts to limit link flows by introducing
link tolls and modifying them until the travellers’ behavioural response is the intended
one. Moreover, the traffic engineer employs the very natural strategy of modifying the
link tolls in proportion to the violations of the link flow limitations that he/she tries to
impose. (This strategy for finding suitable link tolls can certainly not be implemented in
the real-life traffic system.)

To be able to obtain rate of convergence results, one must impose a strict complementarity
condition which amounts to the assumption that a user of a saturated link is faced with
an additional cost, for example delay in a queue (see Section 2.1).

Strict complementarity assumption. Let (f ∗, β) be any optimal primal-dual pair.
Then βa > 0 for any a ∈ A such that f ∗

a = ua.
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Theorem 3.2 (Convergence rate results for the augmented Lagrangean scheme) Let
ta : ℜ+ 7→ ℜ++ be continuously differentiable on ℜ+ for all a ∈ A, and let the strict
complementarity assumption hold. Let µ1 be arbitrary, {(fk, µk)} be given by (13), (14),
and {ck} satisfy ck+1 ≥ ck ≥ c > 0 for all k.

(a) {fk} → f ∗ and {µk} converges to a vector β of optimal Lagrange multipliers for (1e).
Furthermore, for all a ∈ A such that f ∗

a < ua holds {µk
a} converges to zero finitely.

(b) If lim supk→∞ ck < +∞ and µk 6= β for all k, then {µk} converges linearly.

(c) If {ck} → +∞ and µk 6= β for all k, then {µk} converges superlinearly.

Proof. The theorem follows from results in Bertsekas (1982). Under the assumptions
on [TAP-C], Assumption (S+) on p. 161 holds. Then, from Proposition 3.2, this is also
true for Assumption (S) on p. 104.

(a) Follows from Theorem 3.1 and Bertsekas (p. 162).

(b) Follows from Proposition 2.7 and the above.

(c) Follows from Proposition 2.7 and the above. 2

Remark 3.3 Corresponding results for inexact solutions of the subproblem (13) can
be derived from results in Kort and Bertsekas (1976), Bertsekas (1982) and Rockafellar
(1976a).

Remark 3.4 Rockafellar (1976a and 1976b) shows that the convergence of the augmented
Lagrangean algorithm is finite if the objective exhibits a sharpness property (Polyak, 1987,
p. 136). In the dually equivalent proximal point algorithm, finite convergence is achieved
under the slightly less restrictive weak sharpness assumption (Ferris, 1991), and, thus,
the augmented Lagrangean algorithm is finite whenever (10) has a weak sharp solution.
Sufficient conditions for the solution to be weak sharp is a subject for further research.

Remark 3.5 The strong relationships between the augmented Lagrangean algorithm,
the proximal method of multipliers (e.g., Rockafellar, 1976a), and the class of regulariza-
tion methods (e.g., Polyak, 1987, Section 6.1.2) allow us to strengthen the convergence
results for the sequence {µk}: under the assumptions of Theorem 3.2.c, the sequence {µk}
converges to the vector of optimal multipliers of minimal Euclidean norm. The simulation
of the traffic engineer’s strategy outlined in Remark 3.2 thus automatically yields the link
tolls which are minimal (in the sense of the Euclidean norm). A similar nice interpretation
is obtained when viewing the optimal multipliers as equilibrium queueing delays.

In general, the sequence of primal iterates generated by the augmented Lagrangean scheme
will converge only asymptotically to the optimal flow pattern, and feasible solutions to
[TAP-C] are not found finitely. We will therefore in the final algorithm include a procedure
that heuristically converts the (approximate) subproblem solutions into feasible solutions
to [TAP-C]; see Section 4.4.
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4 An implementable version of the scheme

We now give our implementations of the steps of the conceptual scheme described so far.
Finally, the complete algorithm is summarized along with its convergence characteristics.

4.1 Initialization of the Lagrange multipliers

The choice of initial multiplier values is crucial to the overall algorithm efficiency (e.g.,
Bertsekas, 1982, Section 2.2.5), and it is advisable to utilize any knowledge about the
problem’s properties to find values that are believed to be near-optimal.

Denote by f 0 the solution to [TAP], let A
0

= {a ∈ A | f 0
a > ua} and ta = ta(f

0
a )− ta(ua),

a ∈ A
0

(see Figure 1).

[Place of Figure 1]

To motivate our choice of initial multiplier values, we consider a single over-saturated

link a ∈ A
0
. By introducing the link toll ta, the travellers will already at a flow at the

capacity level face a generalized link travel cost that equals the actual travel cost that
he/she was willing to pay before the link toll was introduced. A portion of the travellers
which corresponds to the excess flow will therefore take other routes, so that the link flow
becomes feasible with respect to the capacity restriction and also satisfies the generalized
Wardrop condition. We thus choose the values

µ1
a =

{

ta(f
0
a ) − ta(ua), if a ∈ A

0
,

0, if a /∈ A
0
,

(15)

which are believed to be near-optimal. However, they are not likely to be optimal since
the excess link flow rerouting will alter the conditions on the other links.

4.2 Choice of penalty parameter values

Guidelines for the choice of the sequence {ck} of penalty parameters are given, for example,
in Bertsekas (1982, Section 2.2.5), but a good choice usually requires some experiments. In
our application, convergence is guaranteed for any positive value of the penalty parameter,
and ill-conditioning of the subproblems (13) may therefore be avoided. On the other
hand, the values must be large enough to give a high rate of convergence of the multiplier
iteration.

We have used the updating rule suggested by Bertsekas (1982, p. 123), in which, at
each iteration, the penalty parameter is increased if the total infeasibility in the dualized
constraints does not decrease sufficiently. With g+

a (fa, µa, c) = max{ga(fa),−µa/c}, we
let

ck+1 =

{

κck, if ‖g+(fk, µk, ck)‖ > γ‖g+(fk−1, µk−1, ck−1)‖,
ck, otherwise.

(16)

16



Bertsekas recommends choosing the parameter values 2 ≤ κ ≤ 10 and γ = 0.25.

4.3 Solving the subproblems

The uncapacitated traffic assignment subproblems that need to be solved during the course
of the dual scheme differ with respect to the objective functions only, and it is therefore
suitable to choose a method with reoptimization features for their solution. A traffic
assignment method with particularly good reoptimization facilities is the disaggregate
simplicial decomposition (DSD) algorithm (Larsson and Patriksson, 1992), which works
as follows as applied to the subproblem (13).

The key observation behind the algorithm is that the feasible set of the basic model of
traffic assignment is a Cartesian product with respect to origin-destination pairs, provided
that the auxiliary link-flow defining constraints (1d) are handled implicitly. If, in the ap-
plication of a simplicial decomposition scheme, each of these sets is represented separately,
the disaggregate version of the scheme is obtained. In its master problem, there is one
convexity constraint for each origin-destination pair (p, q) ∈ C, and each convexity vari-
able defines the portion of the origin-destination demand dpq which is distributed along a

specific route in the pair. Assuming that nonempty subsets R̂pq of the sets Rpq of simple
routes, (p, q) ∈ C, are known, denoting by λpqr the variable corresponding to route r in

R̂pq and by λ the vector of all variables, the total link flows are

fa(λ) =
∑

(p,q)∈C

dpq

∑

r∈R̂pq

δpqraλpqr, a ∈ A,

and the restricted disaggregated master problem is given by

min
λ

Lc(f(λ), µ),

subject to

∑

r∈R̂pq

λpqr = 1, ∀(p, q) ∈ C

λpqr ≥ 0, ∀r ∈ R̂pq, ∀(p, q) ∈ C.

The solution of the restricted master problem provides an upper bound on the value
Lc(µ

k). The algorithm proceeds by linearizing the objective Lc(·, µk) with respect to
the link flow variables at the solution produced by the restricted master problem, and
solving the resulting linearized version of (13), which amounts to calculating the shortest
routes for all origin-destination pairs. The sets R̂pq are then augmented by the routes
not already contained in the sets. Since Lc(·, µk) is convex, the solution of the linearized
problem provides a (Frank–Wolfe) lower bound on Lc(µ

k). The greatest lower bound found
hitherto is denoted LBD. The procedure iterates until the relative difference between the
upper and lower bounds on the value Lc(µ

k) is small enough, and, at termination, the
solution to the latest restricted master problem is an approximate augmented Lagrangean
subproblem solution, fk. It is important to notice that the value LBD will at termination
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provide a lower bound on the optimal value of [TAP-C], since the latter is bounded from
below by Lc(µ

k); see Section 3.

The master problem is a convex program with very simple linear constraints. In Larsson
and Patriksson (1992), it is solved using a scaled reduced gradient method whose line
search is performed in total link flows using the Armijo step length rule. The validity of
the disaggregate simplicial decomposition algorithm is a consequence of the proof given
by von Hohenbalken (1977), although his approach includes the dropping of all columns
with zero weights. The very good reoptimization capabilities of the disaggregate simplicial
decomposition algorithm is due to the storage of routes, which enables easy reoptimiza-
tion with respect to changes in link performance functions, travel demands and network
topology, through appropriate modifications of the latest restricted master problem and
its solution.

4.4 Generating feasible solutions

A heuristic procedure for converting an approximate subproblem solution, fk, into a

feasible solution to [TAP-C], denoted f
k
, should fulfil two requirements. First, in order to

find the optimal link flows in the limit, the heuristic alteration of the subproblem solution
should be conservative in the following sense. Let f = Pr(f) be a heuristic projection of

f ∈ F onto the feasible set of [TAP-C], i.e., onto FC
def
= { f ∈ F | f ≤ u }. If the mapping

Pr has the property

‖Pr(f)− f‖ → 0 when min
y∈FC

‖y − f‖ → 0, (17)

then

‖f
k
− f ∗‖ ≤ ‖f

k
− fk‖ + ‖fk − f ∗‖

= ‖Pr(fk) − fk‖ + ‖fk − f ∗‖

→ 0, when k → ∞,

i.e., the sequence {f
k
} of feasible solutions tends to f ∗. Second, in order to make the

heuristic procedure computationally cheap, the structure of the feasible set must be ex-
ploited in its construction.

The idea behind our feasibility heuristic, which is similar to that in Larsson and Liu (1989)
for the linear multicommodity network flow problem, is to reduce the flows on the links

which are over-saturated at some main iteration k, denoted A
k

= {a ∈ A | fk
a > ua}, by

repeatedly shifting flow from a route in an origin-destination pair utilizing over-saturated
links to routes within the same pair that are strictly feasible with respect to the capacities;
these shifts of flows will clearly maintain the feasibility with respect to the travel demands.

The origin-destination pairs are selected cyclically. Within a pair (p, q), we find routes

r, s ∈ R̂pq with some link in A
k

and with all links strictly feasible with respect to the
capacities, respectively. A commodity flow is then shifted from route r to route s so that
either the flows on the links defining route r satisfy their respective capacities, a link
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contained in route r is emptied of flow, or some link along route s becomes saturated.

Then, the set A
k

is updated. The procedure is repeated until all flows on links along the
routes in R̂pq satisfy the link capacities or no flow can be shifted within the pair (p, q),
and then another pair is selected. The process terminates when all link flows satisfy their

respective capacities, i.e., A
k

= ∅, or when no flow shift is possible between any two

routes in R̂pq for any pair (p, q) ∈ C. In the former case, a feasible flow, f
k
, has been

constructed, giving an upper bound on the optimal value of [TAP-C]. In the latter case,
the heuristic has failed. The lowest upper bound found so far is denoted UBD.

Clearly, the total amount of infeasibility decreases monotonically each time a route flow
is shifted, and each of these shifts involve at most |N | link flows. Hence,

∑

a∈A

∣

∣

∣f
k

a − fk
a

∣

∣

∣ ≤ |N |
∑

a∈A
k

(fk
a − ua),

so that ‖f
k
−fk‖ → 0 when {fk} → f ∗, and we conclude that the sequence {f

k
} of feasible

solutions is optimizing in the limit (provided, of course, that the heuristic is successful in
an infinite number of iterations). Also, this heuristic procedure is computationally cheap
and easily implemented since the route flows are explicitly available from the disaggregate
simplicial decomposition scheme.

4.5 Termination criteria

When the feasibility heuristic succeeds, both lower and upper bounds on the optimal value
are available, and a natural termination criterion is

UBD − LBD

LBD
< ε1,

where ε1 > 0 is a prespecified parameter.

If the heuristic fails to generate upper bounds (which may, in particular, happen in the
early iterations), we employ a safe-guard termination criterion based on a measure of the
infeasibility of (fk, µk) with respect to the complementary slackness conditions

µa(fa − ua) = 0, ∀a ∈ A;

then the algorithm is terminated if

emax = max
a∈A

{

|fk
a − ua|

ua

∣

∣

∣

∣

∣

µk
a > 0

}

< ε2, (18)

where ε2 > 0 is a prespecified parameter.

4.6 Summary of the implemented scheme

We summarize below the steps of the algorithm.
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Step 0 (Initialization) Solve [TAP] approximately using the DSD algorithm, giving f 0

and the lower bound LBD. Choose µ1 according to (15), and c1 > 0. Choose
ε1, ε2 > 0. Let k = 1.

Step 1 (Subproblem solution) Reoptimize the augmented Lagrangean subproblem (13)
approximately using the DSD algorithm, starting from fk−1 and giving fk. Up-
date the lower bound LBD.

Step 2 (Generation of feasible solution) Generate, if possible, a feasible solution f
k

from
fk using the heuristic described in Section 4.4. If the heuristic succeeds, then
calculate the upper bound UBD.

Step 3 (Convergence check) If UBD−LBD
LBD

< ε1 → Stop. If an upper bound is not available,
then calculate emax according to (18). If emax < ε2 → Stop. Otherwise, continue.

Step 4 (Multiplier and penalty update) Let µk+1 be given by (14) and ck+1 by (16). Let
k := k + 1, and go to Step 1.

The convergence characteristics of the algorithm may be summarized as follows.

Theorem 4.1 (Convergence of the overall scheme) Let S denote the sequence of iterations
in which the primal feasibility heuristic is successful, and assume that it is infinite. Under
the assumptions stated previously, the algorithm generates sequences {µk}, {ck}, {fk},

and {f
k
}k∈S which are bounded and fulfil

(1) {µk} → β (linearly), and {µk
a} → 0 (finitely) for all a ∈ A such that f ∗

a < ua,

(2) {fk} ⊂ F and {fk} → f ∗,

(3) {f
k
}k∈S ⊂ FC and {f

k
}k∈S → f ∗.

Proof. Follows from results of Bertsekas (1982, Section 2.2.5 and Corollary 5.9), Theo-
rem 3.2, and the result derived in Section 4.4. 2

5 Computational study

In order to investigate the efficiency of the proposed algorithm, it was coded in double
precision FORTRAN-77 on a SUN 4/390 computer and numerically tested on a number
of test networks, constructed from uncapacitated test networks from the literature. In
Table 1 we give the origins and sizes of the networks used.

[Place of Table 1]
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All test problems employ the travel time formula of the Bureau of Public Roads (1964),

ta(fa) = t0a

(

1 + 0.15

(

fa

ca

)ma
)

, a ∈ A, (19)

where t0a is the free-flow travel time on link a, ma ≥ 1, and ca is its practical capacity.
The link capacities ua were chosen as

ua = Kca, K > 0, ∀a ∈ A, (20)

i.e., as a uniform scaling of the practical capacities. For each of the problems, the constant
K, which we will refer to as the capacity scaling factor , was chosen as small as possible
without causing infeasibility; thus, difficult instances of [TAP-C] are created. (Note that,
through the relations (1b), (1d) and (19), a uniform downward scaling of the vector c
of practical capacities is equivalent to a uniform upward scaling of the demand vector d.
Hence, our choice of capacity scaling factor corresponds to uniformly increasing the travel
demands until the link capacities do not allow any more travellers through the network.)

5.1 Implementational considerations

In the penalty parameter updating formula (16), the values κ = 5 and γ = 0.25 worked
well for all test problems. The initial value of the penalty parameter, c1, was chosen such
that the Lagrangean and penalty terms in (6) had the same magnitude. (A much larger
initial value degrades the rate of convergence because of numerical ill-conditioning, while
a very small initial value results in poor convergence of the multiplier iteration.)

In the disaggregate simplicial decomposition algorithm, the value of the acceptance pa-
rameter in the Armijo step length rule was chosen as in the experiments described in
Larsson and Patriksson (1992), i.e., 0.2 for the smaller problems and 0.3 for the larger
ones. Also, the solution of a restricted disaggregated master problem was terminated as
in those experiments. The relative accuracy demanded for each augmented Lagrangean
subproblem (13) was, for most problems, 1.0%. This accuracy was sufficient to reach a
solution within 0.1% to 1.0% of the optimal value of [TAP-C]. When demanding solutions
of higher accuracies, it was also necessary to solve the subproblems more accurately. The
strategy chosen in that case was to demand a relative accuracy of 1.0% initially, and then
divide it by two for three successive iterations.

5.2 Computational results

The proposed method may be viewed as a combination of Lagrangean duality and penalty
approaches, which is intended to inherit these approaches’ positive characteristics while
avoiding their respective negative ones, and it is therefore of interest to compare its
performance to that of pure Lagrangean and penalty schemes, respectively. To verify
the superiority of the combined scheme, we made a preparatory experiment in which we
compared the three methods’ performance on the Sioux Falls test network. The conclusion
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was that the augmented Lagrangean scheme indeed outperforms the other two methods;
see Larsson and Patriksson (1994) for a detailed description of these experiment.

In a second preparatory experiment, we investigated how the properties of a capacitated
traffic assignment and the behaviour of the augmented Lagrangean scheme vary with the
tightness of the link capacities. This was done by solving the test network of Hearn and
Ribera for various values of the capacity scaling factor, i.e., by uniformly rescaling the
capacities. As expected, the computing times are increasing with decreasing capacities;
this was also the case for the average generalized travel times for the utilized routes.
However, it was observed that the average actual travel times for the utilized routes may
sometimes decrease with decreasing capacities; this is due to the phenomenon known as
Braess’ paradox (e.g., Sheffi, 1985, pp. 75–77). To establish how the computational dif-
ficulty of the augmented Lagrangean subproblems varied, the average numbers of routes
generated and utilized were also recorded. These figures are of interest since they give
a notion of the size and difficulty of the restricted master problems. As expected, the
numbers of routes generated and utilized increase rapidly for small values of the capacity
scaling factor, indicating higher congestion. Moreover, when the problem is tightly ca-
pacitated, almost all routes generated are also used. Details about this experiment can
also be found in Larsson and Patriksson (1994).

In the remainder of this section, computational results for the networks in Table 1 are
reported. To enable conclusions about the true deviations from optimality at termina-
tion to be drawn, we first solved the test problems demanding very high accuracies and
recorded the optimal values. For each problem, we give the number of link flows that
are initially over-saturated and saturated at termination, respectively, and the computing
time needed to obtain a given accuracy. We also present the number of routes generated
and utilized.

The first test problem is a small-size network with a quadratic objective (i.e., ma = 1
for all a ∈ A), for which the capacity scaling factor K = 5.5 was chosen. Initially, three
links were over-saturated. At termination, after four iterations, a feasible solution with an
objective value of 85757.52 and a relative error of 0.37% is obtained. The true deviation
is, however, less than 0.0055%. The computing time was 0.87 second and the average
numbers of roads generated and utilized within the four origin-destination pairs were 2.75
and 2.25, respectively. At termination, two links out of the initially three over-saturated
ones were saturated.

The second problem is also a small network with a quadratic objective. With K = 1.5,
two of the links were over-saturated initially. After five iterations and 0.60 cpu second a
feasible solution with objective value 1483.22 and the relative error 0.49% was obtained.
The true deviation from optimum was less than 0.041%, and the average number of routes
generated and utilized were 6.75 and 5.75, respectively. Both of the initially over-saturated
links were saturated at termination.

The third problem differs from the second one in travel time formulae only (in particular,
ma = 4 for all a ∈ A). In Hearn and Ribera, capacities corresponding to K = 1 are used.
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They apply an augmented Lagrangean scheme with

pa(fa, µa, c) =



















µaga(fa) +
c

2
g2

a(fa), if µa > 0,

c

2
ga(fa)

(

ga(fa) + |ga(fa)|

2

)

, if µa = 0,

and in which the subproblems are solved by the Frank–Wolfe method. This augmented
Lagrangean function, which was first given by Pierre and Lowe (1975), was tested in our
implementation; the result was very similar to that of using (7). After 25 iterations and
2.9 seconds of computing time our method gave a dual objective value of 2307.91. The
feasibility heuristic failed in all iterations and the termination was therefore based on the
criterion (18). In Table 2, we present the link flows produced by the algorithm of Hearn
and Ribera (column A), and the proposed one (column B), respectively.

[Place of Table 2]

The fourth problem models the traffic in the city of Sioux Falls, South Dakota, using link
performance functions of the form (19), with ma = 4 for all a ∈ A. Here, K = 2.0 was
used. After two iterations the algorithm terminated with an upper bound of 43.371. The
relative error was 0.43% while the true deviation from the optimum is less that 0.22%.
The computing time used was 7.6 seconds and the average number of routes generated
and utilized per origin-destination pair was 2.23 and 1.47, respectively. Initially, 14 links
were over-saturated, and, at termination, all of these were saturated. In Figure 2 the
upper (solid line) and lower bounds (dashed line) are given.

[Place of Figure 2]

The fifth network models the city of Winnipeg and employs travel time formulae with
different values of ma. The scaling factor K = 1.8 was used. After 776 cpu seconds and
12 iterations an objective value of 892201.2 was found. The relative error was 0.72%.
The feasibility heuristic succeeded in finding a feasible flow in the last iteration only. On
average, 5.19 routes were generated in each origin-destination pair, and 3.34 of these were
utilized. Initially, 12 links were over-saturated, and finally, all of these were saturated.

6 Conclusions and further research

6.1 Capacitated assignment

We have shown that the link capacity side constrained traffic assignment model is com-
putationally tractable through the use of an augmented Lagrangean dual scheme. Some
technical contributions are also made. First, under a weak regularity assumption, we es-
tablish a linear rate of convergence of the sequence of multiplier iterates produced by the
algorithm. Second, an advanced choice of initial multiplier values is proposed, and, third,
we give a procedure that constructs feasible flow patterns by carefully manipulating the
subproblem solutions, which are, in general, infeasible in the original problem.
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Our experiments demonstrate that the capacitated model requires a computing time which
is, at most, a factor of four greater than that for the uncapacitated model solved in the
initialization of the dual scheme; we consider this increase to be quite modest taking into
account that the product structure of the basic model of traffic assignment has been lost.

The initialization of the Lagrange multipliers according to the expression (15) is justi-
fied by the observation that it leads to significant reductions in the excess flows on the
initially over-saturated links. As a rule of thumb, we suggest choosing the initial value
of the penalty parameter so that the penalty and Lagrangean terms of the augmented
Lagrangean function have the same magnitude. However, the rate of convergence is ac-
ceptable also when the penalty term is small compared with the Lagrangean term. In
general, only few iterations were needed to obtain a good accuracy; this was expected
because of the generally rapid multiplier convergence in augmented Lagrangean schemes.

Whenever the heuristic procedure succeeds in finding a feasible solution, the deviation of
the final upper bound from optimality is usually much smaller than the relative accuracy
given by the algorithm; this is because of the poor quality of the linearization based
lower bound. (In Larsson and Patriksson, 1992, it was established that the quality of
the linearization bound is, for the uncapacitated traffic assignment problem [TAP], in
general rather poor, and this property is inherited by the subproblem of the augmented
Lagrangean method.) However, the lower bound of the augmented Lagrangean method
has been observed to be much stronger than the one provided by an ordinary Lagrangean
relaxation scheme (Larsson and Patriksson, 1994).

The efficiency and very good reoptimization capabilities of the disaggregate simplicial
decomposition method (Larsson and Patriksson, 1992) motivated its use for solving the
sequence of uncapacitated traffic assignment subproblems. Indeed, the computational
effort needed for solving the subproblems was observed to decrease significantly for every
iteration of the augmented Lagrangean method. Clearly, there is a trade-off between the
accuracy to which the subproblems are solved and the number of iterations that are needed
to reach convergence in the overall scheme; our experience is that it is not worthwhile to
demand a high accuracy when solving the subproblems, at least not in the early iterations.

Although the proposed algorithm’s practical performance is quite acceptable, it can be
enhanced in various respects. First, the augmented Lagrangean scheme may be improved
in several ways, for example through the use of more advanced multiplier iteration for-
mulae (see, e.g., Section 2.3 of Bertsekas, 1982) or other types of augmented Lagrangean
functions (e.g., Tseng and Bertsekas, 1993) than the one used in our development. The al-
gorithm can also be improved by employing alternative updating formulae for the penalty
parameter (e.g., Bertsekas, 1982), or by penalizing constraints using different, and indi-
vidually updated, parameters. Another possibility is to scale the constraints, for example
so that their right hand sides become equal, before dualizing them; such a prescaling cor-
responds to introducing individual penalty parameters which are however then uniformly
updated (Conn et al., 1991). (It may, alternatively, be interpreted as a preconditioning
of the dual objective function through the transformation of the multiplier space with
a diagonal matrix.) Second, the heuristic procedure for generating feasible solutions to
[TAP-C] from the subproblem solutions can be designed differently. In particular, a more
effective procedure may be devised by manipulating the link flows instead of the route
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flow solution, and also by taking the link costs into account when striving for feasibility.

6.2 Modelling extensions

A highly interesting subject for further research is the application of the augmented La-
grangean solution principle to other extended traffic assignment models than the one
studied here. Such extended models may for example include side constraints describing
some traffic control policy, limitations on traffic flows at intersections, joint capacities on
two-way streets, requirements that observed flows on some links should be reproduced in
the calculated solution, or dynamic aspects. From the results obtained in this work, we
conjecture that such side constrained traffic assignment models can be efficiently dealt
with computationally, although these constraints destroy the product structure. A con-
firmation of this conjecture through future research could hopefully lead to a renewed
interest into the art of modelling real-world traffic problems. Important to note is that
the application of the augmented Lagrangean solution principle to side constrained traf-
fic assignment models provides a large flexibility in the design of the model, since this
solution principle can handle both non-linear and non-separable side constraints.

As described at the end of Section 2.1, explicit link capacities may be used by the traffic
engineer to calculate the appropriate corrections of tentative travel time functions. An
interesting direction of future research is to develop and formalize this technique into
a means for constructing travel time functions which take supplementary traffic flow
restrictions into account. In such a procedure one would formulate and solve a traffic
assignment problem (with relatively simple travel cost functions) which includes a set
of suitable side constrains, and then utilize the optimal Lagrange multipliers for these
constraints to derive adjusted travel time functions which indirectly take into account
the additional model components. (Observe that the optimal values of the multipliers
of course depend on the problem data, and therefore the adjusted travel time functions
may not be valid for use in another problem instance.) This way of deriving improved
descriptions of travel times may be to prefer to a calibration of parameters in non-standard
travel cost functions, since it may be comparably easy to identify a set of appropriate side
constraints and estimate the values of their coefficients, which may have very tangible
physical interpretations.

The results of Section 2.1 are in Larsson and Patriksson (1995) extended to the case of
general side constrained traffic assignment models.
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[38] Larsson, T. and Patriksson, M. (1995). On side constrained traffic assignment models—
equilibrium characterizations of solutions and an algorithm principle. Transportation Re-
search, forthcoming.

[39] Lasdon, L.S. (1970). Optimization Theory for Large Systems. New York, NY: MacMillan.

[40] LeBlanc, L.J., Morlok, E.K. and Pierskalla, W.P. (1975). An efficient approach to solving
the road network equilibrium traffic assignment problem. Transportation Science, 19, 445–
462.

[41] Luenberger, D.G. (1984). Linear and Nonlinear Programming. Second Edition. Reading,
MA: Addison-Wesley.

[42] Miller, S.D., Payne, H.J. and Thompson, W.A. (1975). An algorithm for traffic assignment
on capacity constrained transportation networks with queues. Paper presented at the Johns
Hopkins Conference on Information Sciences and Systems, Johns Hopkins University, Bal-
timore, MD, April 2–4, 1975.

[43] Nagurney, A. (1993). Network Economics: A Variational Inequality Approach. Dordrecht,
The Netherlands: Kluwer Academic Publishers.

[44] Nguyen, S. (1976). A unified approach to equilibrium methods for traffic assignment. In
M.A. Florian (Ed.), Traffic Equilibrium Methods, Proceedings of the International Sympo-
sium in Montreal (pp. 148–182). Lecture Notes in Economics and Mathematical Systems,
Vol. 118. New York, NY: Springer-Verlag.

[45] Nguyen, S. and Dupuis, C. (1984). An efficient method for computing traffic equilibria in
networks with asymmetric transportation costs. Transportation Science, 18, 185–202.

28



[46] Patriksson, M. (1994). The Traffic Assignment Problem: Models and Methods. Utrecht,
The Netherlands: VSP.

[47] Payne, H.J. and Thompson, W.A. (1975). Traffic assignment on transportation networks
with capacity constraints and queueing. Paper presented at the 47th National ORSA Meet-
ing/TIMS 1975 North-American Meeting, Chicago, IL, April 30–May 2, 1975.

[48] Pierre, D.A. and Lowe, M.J. (1975). Mathematical Programming Via Augmented La-
grangians. Reading, MA: Addison-Wesley.

[49] Pigou, A.C. (1920). The Economics of Welfare. London: MacMillan & Co.

[50] Polak, J. (1983). Some methodological aspects of equilibrium assignment algorithms. Paper
presented at the Annual Conference of the Universities’ Transport Study Group.

[51] Polyak, B.T. (1987). Introduction to Optimization. New York, NY: Optimization Software.

[52] Powell, M.J.D. (1969). A method for nonlinear constraints in optimization problems. In R.
Fletcher (Ed.), Optimization (pp. 283–298). New York, NY: Academic Press.

[53] Rockafellar R.T. (1973a). A dual approach to solving nonlinear programming problems by
unconstrained optimization. Mathematical Programming, 5, 354–373.

[54] Rockafellar, R.T. (1973b). The multiplier method of Hestenes and Powell applied to convex
programming. Journal of Optimization Theory and Applications, 12, 555–562.

[55] Rockafellar, R.T. (1976a). Augmented Lagrangians and applications of the proximal point
algorithm in convex programming. Mathematics of Operations Research, 1, 97–116.

[56] Rockafellar, R.T. (1976b). Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14, 877–898.

[57] Sender, J.G. and Netter, M. (1970). Equilibre offre-demande et tarification sur un réseau
de transport. Institut de Recherche des Transport, Arcueil, France.

[58] Sheffi, Y. (1985). Urban Transportation Networks: Equilibrium Analysis with Mathematical
Methods. Englewood Cliffs, NJ: Prentice-Hall.

[59] Smith, M.J. (1979). The existence, uniqueness and stability of traffic equilibria. Transporta-
tion Research, 13B, 295–304.

[60] Smith, M.J. (1987). Traffic control and traffic assignment in a signal-controlled network
with queueing. Paper presented at the Tenth International Symposium on Transportation
and Traffic Theory, Boston, MA.

[61] Stefek, D. (1989). Extensions of simplicial decomposition for solving the multicommodity
flow problem with bounded arc flows and convex costs. Doctoral dissertation, University of
Pennsylvania.

[62] Tomlin, J.A. (1966). Minimum-cost multicommodity network flows. Operations Research,
14, 45–51.

[63] Tseng, P. and Bertsekas, D.P. (1993). On the convergence of the exponential multiplier
method for convex programming. Mathematical Programming, 60, 1–19.

29
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No. City Reference |N | |A| |C|

1 Nguyen and Dupuis (1984) 9 13 4
2 Barton and Hearn (1979) 9 18 4
3 Hearn and Ribera (1980) 9 18 4
4 Sioux Falls LeBlanc et al. (1975) 24 76 528
5 Winnipeg Nguyen (1976) 1052 2836 4345

Table 1: Test networks
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Link Capacity A B

(1,5) 12 12.00 12.01
(1,6) 18 18.00 17.99
(2,5) 35 34.98 35.00
(2,6) 35 35.01 35.00
(5,6) 20 9.97 10.06
(5,7) 11 11.01 10.97
(5,9) 26 26.00 25.98
(6,5) 11 0.00 0.00
(6,8) 33 33.00 33.00
(6,9) 32 30.00 30.05
(7,3) 25 24.93 25.01
(7,4) 24 16.98 17.00
(7,8) 19 0.00 0.00
(8,3) 39 15.06 14.99
(8,4) 43 43.02 43.00
(8,7) 36 4.91 5.04
(9,7) 26 25.99 26.00
(9,8) 30 30.00 30.02

Table 2: Comparison of two augmented Lagrangean algorithms
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