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Abstract

Lagrangean dualization and subgradient optimization techniques are frequent-
ly used within the field of computational optimization for finding approximate
solutions to large, structured optimization problems. The dual subgradient
scheme does not automatically produce primal feasible solutions; there is an
abundance of techniques for computing such solutions (via penalty functions,
tangential approximation schemes, or the solution of auxiliary primal pro-
grams), all of which require a fair amount of computational effort.

We consider a subgradient optimization scheme applied to a Lagrangean
dual formulation of a convex program, and construct, at minor cost, an ergodic
sequence of subproblem solutions which converges to the primal solution set.
Numerical experiments performed on a traffic equilibrium assignment problem
under road pricing show that the computation of the ergodic sequence results
in a considerable improvement in the quality of the primal solutions obtained,
compared to those generated in the basic subgradient scheme.
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1 Introduction

When solving large, structured optimization problems through the utilization of La-
grangean dual formulations, subgradient optimization methods are popular since they
remarkably often are able to quickly identify near-optimal dual solutions. However, the
subgradient schemes do not directly provide solutions to the primal problem. We present
a simple means to construct such a solution by forming an ergodic sequence of Lagrangean
subproblem solutions; our analysis generalizes those for linear programs by Shor (1985)
and Larsson and Liu (1997) to the case of general convez programs.

Associated with a convex minimization program is a Lagrangean dual program. The
corresponding Lagrange function is convex (concave) with respect to its primal (dual)
variables, and the solutions to this primal—-dual pair of programs are the saddle points to
the Lagrange function. In a Lagrangean dual approach for solving a convex program, the
Lagrange function is maximized with respect to its dual variables, and the correspond-
ing primal solutions are derived from subproblems, which are usually considerably more
easily solved than the original program. For some early and important developments of
Lagrangean duality theory in nonlinear programming, see Uzawa (1958), Everett (1963),
and Falk (1967).

Over the last few decades, Lagrangean dualization techniques (e.g., Geoffrion, 1971)
have become widely used within the field of computational optimization. Some exam-
ples are given in the following. An early application of Lagrangean dual techniques was
the Dantzig-Wolfe decomposition method (Dantzig and Wolfe, 1960) for linear program-
ming problems (although it was not described in these terms), which employs an inner
approximation of the convex set defined by their constraints; this approximation can be
interpreted as the dual of a tangential approximation of the objective function of the
Lagrange dual with respect to these constraints (e.g., Lasdon, 1970, Section 8.6). The
Lagrangean relaxation technique has proven to be a powerful tool for designing efficient
heuristic solution methods for many classes of structured large scale optimization prob-
lems, in particular within the field of discrete optimization (e.g., Geoffrion, 1974, Fisher,
1981, and Beasley, 1993). In augmented Lagrangean methods (e.g., Rockafellar, 1976,
and Bertsekas, 1982) a quadratic penalty term is added to the objective function before
the program is dualized; this type of combination of Lagrangean relaxation and penalty
methods has been successful in many applications (e.g., Ruszczynski, 1989). The app-
lication of Lagrangean dual techniques to network flow problems with (strictly) convex
and separable cost functions some times gives rise to highly parallelizable algorithms (see
Bertsekas and Tsitsiklis, 1989, Chapter 5).

We next review a number of applications that demonstrate the strength of dual so-
lution approaches to large scale structured optimization problems. In an algorithm for
optimum structural design, Svanberg (1982) solves an approximate design problem —
with strictly convex objective and linear inequality constraints  using Lagrangean dual-
ity; the dual objective is smooth and it is maximized by steepest ascent (slightly modified
to take care of the nonnegativity restrictions). Lamond and Stewart (1981) show that
many balancing methods used in transportation planning and in other fields are special
cases of a method developed by Bregman (1967) applied to a Lagrange dual of a gravity
model. The minimization of a strictly convex, separable function subject to convexity
constraints can be efficiently made by utilizing Lagrangean duality (e.g., Cottle et al.,
1986); special cases of this program (e.g., the Euclidean projection of a point onto a



simplex) arise as subproblems in many iterative schemes for structured large scale pro-
gramming. Balakrishnan et al. (1989) develop a dual ascent procedure to solve large scale
uncapacitated network design problems; they report successful results from applications
to models arising in freight transportation. Fisher (1994) solves vehicle routing problems
to optimality by a branch—and-bound algorithm, where lower bounds are generated using
Lagrangean relaxation, the resulting subproblem solutions essentially being k-trees; the
algorithm has produced proven optimal solutions for several difficult problems.

In the last few years, Lagrangean dual approaches have received a renewed interest
for the solution of large scale linear programs. Goffin et al. (1992 and 1993) propose
a new treatment of the master program in the Dantzig-Wolfe method; the resulting
method performs well in applications to large scale structured linear programs. Hauer
and Hoganson (1996) solve large linear programs arising in forest management scheduling,
using Lagrangean relaxation and subgradient optimization; here the Lagrangean dual
approach is especially appropriate since the constraints are soft, that is, they need not be
fulfilled exactly. Jones et al. (1993) apply the Dantzig—Wolfe decomposition principle to
different formulations of linear multicommodity network flow problems.

1.1 Primal convergence in Lagrangean dual schemes

What then are the main advantages of Lagrangean dual approaches? Many computa-
tionally demanding optimization problems can be interpreted as fairly easily solvable
problems which are complicated by side constraints. An example of a problem which can
be characterized as such is the travelling salesman polytope, which can be expressed by
spanning tree constraints and node degree (side) constraints. In a Lagrangean relaxation
formulation of a program, these side constraints are moved to the objective, where they
are included, weighted by multipliers. The relaxed problem that is thereby created takes
the side constraints into account implicitly (and the new program is more easily solved
than the original one). The solution to the relaxed problem will, in general, not satisfy the
relaxed constraints, but the violation can, in a certain sense, be minimized through the
solution of a Lagrangean dual program, which is always convex. Moreover, the feasible
solutions to the dual program yield bounds on the optimal objective value of the original
program.

However, the Lagrangean duality concept has a few drawbacks, some of which we aim
to remedy through this work. If the original program is nonconvex if it is, for example,
a discrete optimization problem — then there is usually a gap between the optimal primal
and dual objective values; this property makes it difficult to construct proper termination
criteria for algorithms based on Lagrangean relaxation formulations. Moreover, not even
in the (unlikely) case that an exact dual solution is at hand is a primal optimal solution
easily available. One reason for this inconvenience is that the Lagrangean function may
not have a saddle point in the nonconvex case. Another reason is that the dual objective
function (also in the convex case) is typically nonsmooth, especially at an optimal dual
solution; then an optimal primal solution is (usually) a nontrivial convex combination of
the extreme subproblem solutions. Within linear programming this property has been
referred to as the noncoordinability phenomenon (Dirickx and Jennergren, 1979). In the
case that the original objective function is strictly convex, the Lagrangean dual objective
function is differentiable, whence this phenomenon does not appear. A lot of effort has
been put into inducing primal convergence in Lagrangean relaxation schemes for convex



programming. We go on to an overview of the main types of approaches used for this
purpose.

Approach 1.1 (Removing the nonsmoothness). In the methods of Jennergren (1973) and
Mangasarian (1981) linear price functions and quadratic perturbation of the linear objec-
tive, respectively, are employed. Closely related to these approaches are the augmented
Lagrangean dual solution methods for convex programming (e.g., Rockafellar, 1976, and
Bertsekas, 1982); these methods can be interpreted as combinations of Lagrangean dual-
ization and penalty approaches, where the nonlinear penalty term induces coordinability.
Dem’yanov and Malozemov (1974, p. 230) solve convex—concave saddle point problems; in
order to receive strict convexity—concavity they add (subtract) a strictly convex quadratic
term to (from) the convex (concave) component of the function. Feinberg (1989) in-
troduces coordinability in a Dantzig Wolfe type scheme, by using strictly convex price
functions.

In these methods, exact primal feasibility and complementarity are typically reached
in the limit only. Although their memory requirements are fairly low, each of their
subproblems is computationally more demanding than that of the ordinary Lagrangean
dual approach. O

Approach 1.2 (Using ascent methods). For large block-angular linear programs, Ruszcz-
ynski (1989) proposes an augmented Lagrangean method in which the multiplier steps
form an ascent procedure with respect to the ordinary Lagrange dual problem; its con-
vergence is finite. Ben-Tal and Bendsge (1993) reformulate a problem of truss topology
design to an unconstrained minimization problem with a convex and piecewise quadratic
objective function; it is solved by an e-steepest descent algorithm. In a proximal bundle
method applied to a Lagrange dual of a convex program, aggregated subproblem solu-
tions asymptotically solves the primal program (Kiwiel, 1995); the aggregation weights
are computed by the solution of a quadratic program.

In these methods, feasibility and complementarity are typically reached in the limit
only (for linear programs, sometimes finitely). For large scale problems, these quadratic
programs are normally very large. O

Approach 1.3 (Solving a master problem). In the Dantzig—Wolfe decomposition prin-
ciple (Dantzig and Wolfe, 1960) a linear coordinating master program combines extreme
Lagrangean subproblem solutions into an approximate solution to the original program
(see also Lasdon, 1970, Section 8.6). In the stochastic decomposition method for two-stage
linear programs by Higle and Sen (1991), the objective function of the master program is a
piece-wise linear approximation of the original (implicitly defined) objective function. For
convex programs, Bazaraa et al. (1993, p. 230) acquire feasibility and finite e-optimality
through the minimization of an inner approximation of the objective function over the
convex hull of the subproblem solutions.

In these methods, feasibility is maintained through the iterative process, while com-
plementarity is typically reached in the limit only. The master program is usually a large
linear (or, convex) program. O

Approach 1.4 (Utilizing ergodic sequences). The construction of sequences of (weighted)
averages (that is, ergodic sequences) of solutions is a widely used technique for inducing
convergence properties that an original sequence lacks. Examples of this are the method of



successive averages by Powell and Sheffi (1982), and the mean value cross decomposition
method by Holmberg (1992). In the stochastic decomposition method by Higle and Sen
(1991), averages of approximate supporting hyperplanes are used to obtain statistically
valid lower bounds, and Petersson and Patriksson (1997) employ averaging techniques
to solve saddle point problems arising from applications in the topology optimization of
mechanical structures. Shor (1985, pp. 116 118) uses ergodic sequences of Lagrangean
subproblem solutions to generate optimal primal solutions in linear programming; his
ideas are further investigated and developed, and computationally tested by Larsson et
al. (1997) for the traffic equilibrium assignment problem, and by Larsson and Liu (1997)
for structured linear programs. Sherali and Choi (1996) extend the results of Shor and of
Larsson and Liu to allow for more general choices of convexity weights and step lengths
in the subgradient scheme.

In these methods, feasibility and complementarity are reached in the limit only. In
some cases the convergence is slow, but no additional optimization problem has to be
solved and the memory requirements are low. O

1.2 Motivation and outline

In this work, we continue and further develop the ideas of Shor and of Larsson and Liu, as
described in Approach 1.4. Their results are generalized to convex programs with possibly
nonsmooth objective and/or constraint functions.

While in the methods of Approaches 1.1 1.3 above, the sub- or master problems are
computationally demanding, in our ergodic approach no auxiliary optimization problem
needs to be solved to induce primal convergence. Further, our method requires a relatively
small amount of additional memory, which is in contrast to the methods of Approaches 1.2
and 1.3. In the methods of Approach 1.3, primal feasibility is maintained throughout the
iterative procedure. Our method, however, guarantees neither primal feasibility nor com-
plementarity in finite time when applied to general convex programs. Therefore we also
propose the use of heuristic projections of averaged solutions onto the primal feasible
set. (In the application to traffic equilibrium assignment under road pricing, which is
reported in Section 4, the special problem structure enables us to obtain primal feasibil-
ity throughout the iterative procedure.) Our method is also motivated by applications
with soft constraints, such as the large forest management scheduling problem solved
by Hauer and Hoganson (1996), and applications involving capacity expansion decisions,
such as production and work force planning problems (e.g., Johnson and Montgomery,
1974, Example 4-14). We believe that our analysis fills a gap between the analyses of
linear programs and of strictly convex programs; in the latter case it is well known that
primal convergence holds without the generation of ergodic sequences.

In Section 2 we briefly review Lagrangean duality theory for convex programming,
together with a convergence result for conditional subgradient optimization applied to the
dual program under a general step length rule that extends the divergent series rule. The
main contribution of this paper is contained in Section 3, where we present two schemes
for generating ergodic sequences of subproblem solutions which induce convergence to the
solution set of the primal program. We then show that a sequence of heuristic projections
of the averaged solutions onto the original feasible set finitely reaches c-optimality. In
Section 4 we present results from an application to traffic equilibrium assignment under
road pricing, and in Section 5 we draw conclusions and discuss briefly some opportunities



for further research.

2 Preliminaries

Let the functions f : R" — R and h; : R" — R, i € T = {1,...,m}, be convex and
(possibly) nonsmooth, the set X C R" be convex and compact, and consider the convex

prosTE f*=min f(x), (2.1a)
st hi(x) < 0, i€Z, (2.1b)
x € X, (2.1c)

with solution set X*. We assume that the set X is simple and that the feasible set
{xe X | hi(x) <0, ie€Z} isnonempty.

The following definition is to be used in the sequel. Letting S be a nonempty, closed,
and convex set, we denote by

proj(x,S) = argmin ||y — x|[, and dist(x,S)=minl|y — x|, (2.2)
yeSs yeSs

the Euclidean projection of the vector x onto the set S, and the Euclidean distance from
the point x to proj(x, S), respectively. The function dist(-,.S) is convex and continuous.

We first give a summary of the relevant Lagrangean duality theory for convex pro-
grams. Although this is a classical subject, with contributions dating back several decades
(see, e.g., Kuhn and Tucker, 1951, for an early work), to assist the reader we have chosen
the textbook by Bazaraa et al. (1993) as our basic reference.

2.1 Lagrangean duality

The Lagrange function £ : R” x ™ — R with respect to the relaxation of the con-
straints (2.1b) is L(x,u) = f(x)+u”h(x) for all (x,u) € R"xR™, where h(x) = [h;(x)]icz
for all x € R” and u = [u;];ez. For any u € R, L(-,u) is convex on R". The dual objec-
tive function # : ™ — R is concave and continuous and is defined by the dual subproblem

6(u) = min f(x) +u"h(x), uec R (2.3)
The nonempty, convex and compact solution set to this subproblem at u € R™ is
X(u)={xeX | f(x)+u"h(x) <ou)}. (2.4)
The Lagrange dual to the program (2.1) then is

0* =sup 6(u),

s.t. u>0, (2.5)

with the convex solution set U*. This dual program consists of maximizing a concave
function over a convex set; it is thus a convex programming problem. Further, by weak
duality for the primal-dual pair (2.1), (2.5), the inequality #(u) < f(x) holds whenever
u >0, x € X, and h(x) <0 (Bazaraa et al., 1993, Theorem 6.2.1).

The two following results are crucial in the development of our continued analysis. We
utilize the following notion of a closed map: A point to set map X : R™ — 2%" is closed
if {u'} ¢ R™, {u'} — u, x' € X(u') for all ¢, and {x'} — x imply that x € X (u).
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Lemma 2.1 (X(-) is a closed map). Let the sequence {u'} C R™, the map X(-) : R™ —
2% be given by the definition (2.4), and the sequence {x'} by the inclusion x' € X (u?). If
{u'} = u, then {dist(x’, X (u))} — 0. If, in addition, X (u) = {x}, then {x'} — x.

Proof. Since the functions f and h are continuous, the map X (-) is closed. Since the set
X is compact, any sequence {x'} C X is bounded, whence {dist(x’, X (u))} — 0 follows.
The second result is immediate. O

For each u € R™, we define the set Z(u) of indices corresponding to strictly positive
multipliers, u;, as Tu)={i €T | u;> 0} (2.6)

Lemma 2.2 (The Lagrange function is affine on the subproblem solution set). The func-
tions f and h;, i € Z(u), are affine on X (u) for every u > 0. Further, if the function
[ (the function h;, i € Z(u)) is differentiable, then Vf (Vh;, i € Z(u)) is constant on
X (u).

Proof. For any u > 0, let x,y € X (u) be arbitrary and A € [0,1]. By the convexity of
the functions f and h;, i € Z(u), and the definitions (2.3) and (2.4),
ou) < fOx+(1-Ny)+ Y wihiOx+ (1 A)y)

1€Z(u)

< A (f(x) + Z “ihi(x)) +(1—A) (f(}") + Z Uihi(}"))

i€T(u) i€T(n)

= M(u) + (1 —X)6(u).

Hence, the above inequalities must hold with equality. Especially, then, Ax + (1 — \)y €
X (u). Since x and y are arbitrary in X (u), this implies the first statement. The second
statement is then immediate. O

A consequence of Lemma 2.2 is that, for all u > 0 and every i € Z(u), 0h; is constant
on rint X (u); hence, for example, for every X € rint X (u), each subgradient &, € 0h;(X)
defines a hyperplane that supports the function h; at every x € X (u).

The subdifferential of the concave function # at u € R™ is (Bazaraa et al., 1993,
Definition 3.2.3)

() ={yeR™ | 0(v) <O(u) +~"(v—u), veR"},

the elements of which are called subgradients. The next proposition follows from Theo-
rem 6.3.7 in ibid., the convexity of the set X, and Theorem 11 in Lasdon (1968).

Proposition 2.3 (Subdifferential to the dual objective function). For each u € R™,
00(u) = {h(x) | x € X(u)}. Further, 0 is differentiable at u if and only if each h; is
constant on X (u), in which case V(u) = h(x) for any x € X (u). O

This result implies that the function # is differentiable at u € R™ if the set X (u) is a
singleton (Bazaraa et al., 1993, Theorem 6.3.3).
The normal cone to the set R at u € R is

Npn(u) ={veR™ |vu; =0, i€T}.

The optimality conditions for the dual program (2.5) are given by the following (ibid.,
Theorem 3.4.3).



Proposition 2.4 (Optimality conditions for the dual problem). The point u € U* if
and only if there exists a v € 00(u) such that v < 0 and u”~v = 0, or, equivalently,
90(u) N Nyw (u) # O holds, that is, —96(u) + Nym(u) > 0. O

To obtain primal-dual optimality relations, the primal feasible set must fulfil a constraint
qualification.

Assumption 2.5 (Slater constraint qualification). The set {x € X | h(x) < 0} is
nonempty. O

Under Assumption 2.5, the convex set U* is nonempty and compact, and, by strong
duality, 6(@) = f(X) holds for some pair (X,u) such that the relations @ > 0, X € X,
and h(X) < 0 hold (ibid., Theorem 6.2.4). The next proposition states conditions under
which a point x is optimal in (2.1), for the (unlikely) case that an optimal dual solution
is at hand; it follows from Theorem 6.2.5 in ibid.

Proposition 2.6 (Primal dual optimality conditions). Let Assumption 2.5 hold and let
u € U*. Then, x € X* if and only if x € X (u), h(x) <0, and u"h(x) = 0. O

The composite mapping (9¢) N (Nyy) is constant on the solution set U* (e.g., Larsson
et al., 1998, Proposition 2.1, and Burke and Ferris, 1991, Lemma 2). Hence, under
Assumption 2.5, the solution set to the primal program (2.1) may be expressed as

X*={xeX(u) |hx)<0, u"h(x)=0}, (2.7)

irrespective of the choice of u € U*, and the primal-dual optimality conditions may be
expressed as

(x,u) € X* xU* = h(x) € 00(u) N Ny (u). (2.8)

At a dual solution u € U*, the subproblem solution set X (u) is typically not a singleton;
as a consequence, the dual objective function is nonsmooth on U*, and a subgradient that
can be used to verify the optimality of such a solution, according to Proposition 2.4, is
not directly available.

2.2 Convergence of dual subgradient optimization

We consider solving the Lagrangean dual program (2.5) by the conditional subgradient
optimization method (Larsson et al., 1996a), which is given by the following. Choose a
starting solution u® > 0 and compute iterates u’ according to the formula

utr = u 4 (h(xt) — ut) : u'tt = [uH%L : t=0,1,..., (2.9)

where x' € X (u') solves the dual subproblem (2.4) at u’, so that h(x') € 90(u’) is a
subgradient to § at u’, v* € Nym(u’) is an element of the normal cone to R at u’ € R,
oy is the step length chosen at iteration ¢, and [-], denotes the Euclidean projection onto
the nonnegative orthant R’

If {v'} = {0}, then the method (2.9) reduces to the traditional subgradient optimiza-
tion method (e.g., Shor, 1985, Section 2). Choosing v" = proj(h(x’), Nyr (u’)) results
in

0, if u! =0 and h;(x") < 0,

hi(x"), otherwise, t=1...m, (2.10)



(see Larsson et al., 1996a, Lemma 3.2), defining the special case of the method (2.9) that
is called the subgradient projection method. (Note that this name is sometimes used for
traditional subgradient optimization although no projections of subgradient directions are
made in those methods.) The direction h(x") — v' from u’ € R7, as defined in (2.10), is
feasible in the program (2.5).

The convergence of the method (2.9) is established in Larsson et al. (1996a) for two
different step length rules. For the case when {v'} = {0}, Polyak (1967 and 1969) and
Ermol’ev (1966), among others, establish convergence using several different step length
rules (see also Shor, 1985, Chapter 2). In this work we utilize special cases of the divergent
series step length rule (Ermol’ev, 1966).

The next convergence result specializes that established by Larsson et al. (1996a,
Theorem 2.7) to the Lagrangean dual problem (2.5); the boundedness condition on the
sequence {v'} can always be fulfilled by construction.

Proposition 2.7 Suppose that Assumption 2.5 holds, and let the method (2.9) be applied
to the program (2.5), with the step lengths oy fulfilling the conditions

t—1 —1
ap >0, Vi, tli)rglo ap = 0, }L%lo;)% =00, and tllgloz_%o/f < 0. (2.11)
If the sequence {v'} is bounded, then {u'} — u™ € U* and {f(u")} — 0*. O

To induce convergence of the method (2.9) for adaptive step length selection rules,
based on line searches or formulas involving estimates of the optimal value, the almost
complete relaxation strategy of Dem’yanov and Vasil'ev (1985, Section 3.4) can be used
(Corollary 2.8 in Larsson et al., 1996a). It works as follows. Define the sequences {q,}
and {@;} with o, < @; for all ¢, and both satisfying the conditions (2.11)." Suppose that
at some iteration ¢, an adaptive rule has generated a (tentative) step length &;. The step
length a; used is defined as the projection of &; onto the interval [a,, @;]. The sequence
{a;}, resulting from this safeguarding strategy, satisfies the conditions (2.11).

From Propositions 2.4 and 2.7 it follows that the set 96(u>) N Nyy (u™) is nonempty.
The next proposition, which is a special case of Theorem 3.9 in Larsson et al. (1998), estab-
lishes that the sequence {h(x")} of subgradients to the dual objective function converges
in an ergodic sense to an element that verifies optimality in terms of Proposition 2.4. We
define the sequence {A4;} of cumulative step lengths by

t—1
A=Ya, t=1,2.... (2.12)
s=0

Proposition 2.8 Let Assumption 2.5 hold and the method (2.9)-(2.11) be applied to the
program (2.5). Further, let the sequences {A;} and {g'} be defined by (2.12) and

t—1
gt:AJIZash(xs), t=1,2,...,
s=0
respectively, where x* € X (u®) for all s. If the sequence {v'} is bounded, then

{dist (gt, d0(u>) N NgRT(uOC))} — 0. O

'Tt may, for example, be appropriate to let the sequences be given by a, = u/(b+t) and @; = M/(b+t),
t=0,1,..., where u > 0 (M > 0) is a very small (very large) constant and b > 0.



In the next section we establish that the sequence {x'} of subproblem solutions con-
verges in an ergodic sense to the solution set X* as expressed in (2.7).

3 Ergodic primal convergence

The application of the method (2.9) (2.11) to the program (2.5) produces a sequence
{x'} of solutions to the subproblem (2.3). We propose two schemes for generating an
ergodic sequence of subproblem solutions; each of these sequences is shown to converge
to the solution set, X*. Their generation is computationally cheap, and their storage
requires a relatively small amount of memory. In the first scheme, the sequence is defined
by (convexity) weights that are proportional to the step lengths, a;. The second scheme
presumes the use of step lengths that generalize a modified harmonic series to allow for
the utilization of the almost complete relaxation strategy (and which also satisfies the
conditions (2.11)); in this case, the ergodic sequence is defined by equal weights. We also
present a heuristic projection procedure for the finite attainment of primal e-optimality.

Henceforth, we make repeated use of the following lemma; it is a special case of a result
of Silverman and Toeplitz, and a proof can be found in, e.g., Knopp (1956, Theorem 2,
p. 35).

Lemma 3.1 Assume that the sequence {5} C R fulfils the conditions

t—1
515520; SZO,...,t—l, Zﬁtszla t:1727"'7
s=0
and lim;_, Bs = 0, s=0,1,....

If the sequence {b*} C R" is such that lim, ,,, b® = b, then lim,_, (Zg;ﬁ tsbs) =b. O

3.1 Divergent series step lengths and proportional weights

The ergodic sequence {X'} of subproblem solutions that is computed within the method
(2.9)—(2.11) applied to the program (2.5), is defined as the weighted averages

t—1
E15:14;122045:}{5’ t:1’2,,,_, (31)
s=0

where the sequence { A,} is defined in (2.12). Hence, each vector X' is a convex combination
of the subproblem solutions found up to iteration ¢, and thus X! € X holds for all ¢.

The convergence of the sequence {X'} to the set X* is established in terms of the
fulfilment of the optimality conditions of Proposition 2.6.

Theorem 3.2 (X' converges to the solution set). Suppose that Assumption 2.5 holds, let
the method (2.9) (2.11) be applied to the program (2.5), the set X* and the sequence {X'}
be given by the definition (2.7) and (3.1), respectively, and suppose that the sequence {v'}
18 bounded. Then,

faiet (2.X)} - 0.

10



Proof. Letting u®™ be the limit of the sequence {u'}, as given in Proposition 2.7, we first
show that the sequence {X'} converges to the set of subproblem solutions at u®, then
that it is feasible in the limit, and, finally, that it is complementary to u® in the limit.

By the convexity and nonnegativity of the function dist(-,S), and the definition
(2.12), the inequalities

t—1
0 < dist (X, X (u™)) < 4, audist (x*, X (u™))
s=0

hold for all ¢. By Lemma 2.1 and Proposition 2.7,

{dist (x*, X(u®))} — 0 as s — 00. (3.2)
Utilizing Lemma 3.1, with 3, = 4, 'a,, b* = dist{x*, X (u™®)} and b = 0, it then follows
that

{dist (Et, X(uoo))} — 0 as t — 0. (3.3)

By the convexity of the functions h;, i € Z, h(X") < A; ' ©!'-§ a,h(x®) for all ¢, and
from the iteration formula (2.9) it follows that h(x*) < (u*™' — u®)/a, for all s. Hence,
h(x!) < A;'(u! — u°) for all t. Proposition 2.7 implies that the sequence {u’ — u’} is
bounded and, therefore,

lim sup h;(x") < 0, VieT. (3.4)

t—o00

Now, consider an i € Z(u®). From Proposition 2.7 it follows that, for some fixed 7
that is large enough, u} > 0 for all ¢ > 7, and, by the iteration formula (2.9), vu! = 0
holds for all . Therefore, by (2.9),

hi(x) =2 yr> o (3.5)

O

Choosing X € rint X (u™) and &, € 0h;(X), Lemma 2.2 yields that
hi(x) = hi(X) + &/ (x — %), Vx € X (u™).
Then, by the continuity of the function h;, for every § > 0 there exists an € > 0 such that
hi(x) < hi(X) + €& (x —X) + g, Vx :dist (x, X (u™)) <e.
From (3.2) follows that dist(x®, X (u®)) < ¢ for all s > &, for some fixed k > 7. The
relation (3.5) then yield

R L )

Qs

Using the definition (3.1), we have for all ¢ > &,

n) > W@+l (X -x)

k—1 (s
A S ) AT - 2)
s=0
Ag _ T ul — uf A\ 6
= (e el (e -w) + —( =)



where the first inequality follows from the definition of €, and the second is implied by the
inequality (3.6). Since {A4;} — oc and {uf} — u°, then A; ' A, (h;(%X)+&] (X*~%)) > —/3
and A; '(ul — uf) > —§/3 for all t > k that are large enough. It follows that h;(X') > —0
for all t > k, that are large enough. Therefore, lim inf;_, ., h;(X") > 0, and the inequalities
(3.4) then yield that lim;_,. h;(X") = 0. Since this result holds for all 7 € Z(u™), and, by

the definition (2.6), u® =0 for all i € Z \ Z(u*™), it follows that
{(uoo)Th(ft)} — 0 as t — oc. (3.7)
The theorem follows from the relations (3.3) (3.4) and (3.7) and Proposition 2.6. O

For the case when the functions f and h;, © € Z, are affine and the set X is a polytope
(that is, when (2.1) is a linear program), and {v'} = {0} in the method (2.9)—(2.11)
applied to the program (2.5), Theorem 3.2 reduces to a result of Shor (1985, pp. 116—
118).

The next result follows from Proposition 2.7, Theorem 3.2, and the relation (2.8).

Corollary 3.3 (X' verifies optimality in the limit). Under the assumptions of Theo-
rem 3.2,

{dist (h(X"),00(u™) N Npyp (1))} = 0. O

3.2 Generalization of modified harmonic series step lengths, and
equal weights

Now, let the step lengths used in the conditional subgradient optimization method (2.9)
be minorized and majorized, respectively, by the elements of two modified harmonic series,
that is

p o M }

o € | ——, ——
! {b+tb+t

b >0, 0<pu<M<oo, t=0,1,..., (3.8)
and let the sequence {x'} of averaged subproblem solutions be defined by equal weights,

as 1 i1

)A(t:?ZXS, t:1,2, (39)
7 s=0

Analogously to the previous subsection, we will here derive the convergence of the
sequence {X'} to the solution set X*, as expressed in the definition (2.7).

Theorem 3.4 (x' converges to the solution set). Suppose that Assumption 2.5 holds, let
the method (2.9), (3.8) be applied to the program (2.5), the set X* and the sequence {X'}
be given by the definitions (2.7) and (3.9), respectively, and suppose that the sequence
{v'} is bounded. Then,

dist (X', X*)} — 0.
{aist (%, X7)]

Proof. Using arguments analogous to those used in the derivation of the result (3.3), we
have that

{dist ()Act,X(uo"))} —0 as t— oc. (3.10)

12



By the iteration formula (2.9) and the definition (3.8), h(x*) < a;'(u*™' — u?¥) <
p (b + s)(utt! —u®), for all s. Hence, for all ¢t > 1,

11 ) p ! . ) 1 ! . .
;Sz:%h(x) < Eso(u —u)—i-ﬁszg)s(u u)
Ul AR S I (RN R
= (u u ) + . (u , szou . (3.11)

Since {u'} — u™, limy_,,(ut) "' (b—1)(u’—u") = 0. Applying Lemma 3.1, with 3;, = ¢!,
b* = u®, and b = u®, then yields that {t ' >'_{ u*} — u™. It follows that the right-
hand side of (3.11) tends to the origin as ¢ — oo. By the convexity of the functions h;,
hi(x') <t 1221 hi(x®) holds for all i € Z, and therefore

limsup h;(x") <0,  Viel. (3.12)
t—oc
Now, consider an i € Z(u™), and choose an X € rint X (u*) and &, € 0h;(X).
Similarly to the derivation of the inequalities (3.6), utilizing the definition (3.8), we have
that, for every > 0 there exists a k > 0 such that

hi() + €7 (' — %) > 20

7

)
uitt — 11,'?) i Vs > k. (3.13)

Using the definition (3.9) we have, for all ¢ > &,
hi(®) > hi(x)+& (% %)

1!{71 t—1
> LY () + €] ) 3 ()
7 5=0 ' S=K
1 s N t—K O
+M;S(u;+l—uz)— ; 1
-1
— %(hl(x)+£T(§”_))+b M:H(ufuz)
1 [, K L K\ 0
(- (1) i z) - ()%

where the first inequality follows from the definition of €, and the second from the in-
equality (3.13). Since {u!} — u$°, for all ¢ > k that are large enough, it follows that
t h(hi(X) + €] (XF — X)) > —6/4, (Mt)"'(b — 1+ w)(ul — uf) > —6/4, and, utiliz-
ing Lemma 3.1, that M~*(ul — (1 — ¢t ')t — x) 'L uf) > —§/4. Tt follows that
hi(x") > —¢ for all ¢ > k that are large enough. Analogous to the result (3.7), then

{@*)"hE} =0 as  t-o o (3.14)

The theorem follows from the relations (3.10) (3.12) and (3.14), and Proposition 2.6.
O

For the case when (2.1) is a linear program, and {¢'} = {0} in the method (2.9), (3.8)
applied to the program (2.5), Theorem 3.4 reduces to Theorem 3 in Larsson and Liu
(1997).

The next result is a consequence of Proposition 2.7, Theorem 3.4, and the rela-
tion (2.8).
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Corollary 3.5 (x' verifies optimality in the limit). Under the assumptions of Theo-
rem 3.4,

{dist (h(x'),00(u>) N Npp (1))} — 0. O

3.3 Finite primal feasibility and e-optimality

The following discussion concerns the method of Section 3.1, but is applicable to that of
Section 3.2 as well.

Theorem 3.2 establishes optimality in the limit for the sequence {X'} of primal so-
lutions. While dual feasibility is maintained throughout the iterative procedure (2.9),
neither primal feasibility nor complementarity will, in general, be finitely satisfied by the
elements of the sequence {X'}. However, eventually X' will be both near-feasible and
near-complementary. For applications with soft constraints, such as the forest manage-
ment scheduling problem presented by Hauer and Hoganson (1996), for which primal
feasibility is not crucial, the elements X' will thus eventually be sufficiently close to a fea-
sible (and optimal) solution. Nevertheless, whenever primal feasibility is required finitely,
it might be necessary to apply a procedure that converts any finitely generated primal
solution X! into a feasible solution to the original convex program. One procedure for
enforcing feasibility is the solution of the Euclidean projection problem

where Y={xeX |h(x)<0}. (3.15)

(et . —t
proj (x ,Y) = arg min Hx —X ‘2,
Solving this program regularly may, however, be computationally too expensive. It is
probably better to develop a heuristic procedure, which exploits the structure of the set
Y when searching for a feasible and near-optimal solution to the projection problem (3.15).

We let proj,;(x,Y) denote a heuristic projection of a point x € R" onto the feasible
set of the program (2.1) which enjoys the following property.

Assumption 3.6 (Property of heuristic projection).? Let x € X and the set Y be de-
fined by (3.15). There exists a function § : Ry — Ry such that 6(g) > 0 for all e > 0,
lim, o+ d(e) =0, and

llproj,(x,Y) — proj(x, YY), <d(e) whenever dist(x,Y) <e. O

Theorem 3.7 (Convergence by heuristic projection). Let the set Y be defined by (3.15)
and suppose that Assumption 2.5 holds. Let the method (2.9) (2.11) be applied to the
program (2.5), the sequence {X'} be given by the definition (3.1), and suppose that the
sequence {V'} is bounded. Then, under Assumption 3.6,

{dist (proj, (¥, V), X*)} = 0.
Proof. By the definition (2.2) and the triangle inequality,

dist (projH (it, Y) ,X*) < HprojH (it, Y) — proj (it, Y)H2

(3.16)
+dist (X,Y) +dist (¥, X*) |

2This assumption expresses a continuity property on the difference between the heuristic projection
and the exact Euclidean projection.
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Since X* C Y, it follows from Theorem 3.2 that for any € > 0 there is a 7 > 0
such that dist (x',Y) < dist (X!, X*) < e for all ¢ > 7. Then, by Assumption 3.6,
llproj (X", Y) — proj(X',Y)|l2 < d(g) for all ¢+ > 7. From the inequality (3.16) it then
follows that dist(proj (X', Y), X*) < d(g)+2¢ for all £ > 7. The result follows by letting
e— 07, O

We can now construct an algorithm that employs heuristic projections and yields
convergence to the optimal value in the primal as well as in the dual procedure.

Corollary 3.8 (Finite termination at e-optimality). Let the assumptions of Theorem 3.7
hold. For every £ > 0 there is a T > 0 such that f(projy(X',Y)) — 6(u') < e holds for
allt > 1.

Proof. Choose an ¢ > 0. From Theorem 3.7 and the continuity of the function f, it
follows that there is a k > 0 such that f(proj,(X',Y)) < f*+¢/2 for all t > k. By
Proposition 2.7, there is a 7 > & such that #(u’) > 6* — /2 holds for all ¢t > 7. By
Proposition 2.6, f* = 6*, and therefore, f(proj, (X', Y)) —0(u’) <e forall t > 7. O

Since exact Euclidean projection is a special case of heuristic projection, the finite
attainment of e-optimality also occurs when an exact Euclidean projection is employed.

Remark 3.9 (Delayed start of averaging). When developing the results of this section
we utilize the properties in the limit of the sequence {X'}. Since the information from
the initial iterations of a subgradient optimization scheme is usually of low quality, it
is preferable to delay the initialization of the sequence {X'} until the iterates, u’, are
near-optimal, in the sense that they are located on optimal segments of the dual objective
function (implying that h(x") € 90(u®™) if 6 is polyhedral, and an indication of which is
that certain vectors occur repeatedly as subproblem solutions), and that u! > 0 holds for
all i such that u® > 0 (implying that vf 4 qa; '(u'*z —ut') € Nyr(u®)). This behaviour
is also apparent from the numerical experiments performed in the following section. In
our theoretical analysis, we initialize the ergodic sequences at the first iteration. Since
subgradient methods are memoryless, all of the results can, however, be modified to the
initialization of these sequences at any iteration ¢, > 1, with the obvious modification of
the convex combination formula (3.1). O

4 Application to traffic equilibrium assignment un-
der road pricing

Traffic assignment deals with the estimation of route flows in each of the origin—destination
relations of a road network, and the travel times resulting from this allocation. We
consider the traffic equilibrium assignment model, which is based on the assumption that
all road users have complete information about the current traffic conditions, and that
they choose among the shortest routes available. An equilibrium state therefore has the
property that the travel times on routes that are used are equal, that is, they are all
shortest with respect to the current traffic flow (Wardrop, 1952). Since travellers use the
shortest routes, they do not generally fulfil society’s goal of efficient road usage (which
may, for example, be a minimal total travel time). In order to fulfil this goal, during the
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last several years road pricing systems have been paid much attention (e.g., Small, 1992,
and The Economist, December 1997). In such systems, each vehicle pays a prespecified
toll for traversing certain arcs, possibly relative to the current traffic flow on these arcs.

4.1 Statement of the model

Consider a connected transportation network G = (N, A), with node set A/ and a set
A of directed arcs. Let C C N x N be a set of origin destination pairs. For each pair,
k € C, there is a fixed positive demand dj of flow, associated with a specific commodity.
We denote the nonempty set of simple routes from the origin to the destination of the
k:th pair by R, and the flow on route » € R by hg,. Feasibility with respect to demands
requires the route flows [hg, ] er, rec to satisfy the conditions

Z hkr = dk, ke C, (413)
reERy
hir > 0, re Rk, keC. (41b)
Letting [Ogralrer, kec.aca be an arc-route incidence matrix for G, with
5 = 1, if route r € R}, contains arc a € A,
bra =3, otherwise,

the arc flows, f,, are defined by the route flows, hy,, through
fa = Z Z 5krahkra ac€ A (41(‘)

keC T‘GRk

With each arc a € A is associated the travel time ¢,(f,) for traversing it at arc flow
fo > 0. We presume that the free-flow travel time, ¢,(0), is positive, and that the
functions ¢, : ¥, — RN, are continuous, strictly increasing, and weakly coercive, that is,
they tend to infinity with the flow (these assumptions are quite natural because of the
congestion effects).

The Wardrop equilibrium conditions for the model (4.1a) (4.1¢) with cost functions
Ca, a € A, are equivalent to the first-order optimality conditions (e.g., Patriksson, 1994,
Theorem 2.1) for the program

: Ja
min (E/O ca(8)ds, (4.2)
s.t. (4.1a)-(4.1c),

which has a convex and differentiable objective function and linear constraints.

For each arc a € A, let 7, > 0 be the toll (measured in time equivalents) charged each
vehicle traversing the arc when the arc flow is greater than ¢, > 0. The toll mapping
7.t Ry = 2%+ is defined by?

{0}, 0 < fo < ¢a
7Ta(fa) = [OaTa]a fa = Pa, ac A (43)
{7}, fa > ©a

3 All the results to be derived may be generalized to several toll levels for each arc a € A. For simplicity
of notation, however, we consider only one level (which may also be zero) for each arc.
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The mapping 7, is nonnegative, convex-valued,” and closed (see Section 2.1) on R, for
all @ € A. Figure 4.1 illustrates three different types of toll mappings.

a(fa) a(fa) Ta(fa)

A A A

Ta Ta

a) | b) c)

Figure 4.1: The toll mapping 7, for arc a € A with respect to the arc flow f, > 0.
a) po>0,m,>0.0) p, =0, m,>0. ¢) 7, =0, i.e., an untolled arc.

Letting py denote the travel cost (time plus toll) at flow f,, a € A, on the shortest
route from the origin to the destination of the k:th pair, the Wardrop user equilibrium
conditions for the model (4.1) with cost mappings ¢, + 7, may be stated as

hkr >0 = Z 5kra (Ca(fa) +pa(fa)) = Uk, (S Rka (443)
acA
hkr =0 = Z 5kra (Ca(fa) +pa(fa)) 2 Kk, T e Rka (44b)
acA
where
pa(fa) € Tal(fa):  a €A, (4.4c)

is the toll charged for traversing arc a at flow f,. According to (4.3), if 7, > 0 and
fa = @a, then the toll level p,(f,) has a certain degree of freedom; by allowing this degree
of freedom, we can show that an equilibrium can be found by solving a (nonsmooth)
convex optimization problem. Asmuth (1978) shows that a user equilibrium always ex-
ists when the network is strongly connected and the cost mappings are positive, upper
semicontinuous,” and convex-valued. Bernstein and Smith (1994) consider single-valued,
lower semicontinuous® cost functions; they show that under fairly mild regularity condi-
tions a user equilibrium always exists. The theory of road pricing has also been discussed
by Dafermos and Sparrow (1971), among others. However, none of these papers describe
equivalent optimization models.

Similarly to the formulation (4.2) it can be shown (see the proof of Proposition 4.1)
that the conditions (4.1) and (4.4) are the first-order optimality conditions for the program

z* =min ) /0 (cals) + ma(s)) ds, (4.5a)

*A point-to-set map 7 : R, — 2%+ is convex-valued if the set 7(f) is convex for all f € R,.
°A point-to-set map m : ®, + 2%+ is upper semicontinuous if f; € Ry for all i, {f;} — f and
t; € w(f;), for all ¢, imply that {¢;}icz — t € w(f) for some subsequence .

6A single-valued function ¢ : ® — R is lower semicontinuous if lim inf, ze(f) > c(f) for all f € R.
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S.t. Z hi, = dk, ke C, (45b)

reRy
Py 0, r€ Ry, keC, (4.5¢)
Z Z 6krahkr - fa; a € A, (45d)
keCreRy
fo = 0, a€ A (4.5€)

(The constraints (4.5e) are implied by (4.5¢) (4.5d); they have been added to strengthen
the Lagrangean dual formulation to be presented.) As a result of the assumptions made
above, this program is a highly structured, convex optimization problem with a nonlinear
and possibly nonsmooth objective function. A real world instance of this model may have
several thousand nodes, arcs, and origin—destination pairs.

From the properties of the functions ¢, and point to set mappings m,, it follows that
the objective function (4.5a) is strictly convex with respect to arc flows. Hence, the
optimal arc flow, f, a € A, is unique. However, if the arc flow variables are eliminated
from the problem, then the objective of the resulting equivalent problem in route flow
variables is, in general, non-strictly convex, since an arc flow pattern may correspond to
several route flow patterns. Hence, the sets of optimal route flows, H}, k € C, are in
general not singleton sets, but polytopes.

4.2 A Lagrangean dual formulation

For the untolled program (4.2) Larsson et al. (1997) propose a Lagrangean dual approach
in which the arc flow defining constraints (4.1c) are relaxed. The resulting solution method
essentially consists of the repeated solution of shortest path problems; it is very simple,
both from a conceptual and implementational point of view. Its merits are that, despite
its dual character, it produces a feasible flow in each iteration, and that this is done
without the solution of any additional optimization problem. In this paper, we generalize
this method to the model (4.5).

Letting u = [ug4]qca be multipliers associated with the constraints (4.5d), we define
the Lagrangean dual objective function (cf., the definition (2.3)) by

O(u) = O(u) + > a(ua).

keC acA

For each k € C and all u € R™, 6, (u) is the optimal value of the shortest simple route
subproblem, with arc costs u,, a € A, given by

fp(u) =min Y <Z u6k> Pir

reRr \acA

s.t. Z hkr = dk, (46)

reRy
h'kr > 0, TeRk.

The solution set Hy(u) to this program is a bounded polyhedron; it is not necessarily a
singleton set (especially not at an optimal point, u*). We let [hg, (u)],;er, € Hi(u), k € C,
denote an arbitrary set of solutions to the subproblems (4.6) at u. Note that, by a result
of Robinson (1984, Lemma 3.5), Hy(u) C Hy(u*) holds for any u in a sufficiently small
neighbourhood of u*; this result has a bearing to the algorithm devised in Section 4.3.
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For each a € A and all u, € R, 0,(u,) is the optimal value of the single arc subproblem

0,(u,) = min /Ofa (ca(s) + ma(s) — ug) ds, (4.7)

fa>0

which has a strictly convex and nonsmooth objective function. Since each mapping ¢, +m,
is strictly increasing and weakly coercive, the program (4.7) is uniquely solved by

0, u, < cq(0),
c, ' (ug), ca(0) < uy < calwa),
falua) = ac A (4.8)
Das Ca(a) < us < Cal@a) + Tas
c;l(ua—Ta), Uy > Col@a) + Ta,

where ¢, ! is the continuous inverse mapping (e.g., Rudin, 1976, Theorem 4.17) of the
continuous one—to—one mapping ¢,, a € A. One may note that ¢, ' is explicit for most
travel time functions used and that ¢, need not be differentiable. Figure 4.2 illustrates
the function f,(u,) for arc a = (16, 18) in the Sioux Falls network (see Section 4.4), with
ca(fa) = 0.03 4 0.00000003 - f2.

30
—1
o5l Yo = 13.82 Cq ("ta - Ta) i
7o = 0.02

20+ -
15 Pa :
1oL ca t(ua) i

5 i

0

o n | | I I I I I
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

Figure 4.2: The solution f, to the single arc flow subproblem as a function of u,.

The function 6 : R4 — R is the sum of the |C| concave and piecewise linear functions
O, k € C, and the |A| concave and differentiable functions 6,, a € A. Tt is thus finite,
continuous, concave, and subdifferentiable on R14/; its subdifferential mapping at u € R
is the bounded polyhedron (cf., Proposition 2.3)

[h’kr]reRk & Hk(ll), ke C} . (49)

60(11) = { [Z Z 5krahkr - fa(ua)]

keC T‘GRk

acA

By weak duality, #(u) < z* holds for all u € R, To formulate the Lagrangean dual
program (cf., the program (2.5)) we consider an arbitrary point u € R/, and define

U, = max {ug; c,(0)}, ac A
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Then, fo(U,) = fa(ua), so that 0,(d,) = 6,(u,). Further, 6, (1) > 6;(u) since u > u,
and it follows that (1) > #(u). Since the dual objective is maximized on R4, one can
therefore, without loss of generality, impose the restrictions u, > ¢,(0), a € A (this is
done by Larsson et al., 1997, for the untolled program (4.2), with the same motivation).
The Lagrange dual (2.5) may now be stated as

max  f(u),

st ug > ce(0), ac A, (4.10)

with solution set U*. Due to the conclusions drawn in Section 2, this is a convex program.

[t has an interesting interpretation; whereas in the primal program (4.5) the equilibrium

arc flows are sought, (4.10) is the problem of determining the equilibrium arc travel times.
The following proposition relates the primal and dual solutions.

Proposition 4.1 (Primal-dual optimality). Let u* € U* be arbitrary. Then, strong du-
ality holds, that is, 0(u*) = 2*. Further, ¥ = f,(ul), a € A, and

H; = Hi(u") m {[hkr]rem

Z Z (nghgr:f;, (LE.A}, ke C. (411)

leCreRy

Proof. The strong duality follows from Theorem 6.2.4 in Bazaraa et al. (1993). (The ap-
plication of that theorem requires that the program (4.5) has a feasible solution and that
the inclusion 0 € int{[f,—>rcic Xrer, Okraliirlaca | ([falas [Prrlir) satisfies (4.5b) (4.5¢)}
holds; the latter of these assumptions differs slightly from Assumption 2.5 and is clearly
satisfied.) By the above and Theorem 28.3 in Rockafellar (1970; see also Patriksson, 1994,
Theorem 2.1), the conditions (4.1) and (4.4) are the first-order optimality conditions for
the program (4.5). Further, the set of optimal solutions to (4.5) may be characterized as
the set of Lagrangean subproblem solutions at u* that also satisfy the constraints (4.5d)
(Bazaraa et al., 1993, Theorem 6.2.5; cf. also the relation (2.7)). The uniqueness of f,(u,),
u, € R, yields that f* = f,(u?) for all a € A, and the expression (4.11) follows. O

The proposition states that the optimal arc flow [f}],c.4 is obtained from the solutions to
the subproblems (4.7) at u* € U*. However, an optimal route flow pattern [h}, ],cr, € H}
is, in general, not directly available from the subproblem (4.6) even if an optimal dual
solution is at hand. This is so because the set [[,cc Hy(u*) is usually not a singleton, or,
equivalently, since the function 6y is usually nonsmooth at u*. (For the case when [f],c4
is known, an algorithm for calculating a solution [hj},],er, € Hj is given in Drissi-Kaitouni

(1990).)

Proposition 4.2 (Equilibrium tolls). Let u* € U* be arbitrary and [f]sea optimal in
the program (4.5). Then, the equilibrium tolls satisfy

* - U’Z*Ca(f;)v 7f f;>0’
Pa { € Wa(o)a 7f f;:O’ aEA.

Proof. Since [f}],c.4 and u* solves the primal-dual pair (4.5), (4.10), the generalized KKT
conditions (Rockafellar, 1970, Theorem 28.3) yield, for all a € A, that p,(f}) € 7. (f))

a

holds, and that u} = c,(f¥) + pa(fF) holds whenever f* > 0. O

20



4.3 The algorithm

The algorithm is based on the solution of the Lagrange dual (4.10) by the subgradient
optimization method (2.9)-(2.11). A few comments regarding its implementation are
needed. All calculations can be made in arc flows exclusively. By aggregating the feasible
shortest route flow pattern [hy,(u)],er, rec into a feasible arc flow solution

Yo = Z Z Orrahir (1), a€ A, (4.12)

keCreRy,

a subgradient to 6 at u’ (cf. the definition (4.9)) is defined by y!: — f.(ul), a € A. The
adaption of the standard subgradient algorithm (that is, the iteration formula (2.9) with
v’ = 0) to the program (4.10) is then given by

1

1
't = (= fad) s = max {un 0], aed t=0n

Remark 4.3 (Redundant subgradient projection). Every subgradient of 6 at u’ defines
a locally feasible direction in the program (4.10). This is so because if, for some a € A,
u' = ¢,(0), then the formula (4.8) yields f,(u) = 0, implying that y! — f,(ul) > 0. There-
fore, when applied to the program (4.10), the subgradient projection (see Section 2.2) is
equivalent to the standard subgradient method, in which {v'} = {0}. O

The evaluation of the objective function 6 at u essentially requires the calculation of
a shortest route pattern; in each iteration ¢, the value §(u’) defines a lower bound on the
optimal value z* of (4.5).

Embedded in the subgradient scheme is the generation of feasible solutions to the
primal problem (4.5) through the computation of convex combinations of shortest route
flow patterns, according to the formula (3.9). Previous experience from applications of
the method (2.9) (2.11) has demonstrated that the ergodic convergence of the sequence of
subproblem solutions defined by (3.8) (3.9) is superior to that defined by (3.1) (see Lars-
son et al., 1997, Larsson and Liu, 1997, and Petersson and Patriksson, 1997). Therefore,
we employ step lengths according to the formula (3.8) and define the ergodic sequence
of subproblem solutions by (3.9). For illustration purposes, we however also show results
from the application of the formula (3.1). As pointed out in Remark 3.9, the ergodic
sequences may be initialized at any iteration t, > 1; previous experience also indicates
that it is indeed preferable to choose a ¢y > 1 (see also Larsson et al, 1996b).

When applying the formula (3.9), the ergodic sequences {f{:}, a € A, of feasible arc
flow solutions are computed as’

. A — - 1

fo— ot o ﬁfﬁ] e e L2 (413)
(When applying (3.1), a corresponding formula is obtained.) It is thus not necessary
to store all the route flow patterns [hy,.(u')]y,.. Denoting the objective function of the

program (4.5) by z(f), where f def [falaca, it follows that z(ft), t > tg, are upper bounds
converging to z*.

"The reason for not defining the sequences {f;} by averages of the subproblem solutions f,(u$),
s =tg,...,t— 1, is that, whenever u? # u*, the subproblem solutions [f,(uf)].c4 typically do not define
a feasible flow; the sequences {f,(ul)} are, however, convergent.
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4.4 Numerical experiments

The proposed method was implemented in Fortran-77 on a Digital AlphaStation 2004/166
and tested on the Sioux Falls network (LeBlanc et al., 1975). This network has 24 nodes,
76 directed arcs, and 528 origin—destination pairs. We imposed positive tolls on 12 arcs
in the network, namely 7, = 0.02 on arcs (16, 18) and (18,16), 7, = 0.05 on arcs (4,5),
(5,4), (11,12), and (12,11), 7, = 0.06 on arcs (9, 10), (10,9), (15,22), and (22, 15), and,
finally, 7, = 0.07 on arcs (21, 24) and (24,21). The flow breakpoint, ¢,, for each of these
arcs was chosen as 90% of the flow on the arc at equilibrium for the original (untolled)
problem (these values were computed by the DSD code, Larsson and Patriksson, 1992).

After calibrations of the method, the following strategies and parameter values were
chosen. The step lengths were generated according to the formula (3.8) with p = M =
1/75 and b = 1, that is, a; = (75(t+1))~". In order to receive the best primal convergence
the sequence of step lengths used in the dual method should be slowly decreasing so
that all of the optimal segments of the dual function # are attained by the sequence
{u'} with appropriate frequencies. The proper choice of the sequence {o;} is evidently
problem-dependent. In the first test, the feasible arc flows were computed according to
the formula (4.13) with ¢, = 1, that is, the averaging was initiated at iteration 1. In the
second test, the averaging was initiated after 49 iterations, that is, £y = 50. The shortest
route calculations were made using a standard implementation of Dijkstra’s algorithm.

For these two tests, lower and upper bounds were recorded for 100 and 50 iterations,
respectively, and the bounds found up to iteration ¢, for t = 1,...,100, are shown in
Figure 4.3. The upper bounds obtained when the averaging starts at iteration %, are
defined by 2° = minsztn,___yt{z(fs)}, t > ty, where £* is given by the formula (4.13). The
lower bounds from the dual feasible solutions are defined by 6, = max,—o__{f(u®)},t > 0.
We define the relative difference between the upper and lower bounds after 100 iterations
as (219 — 0100)/0100- For the two values of ¢, (1 and 50) these relative differences were
0.656% and 0.171%, respectively. The final lower bound was 6,90 = 42.7037, and the final
upper bounds were zj,, = 42.9840 and zj), = 42.7766, which exceed the optimal value
2* = 42.7576 + 0.0006 (this value was obtained by our code running for 10,000 iterations)
with 0.529% and 0.0444%, respectively.

The curves in Figure 4.4 are generated similarly to those in Figure 4.3. The difference
is that the convex combinations were here computed according to the formula (3.1),
and that we made an additional test where the averaging scheme was initiated after 4
iterations, that is, to = 5. The corresponding upper bounds are here denoted zi. For the
three values of ¢y (that is, 1, 5 and 50) the relative differences between the bounds were
4.487%, 0.754% and 0.188%, respectively. The final upper bounds were zj,, = 44.6200,
Z000 = 43.0258 and 735, = 42.7838, which exceed the optimal value with 4.36%, 0.627%,
and 0.0613%, respectively.

Concerning the difference in behaviour between the schemes using either the for-
mula (3.1) or (3.9), consider the convergence of {Z}} and {z}}, respectively. The initial
all-or-nothing flow pattern y° = - (generated with link costs corresponding to
zero flow) is composed of routes that are not used to such a large extent in the equi-
librium solution, f*, since their travel costs are too high when the flow is large (in fact,
z(y") = 160.29). In the formula (3.1), however, this flow pattern receives a weight that
is considerably larger than that of the subsequent patterns, and hence its weight in £
will be substantial even for large values of ¢. This explains the very poor convergence of
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Figure 4.3: The bounds on z* found up to iteration t using the formula (3.9), for ty = 1
and 50, respectively.

{z}}, compared to {z}}, where, according to the formula (3.9), the weight of y° clearly
becomes negligible rather quickly. From this discussion and the experiments shown in
Figures 4.3 and 4.4 we conclude that the formula (3.9) combined with a relatively large
value of t; yields the best results. Note that the delayed start of averaging is supported
in theory by the result that Hy(u') C Hj(u™) holds for all ¢ that are sufficiently large
(cf. Proposition 2.7 and the discussion following the formulation (4.6)).

Defining y* = [y!],c4, we compare the primal objective values obtained from the se-
quence {y'}H% of feasible arc flows with those from the corresponding ergodic sequence
{f1}19  Figure 4.5 illustrates that the objective values from the ergodic sequence con-
verges rapidly to the optimal value z*, whereas the sequence of objective values from the
all-or-nothing solutions y'’ is clearly nonconvergent. Moreover, the time used for com-
puting the ergodic sequence {f'} is negligible (in fact, it amounts to less than one percent
of the total computing time used by the procedure). Performing 100 iterations (including
initializations and generation of output files) took 0.6 CPU-seconds on average.

We conclude that the proposed method, where the activation of the averaging pro-
cedure is delayed until the dual iterates are near-optimal, is a feasible approach to the
traffic equilibrium assignment problem under road pricing. In particular, for £, = 50, the
rate of convergence of the upper bound is very good once the averaging scheme has been
activated.

The distance between a subproblem solution (f(u’), [hg,(u')]r,) and the set defined

by the constraints (4.5d) is proportional to the length of a subgradient v¢ & y* — f(u?)

of 6 at u'. Analogously, g! % £ — (¢t — 49)~' 2'_!, f(u®) measures the distance between
an averaged subproblem solution and the set defined by (4.5d). Figure 4.6 illustrates
that the sequence {~'} is nonconvergent, whereas the sequence {g'} converges to zero
(cf., Proposition 2.8), that is, the ergodic sequence of subproblem solutions converges to
a feasible solution to (4.5).

We will now study two specific tolled arcs in the network; one with an equilibrium
flow strictly greater than its flow breakpoint and one with a flow equal to its breakpoint,
in order to study the convergence characteristics of the toll levels.
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Figure 4.4: The bounds on z* found up to iteration t using the formula (3.1), for to =1,
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Figure 4.5: Objective values with and without averaging the all or nothing flow patterns.

In Figure 4.7 we consider arc a = (16, 18) with travel time function ¢,(f,) = 0.03 +
0.00000003- f2, toll level 7, = 0.02, flow breakpoint ¢, = 13.82, and equilibrium flow f* ~
14.39 (that is, f > ¢,, and hence the equilibrium toll for this arc must be 7, (f}) = 74;
cf., the formula (4.3)). The graph shows the estimated tolls p,(fa(ul)) = u’, — ¢, (fa(ul))
for t = 1,...,100. The total arc cost at equilibrium is u} ~ 0.05129; it is composed
by the toll pX = 0.02 and the travel time ¢,(f) ~ 0.03129. Note that, by definition,
0.00 < pa(fa(ul)) < 0.02 for all ¢.

The arc chosen for Figure 4.8 is a = (9, 10) with travel time function ¢,(f,) = 0.03 +
0.00000012- £, toll level 7, = 0.06, flow breakpoint ¢, = 19.53, and equilibrium flow f =
©q- The set of equilibrium tolls for this arc must clearly be a subinterval of [0.00,0.06],
according to the formula (4.3); the actual value, p,(f,(uo°)), obtained in the limit from
the application of the dual scheme depends on the initial dual solution and the step
lengths chosen. The graph illustrates the estimated tolls p,(f.(u!)) = u! — c,(fa(u})) for
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Figure 4.7: The toll levels ul, — cq(fo(u)) for an arc with fi > ¢,.

t =1,...,100. Note that, by definition, 0.00 < p,(f.(u’)) < 0.06 for all ¢.

5 Conclusions and further research

The procedure analyzed in this paper generates an ergodic sequence of subproblem solu-
tions within a Lagrangean dual subgradient scheme for the solution of a convex program.
This ergodic sequence converges to the primal solution set, without requiring the solution
of any coordinating master problem.

The method has been implemented for solving traffic equilibrium assignment problems
under road pricing. The numerical experiments show that the solutions obtained from the
ergodic sequence of subproblem solutions are of considerably better quality than those
generated by the basic subgradient scheme.

A property of the dual subgradient method is that it can be initialized at any dual
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feasible solution. For the traffic assignment problem, an estimate of the equilibrium travel
times may be used as a starting solution.

We remark that more general equilibrium models with pricing may be constructed
and solved with the proposed methodology, along the lines presented in Larsson et al.
(1997) for the basic equilibrium model. In particular, the fixed demand model considered
in Section 4.1 may be generalized to allow for elastic demands, that is, where each dy is
a (nonnegative and nonincreasing) function of the least route cost for origin—destination
pair k.

Sherali and Choi (1996) solve Lagrangean dual formulations of linear programs by
subgradient methods, and establish the ergodic convergence of sequences of primal sub-
problem solutions; their analysis allows for more general choices of convexity weights and
step lengths in the subgradient scheme than our analysis does. An interesting subject
for further research is therefore the generalization of our results to these more general
choices.

Another natural subject for further study is to extend the results of this paper to
general convex concave saddle point problems.

Further, it would be interesting to employ our method in applications such as, for
example, the large linear programs with soft constraints studied in Hauer and Hoganson
(1996).

An extension of the results of this paper that would be of practical interest is to retain
the ergodic convergence while allowing for an inexact solution of the subproblems; such
solutions would provide e-subgradients to the dual objective function.

We are currently investigating the application of the results of this paper in the field
of discrete optimization. In such applications, the elements of an ergodic sequence in the
limit solve a convexification of the original problem; this property can be exploited in
various solution strategies.
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