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1 IntroductionWhen solving large, structured optimization problems through the utilization of La-grangean dual formulations, subgradient optimization methods are popular since theyremarkably often are able to quickly identify near-optimal dual solutions. However, thesubgradient schemes do not directly provide solutions to the primal problem. We presenta simple means to construct such a solution by forming an ergodic sequence of Lagrangeansubproblem solutions; our analysis generalizes those for linear programs by Shor (1985)and Larsson and Liu (1997) to the case of general convex programs.Associated with a convex minimization program is a Lagrangean dual program. Thecorresponding Lagrange function is convex (concave) with respect to its primal (dual)variables, and the solutions to this primal{dual pair of programs are the saddle points tothe Lagrange function. In a Lagrangean dual approach for solving a convex program, theLagrange function is maximized with respect to its dual variables, and the correspond-ing primal solutions are derived from subproblems, which are usually considerably moreeasily solved than the original program. For some early and important developments ofLagrangean duality theory in nonlinear programming, see Uzawa (1958), Everett (1963),and Falk (1967).Over the last few decades, Lagrangean dualization techniques (e.g., Geo�rion, 1971)have become widely used within the �eld of computational optimization. Some exam-ples are given in the following. An early application of Lagrangean dual techniques wasthe Dantzig{Wolfe decomposition method (Dantzig and Wolfe, 1960) for linear program-ming problems (although it was not described in these terms), which employs an innerapproximation of the convex set de�ned by their constraints; this approximation can beinterpreted as the dual of a tangential approximation of the objective function of theLagrange dual with respect to these constraints (e.g., Lasdon, 1970, Section 8.6). TheLagrangean relaxation technique has proven to be a powerful tool for designing e�cientheuristic solution methods for many classes of structured large scale optimization prob-lems, in particular within the �eld of discrete optimization (e.g., Geo�rion, 1974, Fisher,1981, and Beasley, 1993). In augmented Lagrangean methods (e.g., Rockafellar, 1976,and Bertsekas, 1982) a quadratic penalty term is added to the objective function beforethe program is dualized; this type of combination of Lagrangean relaxation and penaltymethods has been successful in many applications (e.g., Ruszczy�nski, 1989). The app-lication of Lagrangean dual techniques to network ow problems with (strictly) convexand separable cost functions some times gives rise to highly parallelizable algorithms (seeBertsekas and Tsitsiklis, 1989, Chapter 5).We next review a number of applications that demonstrate the strength of dual so-lution approaches to large scale structured optimization problems. In an algorithm foroptimum structural design, Svanberg (1982) solves an approximate design problem |with strictly convex objective and linear inequality constraints | using Lagrangean dual-ity; the dual objective is smooth and it is maximized by steepest ascent (slightly modi�edto take care of the nonnegativity restrictions). Lamond and Stewart (1981) show thatmany balancing methods used in transportation planning and in other �elds are specialcases of a method developed by Bregman (1967) applied to a Lagrange dual of a gravitymodel. The minimization of a strictly convex, separable function subject to convexityconstraints can be e�ciently made by utilizing Lagrangean duality (e.g., Cottle et al.,1986); special cases of this program (e.g., the Euclidean projection of a point onto a2



simplex) arise as subproblems in many iterative schemes for structured large scale pro-gramming. Balakrishnan et al. (1989) develop a dual ascent procedure to solve large scaleuncapacitated network design problems; they report successful results from applicationsto models arising in freight transportation. Fisher (1994) solves vehicle routing problemsto optimality by a branch{and{bound algorithm, where lower bounds are generated usingLagrangean relaxation, the resulting subproblem solutions essentially being k-trees; thealgorithm has produced proven optimal solutions for several di�cult problems.In the last few years, Lagrangean dual approaches have received a renewed interestfor the solution of large scale linear programs. Go�n et al. (1992 and 1993) proposea new treatment of the master program in the Dantzig{Wolfe method; the resultingmethod performs well in applications to large scale structured linear programs. Hauerand Hoganson (1996) solve large linear programs arising in forest management scheduling,using Lagrangean relaxation and subgradient optimization; here the Lagrangean dualapproach is especially appropriate since the constraints are soft, that is, they need not beful�lled exactly. Jones et al. (1993) apply the Dantzig{Wolfe decomposition principle todi�erent formulations of linear multicommodity network ow problems.1.1 Primal convergence in Lagrangean dual schemesWhat then are the main advantages of Lagrangean dual approaches? Many computa-tionally demanding optimization problems can be interpreted as fairly easily solvableproblems which are complicated by side constraints. An example of a problem which canbe characterized as such is the travelling salesman polytope, which can be expressed byspanning tree constraints and node degree (side) constraints. In a Lagrangean relaxationformulation of a program, these side constraints are moved to the objective, where theyare included, weighted by multipliers. The relaxed problem that is thereby created takesthe side constraints into account implicitly (and the new program is more easily solvedthan the original one). The solution to the relaxed problem will, in general, not satisfy therelaxed constraints, but the violation can, in a certain sense, be minimized through thesolution of a Lagrangean dual program, which is always convex. Moreover, the feasiblesolutions to the dual program yield bounds on the optimal objective value of the originalprogram.However, the Lagrangean duality concept has a few drawbacks, some of which we aimto remedy through this work. If the original program is nonconvex | if it is, for example,a discrete optimization problem | then there is usually a gap between the optimal primaland dual objective values; this property makes it di�cult to construct proper terminationcriteria for algorithms based on Lagrangean relaxation formulations. Moreover, not evenin the (unlikely) case that an exact dual solution is at hand is a primal optimal solutioneasily available. One reason for this inconvenience is that the Lagrangean function maynot have a saddle point in the nonconvex case. Another reason is that the dual objectivefunction (also in the convex case) is typically nonsmooth, especially at an optimal dualsolution; then an optimal primal solution is (usually) a nontrivial convex combination ofthe extreme subproblem solutions. Within linear programming this property has beenreferred to as the noncoordinability phenomenon (Dirickx and Jennergren, 1979). In thecase that the original objective function is strictly convex, the Lagrangean dual objectivefunction is di�erentiable, whence this phenomenon does not appear. A lot of e�ort hasbeen put into inducing primal convergence in Lagrangean relaxation schemes for convex3



programming. We go on to an overview of the main types of approaches used for thispurpose.Approach 1.1 (Removing the nonsmoothness). In the methods of Jennergren (1973) andMangasarian (1981) linear price functions and quadratic perturbation of the linear objec-tive, respectively, are employed. Closely related to these approaches are the augmentedLagrangean dual solution methods for convex programming (e.g., Rockafellar, 1976, andBertsekas, 1982); these methods can be interpreted as combinations of Lagrangean dual-ization and penalty approaches, where the nonlinear penalty term induces coordinability.Dem'yanov and Malozemov (1974, p. 230) solve convex{concave saddle point problems; inorder to receive strict convexity{concavity they add (subtract) a strictly convex quadraticterm to (from) the convex (concave) component of the function. Feinberg (1989) in-troduces coordinability in a Dantzig{Wolfe type scheme, by using strictly convex pricefunctions.In these methods, exact primal feasibility and complementarity are typically reachedin the limit only. Although their memory requirements are fairly low, each of theirsubproblems is computationally more demanding than that of the ordinary Lagrangeandual approach. 2Approach 1.2 (Using ascent methods). For large block-angular linear programs, Ruszcz-y�nski (1989) proposes an augmented Lagrangean method in which the multiplier stepsform an ascent procedure with respect to the ordinary Lagrange dual problem; its con-vergence is �nite. Ben-Tal and Bends�e (1993) reformulate a problem of truss topologydesign to an unconstrained minimization problem with a convex and piecewise quadraticobjective function; it is solved by an "-steepest descent algorithm. In a proximal bundlemethod applied to a Lagrange dual of a convex program, aggregated subproblem solu-tions asymptotically solves the primal program (Kiwiel, 1995); the aggregation weightsare computed by the solution of a quadratic program.In these methods, feasibility and complementarity are typically reached in the limitonly (for linear programs, sometimes �nitely). For large scale problems, these quadraticprograms are normally very large. 2Approach 1.3 (Solving a master problem). In the Dantzig{Wolfe decomposition prin-ciple (Dantzig and Wolfe, 1960) a linear coordinating master program combines extremeLagrangean subproblem solutions into an approximate solution to the original program(see also Lasdon, 1970, Section 8.6). In the stochastic decomposition method for two-stagelinear programs by Higle and Sen (1991), the objective function of the master program is apiece-wise linear approximation of the original (implicitly de�ned) objective function. Forconvex programs, Bazaraa et al. (1993, p. 230) acquire feasibility and �nite "-optimalitythrough the minimization of an inner approximation of the objective function over theconvex hull of the subproblem solutions.In these methods, feasibility is maintained through the iterative process, while com-plementarity is typically reached in the limit only. The master program is usually a largelinear (or, convex) program. 2Approach 1.4 (Utilizing ergodic sequences). The construction of sequences of (weighted)averages (that is, ergodic sequences) of solutions is a widely used technique for inducingconvergence properties that an original sequence lacks. Examples of this are the method of4



successive averages by Powell and She� (1982), and the mean value cross decompositionmethod by Holmberg (1992). In the stochastic decomposition method by Higle and Sen(1991), averages of approximate supporting hyperplanes are used to obtain statisticallyvalid lower bounds, and Petersson and Patriksson (1997) employ averaging techniquesto solve saddle point problems arising from applications in the topology optimization ofmechanical structures. Shor (1985, pp. 116{118) uses ergodic sequences of Lagrangeansubproblem solutions to generate optimal primal solutions in linear programming; hisideas are further investigated and developed, and computationally tested by Larsson etal. (1997) for the tra�c equilibrium assignment problem, and by Larsson and Liu (1997)for structured linear programs. Sherali and Choi (1996) extend the results of Shor and ofLarsson and Liu to allow for more general choices of convexity weights and step lengthsin the subgradient scheme.In these methods, feasibility and complementarity are reached in the limit only. Insome cases the convergence is slow, but no additional optimization problem has to besolved and the memory requirements are low. 21.2 Motivation and outlineIn this work, we continue and further develop the ideas of Shor and of Larsson and Liu, asdescribed in Approach 1.4. Their results are generalized to convex programs with possiblynonsmooth objective and/or constraint functions.While in the methods of Approaches 1.1{1.3 above, the sub- or master problems arecomputationally demanding, in our ergodic approach no auxiliary optimization problemneeds to be solved to induce primal convergence. Further, our method requires a relativelysmall amount of additional memory, which is in contrast to the methods of Approaches 1.2and 1.3. In the methods of Approach 1.3, primal feasibility is maintained throughout theiterative procedure. Our method, however, guarantees neither primal feasibility nor com-plementarity in �nite time when applied to general convex programs. Therefore we alsopropose the use of heuristic projections of averaged solutions onto the primal feasibleset. (In the application to tra�c equilibrium assignment under road pricing, which isreported in Section 4, the special problem structure enables us to obtain primal feasibil-ity throughout the iterative procedure.) Our method is also motivated by applicationswith soft constraints, such as the large forest management scheduling problem solvedby Hauer and Hoganson (1996), and applications involving capacity expansion decisions,such as production and work force planning problems (e.g., Johnson and Montgomery,1974, Example 4-14). We believe that our analysis �lls a gap between the analyses oflinear programs and of strictly convex programs; in the latter case it is well known thatprimal convergence holds without the generation of ergodic sequences.In Section 2 we briey review Lagrangean duality theory for convex programming,together with a convergence result for conditional subgradient optimization applied to thedual program under a general step length rule that extends the divergent series rule. Themain contribution of this paper is contained in Section 3, where we present two schemesfor generating ergodic sequences of subproblem solutions which induce convergence to thesolution set of the primal program. We then show that a sequence of heuristic projectionsof the averaged solutions onto the original feasible set �nitely reaches "-optimality. InSection 4 we present results from an application to tra�c equilibrium assignment underroad pricing, and in Section 5 we draw conclusions and discuss briey some opportunities5



for further research.2 PreliminariesLet the functions f : <n 7! < and hi : <n 7! <, i 2 I = f1; : : : ; mg, be convex and(possibly) nonsmooth, the set X � <n be convex and compact, and consider the convexprogram f � = min f(x); (2.1a)s.t. hi(x) � 0; i 2 I; (2.1b)x 2 X; (2.1c)with solution set X�. We assume that the set X is simple and that the feasible setfx 2 X j hi(x) � 0; i 2 I g is nonempty.The following de�nition is to be used in the sequel. Letting S be a nonempty, closed,and convex set, we denote byproj(x; S) = argminy2S ky� xk2 and dist(x; S) = miny2S ky � xk2 (2.2)the Euclidean projection of the vector x onto the set S, and the Euclidean distance fromthe point x to proj(x; S), respectively. The function dist(�; S) is convex and continuous.We �rst give a summary of the relevant Lagrangean duality theory for convex pro-grams. Although this is a classical subject, with contributions dating back several decades(see, e.g., Kuhn and Tucker, 1951, for an early work), to assist the reader we have chosenthe textbook by Bazaraa et al. (1993) as our basic reference.2.1 Lagrangean dualityThe Lagrange function L : <n � <m 7! < with respect to the relaxation of the con-straints (2.1b) is L(x;u) = f(x)+uTh(x) for all (x;u) 2 <n�<m, where h(x) = [hi(x)]i2Ifor all x 2 <n and u = [ui]i2I . For any u 2 <m+ , L(�;u) is convex on <n. The dual objec-tive function � : <m 7! < is concave and continuous and is de�ned by the dual subproblem�(u) = minx2X f(x) + uTh(x); u 2 <m: (2.3)The nonempty, convex and compact solution set to this subproblem at u 2 <m isX(u) = nx 2 X ��� f(x) + uTh(x) � �(u)o : (2.4)The Lagrange dual to the program (2.1) then is�� = sup �(u);s.t. u � 0; (2.5)with the convex solution set U�. This dual program consists of maximizing a concavefunction over a convex set; it is thus a convex programming problem. Further, by weakduality for the primal-dual pair (2.1), (2.5), the inequality �(u) � f(x) holds wheneveru � 0, x 2 X, and h(x) � 0 (Bazaraa et al., 1993, Theorem 6.2.1).The two following results are crucial in the development of our continued analysis. Weutilize the following notion of a closed map: A point{to{set map X : <m 7! 2<n is closedif futg � <m, futg ! u, xt 2 X(ut) for all t, and fxtg ! x imply that x 2 X(u).6



Lemma 2.1 (X(�) is a closed map). Let the sequence futg � <m, the map X(�) : <m 7!2X be given by the de�nition (2.4), and the sequence fxtg by the inclusion xt 2 X(ut). Iffutg ! u, then fdist(xt; X(u))g ! 0. If, in addition, X(u) = fxg, then fxtg ! x.Proof. Since the functions f and h are continuous, the map X(�) is closed. Since the setX is compact, any sequence fxtg � X is bounded, whence fdist(xt; X(u))g ! 0 follows.The second result is immediate. 2For each u 2 <m, we de�ne the set I(u) of indices corresponding to strictly positivemultipliers, ui, as I(u) = fi 2 I j ui > 0g: (2.6)Lemma 2.2 (The Lagrange function is a�ne on the subproblem solution set). The func-tions f and hi, i 2 I(u), are a�ne on X(u) for every u � 0. Further, if the functionf (the function hi, i 2 I(u)) is di�erentiable, then rf (rhi, i 2 I(u)) is constant onX(u).Proof. For any u � 0, let x;y 2 X(u) be arbitrary and � 2 [0; 1]. By the convexity ofthe functions f and hi, i 2 I(u), and the de�nitions (2.3) and (2.4),�(u) � f(�x+ (1� �)y) + Xi2I(u) uihi(�x + (1� �)y)� �0@f(x) + Xi2I(u) uihi(x)1A+ (1� �)0@f(y) + Xi2I(u) uihi(y)1A= ��(u) + (1� �) �(u):Hence, the above inequalities must hold with equality. Especially, then, �x+ (1� �)y 2X(u). Since x and y are arbitrary in X(u), this implies the �rst statement. The secondstatement is then immediate. 2A consequence of Lemma 2.2 is that, for all u � 0 and every i 2 I(u), @hi is constanton rintX(u); hence, for example, for every x 2 rintX(u), each subgradient �i 2 @hi(x)de�nes a hyperplane that supports the function hi at every x 2 X(u).The subdi�erential of the concave function � at u 2 <m is (Bazaraa et al., 1993,De�nition 3.2.3)@�(u) = n 2 <m ��� �(v) � �(u) + T (v� u); v 2 <m o ;the elements of which are called subgradients. The next proposition follows from Theo-rem 6.3.7 in ibid., the convexity of the set X, and Theorem 11 in Lasdon (1968).Proposition 2.3 (Subdi�erential to the dual objective function). For each u 2 <m,@�(u) = fh(x) j x 2 X(u)g. Further, � is di�erentiable at u if and only if each hi isconstant on X(u), in which case r�(u) = h(x) for any x 2 X(u). 2This result implies that the function � is di�erentiable at u 2 <m if the set X(u) is asingleton (Bazaraa et al., 1993, Theorem 6.3.3).The normal cone to the set <m+ at u 2 <m+ isN<m+ (u) = n� 2 <m� j �iui = 0; i 2 I o :The optimality conditions for the dual program (2.5) are given by the following (ibid.,Theorem 3.4.3). 7



Proposition 2.4 (Optimality conditions for the dual problem). The point u 2 U� ifand only if there exists a  2 @�(u) such that  � 0 and uT = 0, or, equivalently,@�(u) \N<m+ (u) 6= ; holds, that is, �@�(u) +N<m+ (u) 3 0. 2To obtain primal{dual optimality relations, the primal feasible set must ful�l a constraintquali�cation.Assumption 2.5 (Slater constraint quali�cation). The set fx 2 X j h(x) < 0g isnonempty. 2Under Assumption 2.5, the convex set U� is nonempty and compact, and, by strongduality, �(u) = f(x) holds for some pair (x;u) such that the relations u � 0, x 2 X,and h(x) � 0 hold (ibid., Theorem 6.2.4). The next proposition states conditions underwhich a point x is optimal in (2.1), for the (unlikely) case that an optimal dual solutionis at hand; it follows from Theorem 6.2.5 in ibid.Proposition 2.6 (Primal{dual optimality conditions). Let Assumption 2.5 hold and letu 2 U�. Then, x 2 X� if and only if x 2 X(u), h(x) � 0, and uTh(x) = 0. 2The composite mapping (@�) \ (N<m+ ) is constant on the solution set U� (e.g., Larssonet al., 1998, Proposition 2.1, and Burke and Ferris, 1991, Lemma 2). Hence, underAssumption 2.5, the solution set to the primal program (2.1) may be expressed asX� = nx 2 X(u) ��� h(x) � 0; uTh(x) = 0 o ; (2.7)irrespective of the choice of u 2 U�, and the primal{dual optimality conditions may beexpressed as (x;u) 2 X� � U� () h(x) 2 @�(u) \N<m+ (u): (2.8)At a dual solution u 2 U�, the subproblem solution set X(u) is typically not a singleton;as a consequence, the dual objective function is nonsmooth on U�, and a subgradient thatcan be used to verify the optimality of such a solution, according to Proposition 2.4, isnot directly available.2.2 Convergence of dual subgradient optimizationWe consider solving the Lagrangean dual program (2.5) by the conditional subgradientoptimization method (Larsson et al., 1996a), which is given by the following. Choose astarting solution u0 � 0 and compute iterates ut according to the formulaut+ 12 = ut + �t �h(xt)� �t� ; ut+1 = hut+ 12 i+ ; t = 0; 1; : : : ; (2.9)where xt 2 X(ut) solves the dual subproblem (2.4) at ut, so that h(xt) 2 @�(ut) is asubgradient to � at ut, �t 2 N<m+ (ut) is an element of the normal cone to <m+ at ut 2 <m+ ,�t is the step length chosen at iteration t, and [�]+ denotes the Euclidean projection ontothe nonnegative orthant <m+ .If f� tg = f0g, then the method (2.9) reduces to the traditional subgradient optimiza-tion method (e.g., Shor, 1985, Section 2). Choosing �t = proj(h(xt); N<m+ (ut)) resultsin hi(xt)� �ti = ( 0; if uti = 0 and hi(xt) < 0;hi(xt); otherwise; i = 1; : : : ; m; (2.10)8



(see Larsson et al., 1996a, Lemma 3.2), de�ning the special case of the method (2.9) thatis called the subgradient projection method. (Note that this name is sometimes used fortraditional subgradient optimization although no projections of subgradient directions aremade in those methods.) The direction h(xt)� � t from ut 2 <m+ , as de�ned in (2.10), isfeasible in the program (2.5).The convergence of the method (2.9) is established in Larsson et al. (1996a) for twodi�erent step length rules. For the case when f�tg = f0g, Polyak (1967 and 1969) andErmol'ev (1966), among others, establish convergence using several di�erent step lengthrules (see also Shor, 1985, Chapter 2). In this work we utilize special cases of the divergentseries step length rule (Ermol'ev, 1966).The next convergence result specializes that established by Larsson et al. (1996a,Theorem 2.7) to the Lagrangean dual problem (2.5); the boundedness condition on thesequence f�tg can always be ful�lled by construction.Proposition 2.7 Suppose that Assumption 2.5 holds, and let the method (2.9) be appliedto the program (2.5), with the step lengths �t ful�lling the conditions�t > 0; 8t; limt!1�t = 0; limt!1 t�1Xs=0�s =1; and limt!1 t�1Xs=0�2s <1: (2.11)If the sequence f�tg is bounded, then futg ! u1 2 U� and f�(ut)g ! ��. 2To induce convergence of the method (2.9) for adaptive step length selection rules,based on line searches or formulas involving estimates of the optimal value, the almostcomplete relaxation strategy of Dem'yanov and Vasil'ev (1985, Section 3.4) can be used(Corollary 2.8 in Larsson et al., 1996a). It works as follows. De�ne the sequences f�tgand f�tg with �t � �t for all t, and both satisfying the conditions (2.11).1 Suppose thatat some iteration t, an adaptive rule has generated a (tentative) step length e�t. The steplength �t used is de�ned as the projection of e�t onto the interval [�t; �t]. The sequencef�tg, resulting from this safeguarding strategy, satis�es the conditions (2.11).From Propositions 2.4 and 2.7 it follows that the set @�(u1)\N<m+ (u1) is nonempty.The next proposition, which is a special case of Theorem 3.9 in Larsson et al. (1998), estab-lishes that the sequence fh(xt)g of subgradients to the dual objective function convergesin an ergodic sense to an element that veri�es optimality in terms of Proposition 2.4. Wede�ne the sequence fAtg of cumulative step lengths byAt = t�1Xs=0�s; t = 1; 2; : : : : (2.12)Proposition 2.8 Let Assumption 2.5 hold and the method (2.9){(2.11) be applied to theprogram (2.5). Further, let the sequences fAtg and fgtg be de�ned by (2.12) andgt = A�1t t�1Xs=0�sh(xs); t = 1; 2; : : : ;respectively, where xs 2 X(us) for all s. If the sequence f�tg is bounded, thenndist �gt; @�(u1) \N<m+ (u1)�o! 0: 21It may, for example, be appropriate to let the sequences be given by �t = �=(b+t) and �t = M=(b+t),t = 0; 1; : : :, where � > 0 (M > 0) is a very small (very large) constant and b > 0.9



In the next section we establish that the sequence fxtg of subproblem solutions con-verges in an ergodic sense to the solution set X� as expressed in (2.7).3 Ergodic primal convergenceThe application of the method (2.9){(2.11) to the program (2.5) produces a sequencefxtg of solutions to the subproblem (2.3). We propose two schemes for generating anergodic sequence of subproblem solutions; each of these sequences is shown to convergeto the solution set, X�. Their generation is computationally cheap, and their storagerequires a relatively small amount of memory. In the �rst scheme, the sequence is de�nedby (convexity) weights that are proportional to the step lengths, �t. The second schemepresumes the use of step lengths that generalize a modi�ed harmonic series to allow forthe utilization of the almost complete relaxation strategy (and which also satis�es theconditions (2.11)); in this case, the ergodic sequence is de�ned by equal weights. We alsopresent a heuristic projection procedure for the �nite attainment of primal "-optimality.Henceforth, we make repeated use of the following lemma; it is a special case of a resultof Silverman and Toeplitz, and a proof can be found in, e.g., Knopp (1956, Theorem 2,p. 35).Lemma 3.1 Assume that the sequence f�tsg � < ful�ls the conditions�ts � 0; s = 0; : : : ; t� 1; t�1Xs=0�ts = 1; t = 1; 2; : : : ;and limt!1 �ts = 0; s = 0; 1; : : : :If the sequence fbsg � <r is such that lims!1 bs = b, then limt!1 �Pt�1s=0 �tsbs� = b. 23.1 Divergent series step lengths and proportional weightsThe ergodic sequence fxtg of subproblem solutions that is computed within the method(2.9){(2.11) applied to the program (2.5), is de�ned as the weighted averagesxt = A�1t t�1Xs=0�sxs; t = 1; 2; : : : ; (3.1)where the sequence fAtg is de�ned in (2.12). Hence, each vector xt is a convex combinationof the subproblem solutions found up to iteration t, and thus xt 2 X holds for all t.The convergence of the sequence fxtg to the set X� is established in terms of theful�lment of the optimality conditions of Proposition 2.6.Theorem 3.2 (xt converges to the solution set). Suppose that Assumption 2.5 holds, letthe method (2.9){(2.11) be applied to the program (2.5), the set X� and the sequence fxtgbe given by the de�nition (2.7) and (3.1), respectively, and suppose that the sequence f�tgis bounded. Then, ndist �xt; X��o! 0.
10



Proof. Letting u1 be the limit of the sequence futg, as given in Proposition 2.7, we �rstshow that the sequence fxtg converges to the set of subproblem solutions at u1, thenthat it is feasible in the limit, and, �nally, that it is complementary to u1 in the limit.By the convexity and nonnegativity of the function dist(�; S), and the de�nition(2.12), the inequalities0 � dist �xt; X(u1)� � A�1t t�1Xs=0�sdist (xs; X(u1))hold for all t. By Lemma 2.1 and Proposition 2.7,fdist (xs; X(u1))g ! 0 as s!1: (3.2)Utilizing Lemma 3.1, with �ts = A�1t �s, bs = distfxs; X(u1)g and b = 0, it then followsthat ndist �xt; X(u1)�o! 0 as t!1: (3.3)By the convexity of the functions hi, i 2 I, h(xt) � A�1t Pt�1s=0 �sh(xs) for all t, andfrom the iteration formula (2.9) it follows that h(xs) � (us+1 � us)=�s for all s. Hence,h(xt) � A�1t (ut � u0) for all t. Proposition 2.7 implies that the sequence fut � u0g isbounded and, therefore, lim supt!1 hi(xt) � 0; 8i 2 I: (3.4)Now, consider an i 2 I(u1). From Proposition 2.7 it follows that, for some �xed �that is large enough, uti > 0 for all t � � , and, by the iteration formula (2.9), �tiuti = 0holds for all t. Therefore, by (2.9),hi(xt) = ut+1i � uti�t ; 8t � �: (3.5)Choosing x 2 rintX(u1) and �i 2 @hi(x), Lemma 2.2 yields thathi(x) = hi(x) + �Ti (x� x) ; 8x 2 X(u1):Then, by the continuity of the function hi, for every � > 0 there exists an " > 0 such thathi(x) � hi(x) + �Ti (x� x) + �3 ; 8x : dist (x; X(u1)) � ":From (3.2) follows that dist(xs; X(u1)) � " for all s � �, for some �xed � > � . Therelation (3.5) then yieldhi(x) + �Ti (xs � x) � us+1i � usi�s � �3 ; 8s � �: (3.6)Using the de�nition (3.1), we have for all t > �,hi(xt) � hi(x) + �Ti �xt � x�� A�1t ��1Xs=0 �s �hi(x) + �Ti (xs � x)�+ A�1t t�1Xs=� us+1i � usi � �s�3 != A�At �hi(x) + �Ti (x� � x)�+ uti � u�iAt � �1� A�At � �3 ;11



where the �rst inequality follows from the de�nition of �i and the second is implied by theinequality (3.6). Since fAtg ! 1 and futig ! u1i , then A�1t A�(hi(x)+�Ti (x��x)) � ��=3and A�1t (uti � u�i ) � ��=3 for all t > � that are large enough. It follows that hi(xt) � ��for all t > �, that are large enough. Therefore, lim inft!1 hi(xt) � 0, and the inequalities(3.4) then yield that limt!1 hi(xt) = 0. Since this result holds for all i 2 I(u1), and, bythe de�nition (2.6), u1i = 0 for all i 2 I n I(u1), it follows thatn(u1)Th(xt)o! 0 as t!1: (3.7)The theorem follows from the relations (3.3){(3.4) and (3.7) and Proposition 2.6. 2For the case when the functions f and hi, i 2 I, are a�ne and the set X is a polytope(that is, when (2.1) is a linear program), and f� tg = f0g in the method (2.9){(2.11)applied to the program (2.5), Theorem 3.2 reduces to a result of Shor (1985, pp. 116{118).The next result follows from Proposition 2.7, Theorem 3.2, and the relation (2.8).Corollary 3.3 (xt veri�es optimality in the limit). Under the assumptions of Theo-rem 3.2, ndist �h(xt); @�(u1) \N<m+ (u1)�o! 0: 23.2 Generalization of modi�ed harmonic series step lengths, andequal weightsNow, let the step lengths used in the conditional subgradient optimization method (2.9)be minorized and majorized, respectively, by the elements of two modi�ed harmonic series,that is �t 2 � �b+ t ; Mb + t� ; b > 0; 0 < � �M <1; t = 0; 1; : : : ; (3.8)and let the sequence fbxtg of averaged subproblem solutions be de�ned by equal weights,as bxt = 1t t�1Xs=0xs; t = 1; 2; : : : : (3.9)Analogously to the previous subsection, we will here derive the convergence of thesequence fbxtg to the solution set X�, as expressed in the de�nition (2.7).Theorem 3.4 (bxt converges to the solution set). Suppose that Assumption 2.5 holds, letthe method (2.9), (3.8) be applied to the program (2.5), the set X� and the sequence fbxtgbe given by the de�nitions (2.7) and (3.9), respectively, and suppose that the sequencef� tg is bounded. Then, ndist �bxt; X��o! 0.Proof. Using arguments analogous to those used in the derivation of the result (3.3), wehave that ndist �bxt; X(u1)�o! 0 as t!1: (3.10)12



By the iteration formula (2.9) and the de�nition (3.8), h(xs) � ��1s (us+1 � us) ���1(b + s)(us+1 � us), for all s. Hence, for all t � 1,1t t�1Xs=0h(xs) � b�t t�1Xs=0 �us+1 � us�+ 1�t t�1Xs=0 s �us+1 � us�= b� 1�t �ut � u0�+ 1�  ut � 1t t�1Xs=0us!: (3.11)Since futg ! u1, limt!1(�t)�1(b�1)(ut�u0) = 0. Applying Lemma 3.1, with �ts = t�1,bs = us, and b = u1, then yields that ft�1Pt�1s=0 usg ! u1. It follows that the right-hand side of (3.11) tends to the origin as t ! 1. By the convexity of the functions hi,hi(bxt) � t�1Pt�1s=0 hi(xs) holds for all i 2 I, and thereforelim supt!1 hi(bxt) � 0; 8i 2 I: (3.12)Now, consider an i 2 I(u1), and choose an x 2 rint X(u1) and �i 2 @hi(x).Similarly to the derivation of the inequalities (3.6), utilizing the de�nition (3.8), we havethat, for every � > 0 there exists a � > 0 such thathi(x) + �Ti (xs � x) � b + sM �us+1i � usi�� �4 ; 8s � �: (3.13)Using the de�nition (3.9) we have, for all t > �,hi(bxt) � hi(x) + �Ti �bxt � x�� 1t ��1Xs=0 �hi(x) + �Ti (xs � x)�+ bMt t�1Xs=� �us+1i � usi�+ 1Mt t�1Xs=� s �us+1i � usi�� t� �t � �4= �t �hi(x) + �Ti (bx� � x)�+ b� 1 + �Mt �uti � u�i �+ 1M  uti � �1� �t � 1t� � t�1Xs=�usi!� �1� �t � �4 ;where the �rst inequality follows from the de�nition of �i and the second from the in-equality (3.13). Since futig ! u1i , for all t > � that are large enough, it follows thatt�1�(hi(x) + �Ti (bx� � x)) � ��=4, (Mt)�1(b � 1 + �)(uti � u�i ) � ��=4, and, utiliz-ing Lemma 3.1, that M�1(uti � (1 � t�1�)(t � �)�1Pt�1s=� usi ) � ��=4. It follows thathi(bxt) � �� for all t > � that are large enough. Analogous to the result (3.7), thenn(u1)T h(bxt)o! 0 as t!1: (3.14)The theorem follows from the relations (3.10){(3.12) and (3.14), and Proposition 2.6.2For the case when (2.1) is a linear program, and f�tg = f0g in the method (2.9), (3.8)applied to the program (2.5), Theorem 3.4 reduces to Theorem 3 in Larsson and Liu(1997).The next result is a consequence of Proposition 2.7, Theorem 3.4, and the rela-tion (2.8). 13



Corollary 3.5 (bxt veri�es optimality in the limit). Under the assumptions of Theo-rem 3.4, ndist �h(bxt); @�(u1) \N<m+ (u1)�o! 0: 23.3 Finite primal feasibility and "-optimalityThe following discussion concerns the method of Section 3.1, but is applicable to that ofSection 3.2 as well.Theorem 3.2 establishes optimality in the limit for the sequence fxtg of primal so-lutions. While dual feasibility is maintained throughout the iterative procedure (2.9),neither primal feasibility nor complementarity will, in general, be �nitely satis�ed by theelements of the sequence fxtg. However, eventually xt will be both near-feasible andnear-complementary. For applications with soft constraints, such as the forest manage-ment scheduling problem presented by Hauer and Hoganson (1996), for which primalfeasibility is not crucial, the elements xt will thus eventually be su�ciently close to a fea-sible (and optimal) solution. Nevertheless, whenever primal feasibility is required �nitely,it might be necessary to apply a procedure that converts any �nitely generated primalsolution xt into a feasible solution to the original convex program. One procedure forenforcing feasibility is the solution of the Euclidean projection problemproj �xt; Y � = argminx2Y x� xt2 ; where Y = fx 2 X j h(x) � 0g : (3.15)Solving this program regularly may, however, be computationally too expensive. It isprobably better to develop a heuristic procedure, which exploits the structure of the setY when searching for a feasible and near-optimal solution to the projection problem (3.15).We let projH(x; Y ) denote a heuristic projection of a point x 2 <n onto the feasibleset of the program (2.1) which enjoys the following property.Assumption 3.6 (Property of heuristic projection).2 Let x 2 X and the set Y be de-�ned by (3.15). There exists a function � : <+ 7! <+ such that �(") > 0 for all " > 0,lim"!0+ �(") = 0, andkprojH(x; Y )� proj(x; Y )k2 � �(") whenever dist(x; Y ) � ": 2Theorem 3.7 (Convergence by heuristic projection). Let the set Y be de�ned by (3.15)and suppose that Assumption 2.5 holds. Let the method (2.9){(2.11) be applied to theprogram (2.5), the sequence fxtg be given by the de�nition (3.1), and suppose that thesequence f� tg is bounded. Then, under Assumption 3.6,ndist �projH �xt; Y � ; X��o! 0:Proof. By the de�nition (2.2) and the triangle inequality,dist �projH �xt; Y � ; X�� � projH �xt; Y �� proj �xt; Y �2+dist �xt; Y �+ dist �xt; X�� : (3.16)2This assumption expresses a continuity property on the di�erence between the heuristic projectionand the exact Euclidean projection. 14



Since X� � Y , it follows from Theorem 3.2 that for any " > 0 there is a � > 0such that dist (xt; Y ) � dist (xt; X�) � " for all t � � . Then, by Assumption 3.6,kprojH(xt; Y ) � proj(xt; Y )k2 � �(") for all t � � . From the inequality (3.16) it thenfollows that dist(projH(xt; Y ); X�) � �(")+2" for all t � � . The result follows by letting"! 0+. 2We can now construct an algorithm that employs heuristic projections and yieldsconvergence to the optimal value in the primal as well as in the dual procedure.Corollary 3.8 (Finite termination at "-optimality). Let the assumptions of Theorem 3.7hold. For every " > 0 there is a � > 0 such that f(projH(xt; Y )) � �(ut) � " holds forall t � � .Proof. Choose an " > 0. From Theorem 3.7 and the continuity of the function f , itfollows that there is a � > 0 such that f(projH(xt; Y )) � f � + "=2 for all t � �. ByProposition 2.7, there is a � � � such that �(ut) � �� � "=2 holds for all t � � . ByProposition 2.6, f � = ��, and therefore, f(projH(xt; Y ))� �(ut) � " for all t � � . 2Since exact Euclidean projection is a special case of heuristic projection, the �niteattainment of "-optimality also occurs when an exact Euclidean projection is employed.Remark 3.9 (Delayed start of averaging). When developing the results of this sectionwe utilize the properties in the limit of the sequence fxtg. Since the information fromthe initial iterations of a subgradient optimization scheme is usually of low quality, itis preferable to delay the initialization of the sequence fxtg until the iterates, ut, arenear-optimal, in the sense that they are located on optimal segments of the dual objectivefunction (implying that h(xt) 2 @�(u1) if � is polyhedral, and an indication of which isthat certain vectors occur repeatedly as subproblem solutions), and that uti > 0 holds forall i such that u1i > 0 (implying that � t+��1t (ut+ 12 �ut+1) 2 N<m+ (u1)). This behaviouris also apparent from the numerical experiments performed in the following section. Inour theoretical analysis, we initialize the ergodic sequences at the �rst iteration. Sincesubgradient methods are memoryless, all of the results can, however, be modi�ed to theinitialization of these sequences at any iteration t0 � 1, with the obvious modi�cation ofthe convex combination formula (3.1). 24 Application to tra�c equilibrium assignment un-der road pricingTra�c assignment deals with the estimation of route ows in each of the origin{destinationrelations of a road network, and the travel times resulting from this allocation. Weconsider the tra�c equilibrium assignment model, which is based on the assumption thatall road users have complete information about the current tra�c conditions, and thatthey choose among the shortest routes available. An equilibrium state therefore has theproperty that the travel times on routes that are used are equal, that is, they are allshortest with respect to the current tra�c ow (Wardrop, 1952). Since travellers use theshortest routes, they do not generally ful�l society's goal of e�cient road usage (whichmay, for example, be a minimal total travel time). In order to ful�l this goal, during the15



last several years road pricing systems have been paid much attention (e.g., Small, 1992,and The Economist, December 1997). In such systems, each vehicle pays a prespeci�edtoll for traversing certain arcs, possibly relative to the current tra�c ow on these arcs.4.1 Statement of the modelConsider a connected transportation network G = (N ;A), with node set N and a setA of directed arcs. Let C � N � N be a set of origin{destination pairs. For each pair,k 2 C, there is a �xed positive demand dk of ow, associated with a speci�c commodity.We denote the nonempty set of simple routes from the origin to the destination of thek:th pair by Rk and the ow on route r 2 Rk by hkr. Feasibility with respect to demandsrequires the route ows [hkr]r2Rk;k2C to satisfy the conditionsXr2Rk hkr = dk; k 2 C; (4.1a)hkr � 0; r 2 Rk; k 2 C: (4.1b)Letting [�kra]r2Rk;k2C;a2A be an arc-route incidence matrix for G, with�kra = ( 1; if route r 2 Rk contains arc a 2 A;0; otherwise,the arc ows, fa, are de�ned by the route ows, hkr, throughfa = Xk2C Xr2Rk �krahkr; a 2 A: (4.1c)With each arc a 2 A is associated the travel time ca(fa) for traversing it at arc owfa � 0. We presume that the free-ow travel time, ca(0), is positive, and that thefunctions ca : <+ 7! <+ are continuous, strictly increasing, and weakly coercive, that is,they tend to in�nity with the ow (these assumptions are quite natural because of thecongestion e�ects).The Wardrop equilibrium conditions for the model (4.1a){(4.1c) with cost functionsca, a 2 A, are equivalent to the �rst-order optimality conditions (e.g., Patriksson, 1994,Theorem 2.1) for the program min Xa2A Z fa0 ca(s)ds;s.t. (4.1a){(4.1c); (4.2)which has a convex and di�erentiable objective function and linear constraints.For each arc a 2 A, let �a � 0 be the toll (measured in time equivalents) charged eachvehicle traversing the arc when the arc ow is greater than 'a � 0. The toll mapping�a : <+ 7! 2<+ is de�ned by3�a(fa) = 8>>><>>>: f0g; 0 � fa < 'a;[0; �a] ; fa = 'a;f�ag ; fa > 'a; a 2 A: (4.3)3All the results to be derived may be generalized to several toll levels for each arc a 2 A. For simplicityof notation, however, we consider only one level (which may also be zero) for each arc.16



The mapping �a is nonnegative, convex-valued,4 and closed (see Section 2.1) on <+ forall a 2 A. Figure 4.1 illustrates three di�erent types of toll mappings.6�a(fa)
-fa�a 'a a)

6�a(fa)
-fa�a b)

6�a(fa)
-fac)Figure 4.1: The toll mapping �a for arc a 2 A with respect to the arc ow fa � 0.a) 'a > 0, �a > 0. b) 'a = 0, �a > 0. c) �a = 0, i.e., an untolled arc.Letting �k denote the travel cost (time plus toll) at ow fa, a 2 A, on the shortestroute from the origin to the destination of the k:th pair, the Wardrop user equilibriumconditions for the model (4.1) with cost mappings ca + �a may be stated ashkr > 0 =) Xa2A �kra (ca(fa) + pa(fa)) = �k; r 2 Rk; (4.4a)hkr = 0 =) Xa2A �kra (ca(fa) + pa(fa)) � �k; r 2 Rk; (4.4b)where pa(fa) 2 �a(fa); a 2 A; (4.4c)is the toll charged for traversing arc a at ow fa. According to (4.3), if �a > 0 andfa = 'a, then the toll level pa(fa) has a certain degree of freedom; by allowing this degreeof freedom, we can show that an equilibrium can be found by solving a (nonsmooth)convex optimization problem. Asmuth (1978) shows that a user equilibrium always ex-ists when the network is strongly connected and the cost mappings are positive, uppersemicontinuous,5 and convex-valued. Bernstein and Smith (1994) consider single-valued,lower semicontinuous6 cost functions; they show that under fairly mild regularity condi-tions a user equilibrium always exists. The theory of road pricing has also been discussedby Dafermos and Sparrow (1971), among others. However, none of these papers describeequivalent optimization models.Similarly to the formulation (4.2) it can be shown (see the proof of Proposition 4.1)that the conditions (4.1) and (4.4) are the �rst-order optimality conditions for the programz� = minXa2A Z fa0 (ca(s) + �a(s)) ds; (4.5a)4A point{to{set map � : <+ 7! 2<+ is convex-valued if the set �(f) is convex for all f 2 <+.5A point{to{set map � : <+ 7! 2<+ is upper semicontinuous if fi 2 <+ for all i, ffig ! f andti 2 �(fi), for all i, imply that ftigi2I ! t 2 �(f) for some subsequence I.6A single-valued function c : < 7! < is lower semicontinuous if lim inff!f c(f) � c(f) for all f 2 <.17



s.t. Xr2Rk hkr = dk; k 2 C; (4.5b)hkr � 0; r 2 Rk; k 2 C; (4.5c)Xk2C Xr2Rk �krahkr = fa; a 2 A; (4.5d)fa � 0; a 2 A: (4.5e)(The constraints (4.5e) are implied by (4.5c){(4.5d); they have been added to strengthenthe Lagrangean dual formulation to be presented.) As a result of the assumptions madeabove, this program is a highly structured, convex optimization problem with a nonlinearand possibly nonsmooth objective function. A real world instance of this model may haveseveral thousand nodes, arcs, and origin{destination pairs.From the properties of the functions ca and point{to{set mappings �a, it follows thatthe objective function (4.5a) is strictly convex with respect to arc ows. Hence, theoptimal arc ow, f �a , a 2 A, is unique. However, if the arc ow variables are eliminatedfrom the problem, then the objective of the resulting equivalent problem in route owvariables is, in general, non-strictly convex, since an arc ow pattern may correspond toseveral route ow patterns. Hence, the sets of optimal route ows, H�k , k 2 C, are ingeneral not singleton sets, but polytopes.4.2 A Lagrangean dual formulationFor the untolled program (4.2) Larsson et al. (1997) propose a Lagrangean dual approachin which the arc ow de�ning constraints (4.1c) are relaxed. The resulting solution methodessentially consists of the repeated solution of shortest path problems; it is very simple,both from a conceptual and implementational point of view. Its merits are that, despiteits dual character, it produces a feasible ow in each iteration, and that this is donewithout the solution of any additional optimization problem. In this paper, we generalizethis method to the model (4.5).Letting u = [ua]a2A be multipliers associated with the constraints (4.5d), we de�nethe Lagrangean dual objective function (cf., the de�nition (2.3)) by�(u) = Xk2C �k(u) + Xa2A �a(ua):For each k 2 C and all u 2 <m, �k(u) is the optimal value of the shortest simple routesubproblem, with arc costs ua, a 2 A, given by�k(u) = min Xr2Rk  Xa2A ua�kra!hkr;s.t. Xr2Rk hkr = dk;hkr � 0; r 2 Rk: (4.6)The solution set Hk(u) to this program is a bounded polyhedron; it is not necessarily asingleton set (especially not at an optimal point, u�). We let [hkr(u)]r2Rk 2 Hk(u), k 2 C,denote an arbitrary set of solutions to the subproblems (4.6) at u. Note that, by a resultof Robinson (1984, Lemma 3.5), Hk(u) � Hk(u�) holds for any u in a su�ciently smallneighbourhood of u�; this result has a bearing to the algorithm devised in Section 4.3.18



For each a 2 A and all ua 2 <, �a(ua) is the optimal value of the single{arc subproblem�a(ua) = minfa�0 Z fa0 (ca(s) + �a(s)� ua) ds; (4.7)which has a strictly convex and nonsmooth objective function. Since each mapping ca+�ais strictly increasing and weakly coercive, the program (4.7) is uniquely solved byfa(ua) = 8>>>>>><>>>>>>: 0; ua � ca(0);c�1a (ua); ca(0) � ua � ca('a);'a; ca('a) � ua � ca('a) + �a;c�1a (ua � �a); ua � ca('a) + �a; a 2 A; (4.8)where c�1a is the continuous inverse mapping (e.g., Rudin, 1976, Theorem 4.17) of thecontinuous one{to{one mapping ca, a 2 A. One may note that c�1a is explicit for mosttravel time functions used and that ca need not be di�erentiable. Figure 4.2 illustratesthe function fa(ua) for arc a = (16; 18) in the Sioux Falls network (see Section 4.4), withca(fa) = 0:03 + 0:00000003 � f 4a .
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Figure 4.2: The solution fa to the single arc ow subproblem as a function of ua.The function � : <jAj 7! < is the sum of the jCj concave and piecewise linear functions�k, k 2 C, and the jAj concave and di�erentiable functions �a, a 2 A. It is thus �nite,continuous, concave, and subdi�erentiable on <jAj; its subdi�erential mapping at u 2 <jAjis the bounded polyhedron (cf., Proposition 2.3)@�(u) = 8<:24Xk2C Xr2Rk �krahkr � fa(ua)35a2A������ [hkr]r2Rk 2 Hk(u); k 2 C9=; : (4.9)By weak duality, �(u) � z� holds for all u 2 RjAj. To formulate the Lagrangean dualprogram (cf., the program (2.5)) we consider an arbitrary point u 2 <jAj, and de�neeua = max fua; ca(0)g ; a 2 A:19



Then, fa(eua) = fa(ua), so that �a(eua) = �a(ua). Further, �k(eu) � �k(u) since eu � u,and it follows that �(eu) � �(u). Since the dual objective is maximized on RjAj, one cantherefore, without loss of generality, impose the restrictions ua � ca(0), a 2 A (this isdone by Larsson et al., 1997, for the untolled program (4.2), with the same motivation).The Lagrange dual (2.5) may now be stated asmax �(u);s.t. ua � ca(0); a 2 A; (4.10)with solution set U�. Due to the conclusions drawn in Section 2, this is a convex program.It has an interesting interpretation; whereas in the primal program (4.5) the equilibriumarc ows are sought, (4.10) is the problem of determining the equilibrium arc travel times.The following proposition relates the primal and dual solutions.Proposition 4.1 (Primal{dual optimality). Let u� 2 U� be arbitrary. Then, strong du-ality holds, that is, �(u�) = z�. Further, f �a = fa(u�a), a 2 A, andH�k = Hk(u�)\8<:[hkr]r2Rk ������ X̀2C Xr2R` �`rah`r = f �a ; a 2 A9=; ; k 2 C: (4.11)Proof. The strong duality follows from Theorem 6.2.4 in Bazaraa et al. (1993). (The ap-plication of that theorem requires that the program (4.5) has a feasible solution and thatthe inclusion 0 2 intf[fa�Pk2KPr2Rk �krahkr]a2A j ([fa]a; [hkr]kr) satis�es (4.5b){(4.5c)gholds; the latter of these assumptions di�ers slightly from Assumption 2.5 and is clearlysatis�ed.) By the above and Theorem 28.3 in Rockafellar (1970; see also Patriksson, 1994,Theorem 2.1), the conditions (4.1) and (4.4) are the �rst-order optimality conditions forthe program (4.5). Further, the set of optimal solutions to (4.5) may be characterized asthe set of Lagrangean subproblem solutions at u� that also satisfy the constraints (4.5d)(Bazaraa et al., 1993, Theorem 6.2.5; cf. also the relation (2.7)). The uniqueness of fa(ua),ua 2 <, yields that f �a = fa(u�a) for all a 2 A, and the expression (4.11) follows. 2The proposition states that the optimal arc ow [f �a ]a2A is obtained from the solutions tothe subproblems (4.7) at u� 2 U�. However, an optimal route ow pattern [h�kr]r2Rk 2 H�kis, in general, not directly available from the subproblem (4.6) even if an optimal dualsolution is at hand. This is so because the set Qk2CHk(u�) is usually not a singleton, or,equivalently, since the function �k is usually nonsmooth at u�. (For the case when [f �a ]a2Ais known, an algorithm for calculating a solution [h�kr]r2Rk 2 H�k is given in Drissi-Ka��touni(1990).)Proposition 4.2 (Equilibrium tolls). Let u� 2 U� be arbitrary and [f �a ]a2A optimal inthe program (4.5). Then, the equilibrium tolls satisfyp�a ( = u�a � ca(f �a ); if f �a > 0;2 �a(0); if f �a = 0; a 2 A:Proof. Since [f �a ]a2A and u� solves the primal{dual pair (4.5), (4.10), the generalized KKTconditions (Rockafellar, 1970, Theorem 28.3) yield, for all a 2 A, that pa(f �a ) 2 �a(f �a )holds, and that u�a = ca(f �a ) + pa(f �a ) holds whenever f �a > 0. 220



4.3 The algorithmThe algorithm is based on the solution of the Lagrange dual (4.10) by the subgradientoptimization method (2.9){(2.11). A few comments regarding its implementation areneeded. All calculations can be made in arc ows exclusively. By aggregating the feasibleshortest route ow pattern [hkr(ut)]r2Rk;k2C into a feasible arc ow solutionyta = Xk2C Xr2Rk �krahkr(ut); a 2 A; (4.12)a subgradient to � at ut (cf. the de�nition (4.9)) is de�ned by yta � fa(uta), a 2 A. Theadaption of the standard subgradient algorithm (that is, the iteration formula (2.9) with� t � 0) to the program (4.10) is then given byut+ 12a = uta + �t �yta � fa(uta)� ; ut+1a = max�ut+ 12a ; ca(0)� ; a 2 A; t = 0; 1; : : : :Remark 4.3 (Redundant subgradient projection). Every subgradient of � at ut de�nesa locally feasible direction in the program (4.10). This is so because if, for some a 2 A,uta = ca(0), then the formula (4.8) yields fa(uta) = 0, implying that yta�fa(uta) � 0. There-fore, when applied to the program (4.10), the subgradient projection (see Section 2.2) isequivalent to the standard subgradient method, in which f�tg = f0g. 2The evaluation of the objective function � at u essentially requires the calculation ofa shortest route pattern; in each iteration t, the value �(ut) de�nes a lower bound on theoptimal value z� of (4.5).Embedded in the subgradient scheme is the generation of feasible solutions to theprimal problem (4.5) through the computation of convex combinations of shortest routeow patterns, according to the formula (3.9). Previous experience from applications ofthe method (2.9){(2.11) has demonstrated that the ergodic convergence of the sequence ofsubproblem solutions de�ned by (3.8){(3.9) is superior to that de�ned by (3.1) (see Lars-son et al., 1997, Larsson and Liu, 1997, and Petersson and Patriksson, 1997). Therefore,we employ step lengths according to the formula (3.8) and de�ne the ergodic sequenceof subproblem solutions by (3.9). For illustration purposes, we however also show resultsfrom the application of the formula (3.1). As pointed out in Remark 3.9, the ergodicsequences may be initialized at any iteration t0 � 1; previous experience also indicatesthat it is indeed preferable to choose a t0 � 1 (see also Larsson et al, 1996b).When applying the formula (3.9), the ergodic sequences f bf tag, a 2 A, of feasible arcow solutions are computed as7bf t0a = yt0�1a ; bf ta = t� t0t� t0 + 1 bf t�1a + 1t� t0 + 1yt�1a ; t = t0 + 1; t0 + 2; : : : : (4.13)(When applying (3.1), a corresponding formula is obtained.) It is thus not necessaryto store all the route ow patterns [hkr(ut)]k;r;t. Denoting the objective function of theprogram (4.5) by z(f), where f def= [fa]a2A, it follows that z(bf t), t � t0, are upper boundsconverging to z�.7The reason for not de�ning the sequences f bf tag by averages of the subproblem solutions fa(usa),s = t0; : : : ; t� 1, is that, whenever ut 6= u�, the subproblem solutions [fa(uta)]a2A typically do not de�nea feasible ow; the sequences ffa(uta)g are, however, convergent.21



4.4 Numerical experimentsThe proposed method was implemented in Fortran-77 on a Digital AlphaStation 2004=166and tested on the Sioux Falls network (LeBlanc et al., 1975). This network has 24 nodes,76 directed arcs, and 528 origin{destination pairs. We imposed positive tolls on 12 arcsin the network, namely �a = 0:02 on arcs (16; 18) and (18; 16), �a = 0:05 on arcs (4; 5),(5; 4), (11; 12), and (12; 11), �a = 0:06 on arcs (9; 10), (10; 9), (15; 22), and (22; 15), and,�nally, �a = 0:07 on arcs (21; 24) and (24; 21). The ow breakpoint, 'a, for each of thesearcs was chosen as 90% of the ow on the arc at equilibrium for the original (untolled)problem (these values were computed by the DSD code, Larsson and Patriksson, 1992).After calibrations of the method, the following strategies and parameter values werechosen. The step lengths were generated according to the formula (3.8) with � = M =1=75 and b = 1, that is, �t = (75(t+1))�1. In order to receive the best primal convergencethe sequence of step lengths used in the dual method should be slowly decreasing sothat all of the optimal segments of the dual function � are attained by the sequencefutg with appropriate frequencies. The proper choice of the sequence f�tg is evidentlyproblem-dependent. In the �rst test, the feasible arc ows were computed according tothe formula (4.13) with t0 = 1, that is, the averaging was initiated at iteration 1. In thesecond test, the averaging was initiated after 49 iterations, that is, t0 = 50. The shortestroute calculations were made using a standard implementation of Dijkstra's algorithm.For these two tests, lower and upper bounds were recorded for 100 and 50 iterations,respectively, and the bounds found up to iteration t, for t = 1; : : : ; 100, are shown inFigure 4.3. The upper bounds obtained when the averaging starts at iteration t0 arede�ned by bzt0t = mins=t0;:::;tfz(bf s)g, t � t0, where bf s is given by the formula (4.13). Thelower bounds from the dual feasible solutions are de�ned by �t = maxs=0;:::;tf�(us)g, t � 0.We de�ne the relative di�erence between the upper and lower bounds after 100 iterationsas (bzt0100 � �100)=�100. For the two values of t0 (1 and 50) these relative di�erences were0:656% and 0:171%, respectively. The �nal lower bound was �100 = 42:7037, and the �nalupper bounds were bz1100 = 42:9840 and bz50100 = 42:7766, which exceed the optimal valuez� = 42:7576� 0:0006 (this value was obtained by our code running for 10,000 iterations)with 0:529% and 0:0444%, respectively.The curves in Figure 4.4 are generated similarly to those in Figure 4.3. The di�erenceis that the convex combinations were here computed according to the formula (3.1),and that we made an additional test where the averaging scheme was initiated after 4iterations, that is, t0 = 5. The corresponding upper bounds are here denoted zt0t . For thethree values of t0 (that is, 1, 5 and 50) the relative di�erences between the bounds were4:487%, 0:754% and 0:188%, respectively. The �nal upper bounds were z1100 = 44:6200,z5100 = 43:0258 and z50100 = 42:7838, which exceed the optimal value with 4:36%, 0:627%,and 0:0613%, respectively.Concerning the di�erence in behaviour between the schemes using either the for-mula (3.1) or (3.9), consider the convergence of fz1tg and fbz1t g, respectively. The initialall{or{nothing ow pattern y0 = f 1 = bf1 (generated with link costs corresponding tozero ow) is composed of routes that are not used to such a large extent in the equi-librium solution, f�, since their travel costs are too high when the ow is large (in fact,z(y0) = 160:29). In the formula (3.1), however, this ow pattern receives a weight thatis considerably larger than that of the subsequent patterns, and hence its weight in f twill be substantial even for large values of t. This explains the very poor convergence of22
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Figure 4.3: The bounds on z� found up to iteration t using the formula (3.9), for t0 = 1and 50, respectively.fz1tg, compared to fbz1t g, where, according to the formula (3.9), the weight of y0 clearlybecomes negligible rather quickly. From this discussion and the experiments shown inFigures 4.3 and 4.4 we conclude that the formula (3.9) combined with a relatively largevalue of t0 yields the best results. Note that the delayed start of averaging is supportedin theory by the result that Hk(ut) � Hk(u1) holds for all t that are su�ciently large(cf. Proposition 2.7 and the discussion following the formulation (4.6)).De�ning yt = [yta]a2A, we compare the primal objective values obtained from the se-quence fytg100t=0 of feasible arc ows with those from the corresponding ergodic sequencefbf tg100t=50. Figure 4.5 illustrates that the objective values from the ergodic sequence con-verges rapidly to the optimal value z�, whereas the sequence of objective values from theall{or{nothing solutions yt is clearly nonconvergent. Moreover, the time used for com-puting the ergodic sequence fbf tg is negligible (in fact, it amounts to less than one percentof the total computing time used by the procedure). Performing 100 iterations (includinginitializations and generation of output �les) took 0.6 CPU-seconds on average.We conclude that the proposed method, where the activation of the averaging pro-cedure is delayed until the dual iterates are near-optimal, is a feasible approach to thetra�c equilibrium assignment problem under road pricing. In particular, for t0 = 50, therate of convergence of the upper bound is very good once the averaging scheme has beenactivated.The distance between a subproblem solution (f(ut); [hkr(ut)]k;r) and the set de�nedby the constraints (4.5d) is proportional to the length of a subgradient t def= yt � f(ut)of � at ut. Analogously, gt def= bf t � (t � 49)�1Pt�1s=49 f(us) measures the distance betweenan averaged subproblem solution and the set de�ned by (4.5d). Figure 4.6 illustratesthat the sequence ftg is nonconvergent, whereas the sequence fgtg converges to zero(cf., Proposition 2.8), that is, the ergodic sequence of subproblem solutions converges toa feasible solution to (4.5).We will now study two speci�c tolled arcs in the network; one with an equilibriumow strictly greater than its ow breakpoint and one with a ow equal to its breakpoint,in order to study the convergence characteristics of the toll levels.23



0 10 20 30 40 50 60 70 80 90 100
41

42

43

44

45

46

47 z1tz5t z50t
�tz�
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Figure 4.5: Objective values with and without averaging the all{or{nothing ow patterns.In Figure 4.7 we consider arc a = (16; 18) with travel time function ca(fa) = 0:03 +0:00000003 �f 4a , toll level �a = 0:02, ow breakpoint 'a = 13:82, and equilibrium ow f �a �14:39 (that is, f �a > 'a, and hence the equilibrium toll for this arc must be �a(f �a ) = �a;cf., the formula (4.3)). The graph shows the estimated tolls pa(fa(uta)) = uta � ca(fa(uta))for t = 1; : : : ; 100. The total arc cost at equilibrium is u�a � 0:05129; it is composedby the toll p�a = 0:02 and the travel time ca(f �a ) � 0:03129. Note that, by de�nition,0:00 � pa(fa(uta)) � 0:02 for all t.The arc chosen for Figure 4.8 is a = (9; 10) with travel time function ca(fa) = 0:03 +0:00000012 �f 4a , toll level �a = 0:06, ow breakpoint 'a = 19:53, and equilibrium ow f �a ='a. The set of equilibrium tolls for this arc must clearly be a subinterval of [0:00; 0:06],according to the formula (4.3); the actual value, pa(fa(u1a )), obtained in the limit fromthe application of the dual scheme depends on the initial dual solution and the steplengths chosen. The graph illustrates the estimated tolls pa(fa(uta)) = uta � ca(fa(uta)) for24



0 10 20 30 40 50 60 70 80 90 100
0

50

100

150 ktk2: ���kgtk2: ||||

Figure 4.6: A measure of the distance from subproblem solutions and ergodic subproblemsolutions to the feasible set.
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