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in the most general case is described by a variational inequality, is then a supple-mentary problem parameterized by the upper-level variables. These models areknown as generalized bilevel programming problems, or mathematical programswith equilibrium constraints (MPEC); see, for example, Luo et al. [13].In applications relating to Stackelberg game theory, economics, and decisionanalysis, a number of the problem inputs will often be subject to uncertainty.This is true in particular with respect to costs, demands, and system capacities,which are subject to uctuations and/or are di�cult to measure. In hierarchicalmodels of engineering design and physical phenomena, external conditions andmeasurement or manufacturing errors introduce uncertainty into the problems.In both of these cases, the uncertainty can be included explicitly by generalizingsome of the problem parameters to random variables. However, this generaliza-tion complexi�es the model signi�cantly; resolution strategies will in many casesrequire some approximation methods to solve the resulting stochastic programs.In the simplest case, the expected values of the random variables could besubstituted for their distributions and a deterministic model then solved. How-ever, in a nonlinear problem subject to constraints, the e�ect of this simpli�cationcan be quite costly. Indeed, not only will the optimal cost of the expected valuesolution not necessarily represent the average of the possible optimal costs, butthe solution may not even be feasible with respect to the realized values of therandom variables. In the case of bilevel pricing and other applications of theStackelberg game model (consider, for example, the network design problem ofMarcotte [14]), user demands are often known only probabilistically. A robustmodel should then take into account explicitly the range of possible demandvalues in order to minimize the costs of insu�cient capacity when the true de-mands are realized. Similarly, in topology optimization in structural mechanics(see, for example, Marti [16], and Christiansen et al. [3]), uncertainty enters nat-urally through random properties of the materials used and possible obstacles,and through conditions that will a�ect the structure once it has been built, suchas varying weather conditions and external forces (or, loads).To take into account explicitly the variability of the random inputs, as wellas the possible infeasibility, we consider a stochastic programming extension ofthe mathematical programming problem with equilibrium constraints.We thus de�ne the following stochastic MPEC:[SMPEC-
] minimize E! [f(x; y(!))] := Z
 f(x; y(!)) dF (!); (1a)subject to x 2 X ; (1b)where, for every ! 2 
 � <l, y(!) 2 S(x; !) := f y 2 <m j �T (x; !; y) 2NY(x;!)(y) g denotes the set of solutions to the lower-level variational inequalityproblem, parameterized by the upper-level variable, x. The random variable !is de�ned on a probability space (
;A; P ). Further, E! denotes the expectedvalue with respect to ! 2 
, f : <n+m 7! < [ f+1g denotes the upper-level2



objective function, F denotes the cumulative distribution function, assumed tobe continuously di�erentiable, with R
 dF (!) = 1, by construction, and X � <ndenotes the upper-level feasible set.The lower-level problem is de�ned by the parameterized mapping T (x; !; �)and feasible set Y(x; !) [presumed convex], and NY(x;!)(y) denotes the normalcone to the set Y(x; !) at y 2 Y(x; !). Note that the lower-level problem mayadmit multiple solutions or no solution for certain values of x and !; in the formercase, we assume that the value of y chosen is that in the set S(x; !) which yieldsthe lowest value of the integral in (1a). In this way, we may de�ne an objectivefunction for [SMPEC-
] which depends on x only.In practice, it is often impossible to evaluate exactly the expected value in (1a)for problems of realistic size due to the di�culty in calculating the multiple in-tegrals. Therefore, in many applications, it is convenient to make the assump-tion/approximation that the random variables ! 2 
 are discrete or that thejoint distribution function can be adequately discretized. In this case the ex-pected value reduces to a sum over a discrete set L of random events, which wenumber by ` = 1; : : : ; jLj. The probability of each such event is then given by�` > 0, with P`2L �` = 1, by construction. We can then reformulate (1) as thefollowing discretely distributed stochastic MPEC:[SMPEC-L] minimize E` [f(x; y`)] := X̀2L �`f(x; y`); (2a)subject to x 2 X ; (2b)where, for each ` 2 L, y` 2 S`(x) := f y 2 <m j �T`(x; y) 2 NY`(x)(y) g.We note that the deterministic problem, which we will refer to as [MPEC],is obtained when jLj = 1. (This observation will also aid in determining theproperties of [SMPEC-L].)A special case of [MPEC] is bilevel programming, which is obtained when thelower-level variational inequality problem reduces to the optimality conditionsfor an optimization problem, that is, when, for all x 2 X , T (x; �) = ryt(x; �) forsome function t : X � <m 7! <. Usually, bilevel programming is formulated interms of the corresponding optimization problem, thus leading to the formulation[BP] minimize f(x; y); (3a)subject to x 2 X ; (3b)where y 2 argminz2Y(x) t(x; z):We will consider as well a special case of [BP], in which the upper-level objec-tive function f depends on the lower-level solution only in the sense of its optimalvalue. This problem has been analyzed in Shimizu et al. [21], and is de�ned asfollows:[BPOV] minimize f(x; p(x)); (4a)subject to x 2 X ; (4b)3



where p(x) := infy2Y(x) t(x; y): (4c)The linear case of [BPOV] is denoted [BLPOV].The formulations, as well as the notation, of the continuously and discretelydistributed stochastic extensions of these special cases, [SBP], [SBPOV], and[SBLPOV], are the obvious.We also introduce the classical canonical model of two-stage stochastic linearprogramming with recourse (e.g., Birge and Louveaux [2]):[2S-SLP] minimize cTx +Q(x); (5a)subject to x 2 X ; (5b)where Q(x) := E![Q(x; !)], and Q(x; !) := infyf qTy j Wy = ! � Ax; y � 0 g,! 2 
, denotes the optimal value of the second-stage linear program.Similarly, a non-linear form of the two-stage stochastic program with recourseis given as follows:[2S-SNLP] minimize E![f(x;Q(x; !))]; (6a)subject to x 2 X ; (6b)where Q(x; !) := infy2Y(x;!) t(x; y; !), ! 2 
. We note that nonlinear forms oftwo-stage stochastic programs with recourse have been studied to a large extentonly for the quadratic case (e.g., Rockafellar and Wets [20] and Birge et al. [1]).In the rest of the paper, we shall investigate some relationships among the con-tinuously and discretely distributed stochastic extensions of the models [MPEC],[BP], [BPOV], and [2S-SLP]. In particular, we analyze the links between theseproblem classes, previously not considered together, and present new results onthe existence of solutions, and directional di�erentiability and convexity prop-erties of the implicit upper-level objective function. A �nal section then brieymentions some possibilities for constructing parallel iterative resolution methodsfor the case of discretely distributed probability distributions. We note that anumber of related properties of expectation functionals can be found in Wets [22].First, let us establish the complexity relations between the problem classes.These are illustrated in Figure 1. (The notation [A] � [B] denotes that the classof problems represented by [A] is included in that of [B].)All the relations described in Figure 1 follow directly from the problem formu-lations. Most interesting here is the equality, which equates two-stage stochasticprogramming with recourse to the optimal value form of stochastic bilevel pro-gramming problems.The �gure also illustrates that a particular linear form of [SBPOV] reduces tothe classic two-stage stochastic linear program with recourse, [2S-SLP], namely astochastic version of the right-hand side perturbation model, as discussed in [21,page 189], in which the upper-level variable is located only on the right-hand side4



Figure 1: Relationships among problem classes[SBLPOV] � [2S-SLP]T T[SMPEC] � [SBP] � [SBPOV] = [2S-SNLP]S S S[MPEC] � [BP] � [BPOV]of the lower-level constraints. (We will see later that this simpli�cation enjoys,in many cases, certain convexity properties.)Since [BP] is NP-hard, even in the linear case (e.g., Hansen et al. [8]), it isclear that the problem [SMPEC] introduced in this paper is NP-hard, as arethe other problems in Figure 1, with the exception of the discrete version of theproblem [2S-SLP], which is equivalent to a linear program, and is thus in P.2 Existence of solutionsConsider the following general hierarchical programming model, which encom-passes all those presented in Section 1.[HP] minimize f(x; v); (7a)subject to x 2 X ; (7b)where v 2 S(x), and S : <n 7! 2<s denotes a point{to{set mapping on <n. Welet grS := f (x; v) 2 <n+s j v 2 S(x) g denote the graph of the mapping S.The main result of this section is a general existence result for [HP], which inthe forthcoming will be specialized to allow existence to be established for all ofthe problem classes introduced in Section 1.First, we show that [HP] encompasses the problems of Figure 1.Proposition 2.1 The problems [SMPEC-L] and [SMPEC-
] reduce to [HP].Proof: In the former case, let v = (v`)`2L, where v` := y`, S := Q`2L S`, andf(x; v) := P`2L �`f(x; y`). In the latter case, let v := y(!), and f(x; v) :=E![f(x; y(!))].Proposition 2.2 The problem [BPOV] reduces to [HP].Proof: Let v := p(x) and S(x) := fp(x)g.Consider the following assumptions, which will be necessary for demonstratingthe existence of optimal solutions to the problem classes of interest:5



(i) The upper-level constraint set, X � <n, is nonempty and closed.(ii) The lower-level constraint set, Y(x), is nonempty for at least one x 2 X ;and bounded for all x 2 X .(iii) (Slater CQ) The lower-level constraint set, Y(x), is of the form Y(x) := f y 2<m j gi(x; y) � 0; i = 1; : : : ; k g, where each function gi : <n+m 7! < iscontinuous on <n+m and convex in y for each x 2 X . Further, eithergi(x; �) = gi(�), i = 1; : : : ; k, that is, Y(x) = Y, or for each x 2 X there is ay 2 <m such that gi(x; y) < 0, i = 1; : : : ; k.(iv) There exists an (x; v) 2 Z := f (x; v) 2 grS j x 2 X g with f(x; v) <1.(v) (Inf-compactness) f is lower semi-continuous (l.s.c.), proper, and has boundedlower level sets on Z.Theorem 2.3 (Existence of optimal solutions to [HP]). Let the assumptions (i),(iv), and (v) be satis�ed. Further, assume that grS is closed. Then, [HP] has atleast one optimal solution.Proof: The assumptions imply the inf-compactness of the extended functionf + �Z , where �Z is the indicator function for the closed set Z. The resultthen follows from Weierstrass' Theorem.A similar result is found in Zhang [23].Next, we specialize this result to the problems de�ned in Section 1, and givesu�cient conditions for the hypotheses to be satis�ed.Note that the conditions required in the preceding existence result are weakerthan those of many previously considered requirements on bilevel model formu-lations, and as such, may be particularly interesting for a number of importantapplications.For example, the following two corollaries allow one to establish the existenceof an optimal solution to stochastic (and indeed also deterministic) structuraloptimization problems in the presence of zero lower bounds on the truss barvolumes. (See [3] for further details.)In the following corollaries, the assumptions above are expressed using thenotation of Propositions 2.1 and 2.2, for each problem class.Corollary 2.4 (Existence of optimal solutions to [SMPEC-L]). Let the assump-tion (iii) hold for each ` 2 L, and the mapping T` : <n+m 7! <m be continuouson X � <m. Then, grS` is closed for each ` 2 L. Suppose further that the as-sumption (i) holds, that the assumption (iv) holds for some x over all the setsZ`, ` 2 L, and that the assumption (v) holds with Z replaced by [`2LZ`. Then,there exists at least one optimal solution to [SMPEC-L].6



Proof: Each set S`(x) can be equivalently described byS`(x) = f y 2 Y`(x) j T`(x; y)T (z � y) � 0; 8z 2 Y`(x) g; x 2 X :By the assumption (iii), either Y`(x) = Y` holds, in which case the closedness ofgrS` follows from the continuity of the mappings T` and g`, or the Slater condi-tion holds, in which case the closedness of S` follows from Hogan [11, Lemma 1].Corollary 2.5 (Existence of optimal solutions to [SMPEC-
]). Let the as-sumption (iii) hold for each ! 2 
. Further, let T : <n+l+m 7! <m andg : <n+l+m 7! <k be continuous on X � 
 � <m. Then, grS is closed. Sup-pose further that the assumption (i) holds, that the assumption (iv) holds forsome x over all the sets Z(!), ! 2 
, almost surely, and that the assumption(v) holds with Z replaced by [!2
Z(!). Then, there exists at least one optimalsolution to [SMPEC-
].Proof: The continuity assumptions on T and g, together with the assumption (iii)for each ! 2 
, imply that the mapping (x; !) 7! S(x; !) is closed on X �
, andhence also the set grS is closed, following the proof of Corollary 2.4. It followsfrom the lower semi-continuity of f that the integrand in (1a) is l.s.c. in ! (andhence integrable), and that, by the linearity of the integration operation and thefact that f is proper, the integral in (1a) also is l.s.c. Since there exists an x 2 Xsuch that this integral has a �nite value, by the assumption (v), it is inf-compact.The desired result then follows as in Theorem 2.3.Corollary 2.6 (Existence of optimal solutions to [SBP-L]). Let the assumption(iii) hold for each ` 2 L, and the function t` : <n+m 7! < be continuous onX�<m. Then, grS` is closed for each ` 2 L. Suppose further that the assumption(i) holds, that the assumption (iv) holds for some x over all the sets Z`, ` 2 L,and that the assumption (v) holds with Z replaced by [`2LZ`. Then, there existsat least one optimal solution to [SBP-L].Proof: The proof is similar to that of Corollary 2.4, the closedness result followingfrom [11, Lemma 1].Corollary 2.7 (Existence of optimal solutions to [SBP-
]). Let the assumption(iii) hold for each ! 2 
. Further, let t : <n+l+m 7! < and g : <n+l+m 7! <kbe continuous on X � 
 � <m. Then, grS is closed. Suppose further that theassumption (i) holds, the assumption (iv) holds for some x over all the sets Z(!),! 2 
, almost surely, and that the assumption (v) holds with Z replaced by[!2
Z(!). Then, there exists at least one optimal solution to [SBP-
].Proof: The proof follows from that of Corollary 2.5.7



Corollary 2.8 (Existence of optimal solutions to [SBPOV-L]). Under the as-sumptions of Corollary 2.6, there exists at least one optimal solution to [SBPOV-L].Proof: The result is a special case of Corollary 2.6.Corollary 2.9 (Existence of optimal solutions to [SBPOV-
]). Under the as-sumptions of Corollary 2.7, there exists at least one optimal solution to [SBPOV-
].Proof: The result is a special case of Corollary 2.7.The following is an example of a result that can be established for [2S-SLP] byusing the links to bilevel programming. (Existence results for two-stage stochasticlinear programming based on general linear programming properties can be foundin [2, Section 3.1].Corollary 2.10 (Existence of an optimal solution to [2S-SLP]). Let assumption(ii) hold for some x 2 X and for each ! 2 
. Suppose further that assumption(i) holds, and that the upper-level feasible set, X , is bounded. Then, there existsat least one optimal solution to [2S-SLP].Proof: By the linearity of all of the problem functions, (i) and (ii) along withthe boundedness of X imply (iv) and (v). Then, the result follows from that ofCorollary 2.7.3 ConvexityWe next establish the convexity of some interesting special cases of [SMPEC].Theorem 3.1 (Convexity of [SBPOV-L]). In addition to the assumptions ofCorollary 2.8, suppose, for each ` 2 L, that t` and gi;`, i = 1; : : : ; k, are convexon <n+m. Then, each function p` : X 7! < [ f+1g, de�ned by (4c), is convexon X . Further, assume that X is convex, and that the function f : X � < 7! <is convex on X � < and increasing in its second argument. Then, the implicitupper-level objective function x 7! P`2L �`f(x; p`(x)) is convex on X , so that[SBPOV-L] is a convex problem.Proof: We need only to establish the convexity of p`; ` 2 L, on X , but this resultfollows from the assumptions and Geo�rion [7, Theorem 5].Theorem 3.2 (Convexity of [SBPOV-
]). In addition to the assumptions ofCorollary 2.9, suppose, for each ! 2 
, that t(�; !; �) and gi(�; !; �), i = 1; : : : ; k,are convex on <n+m. Then, each function p(�; !) : X 7! < [ f+1g, de�ned by8



(4c), is convex on X . Further, assume that X is convex, and that the functionf : X �< 7! < is convex on X �< and increasing in its second argument. Then,the implicit upper-level objective function x 7! E![f(x; p(x; !))] is convex on X ,so that [SBPOV-
] is a convex problem.Proof: The convexity of p(�; !), ! 2 
, on X follows as in the proof of Theo-rem 3.1. The linearity of the integration then yields the desired result.It is clear that the convexity of [2S-SLP] is a special case of that of [SBPOV-
].(Compare, for example, with [2, Corollary 3.33]).4 Di�erentiabilityIn this section, we will examine the directional di�erentiability of the implicitupper-level objective function of [HP], and, as before, specialize that result tothe di�erent problem classes. Let us �rst consider a number of assumptions.(a) The function f is continuously di�erentiable on X � <m.(b) The lower-level constraint set, Y(x), is of the form Y(x) := f y 2 <m jgi(x; y) � 0; i = 1; : : : ; k g, where each function gi : <n+m 7! < is twicecontinuously di�erentiable on <n+m and convex in y for each x 2 X . Fur-ther, for each x 2 X , Y(x) 6= ; and Y(x) � B, for some open and boundedset B 2 <m.(c) (Linear independence CQ) Let I(x; y) := f i = 1; : : : ; k j gi(x; y) = 0 g. Then,for each x 2 X and y 2 S(x), the partial gradients rygi(x; y), i 2 I(x; y),are linearly independent.(d) The mapping T is continuously di�erentiable on X�<m and strongly mono-tone in y for each x 2 X .(d0) The mapping T is continuously di�erentiable on X �<m and monotone iny for each x 2 X .The following Theorem, presented without proof, follows directly from Robin-son [18, 19].Theorem 4.1 (Directional di�erentiability for [HP]). Let the assumption (a) besatis�ed and the implicit mapping x 7! S(x) be locally Lipschitz continuous onX . Then, the implicit upper-level objective function x 7! f(x;S(x)) of [HP] islocally Lipschitz continuous and directionally di�erentiable on X .Next, we provide su�cient conditions for the directional di�erentiability ofthe implicit upper-level objective functions for the problem classes presented inSection 1. 9



Corollary 4.2 (Directional di�erentiability for [SMPEC-L]). Let the assump-tion (a) hold, and the assumptions (b){(d) be satis�ed for each ` 2 L. Then, theimplicit upper-level objective function x 7! P`2L �`f(x; y`(x)) of [SMPEC-L] islocally Lipschitz continuous and directionally di�erentiable on X .Proof: By Robinson [18, Theorem 2.1], the assumptions (a){(d) imply that foreach ` 2 L, the implicit mapping x 7! S`(x) is locally Lipschitz continuous.Then, by Theorem 4.1, the result follows.Corollary 4.3 (Directional di�erentiability for [SMPEC-
]). Let the assump-tions of Corollary 2.5 hold. Further, let the assumption (a) hold, and the assump-tions (b){(d) be satis�ed, almost surely. Then, the implicit upper-level objectivefunction x 7! E![f(x; y(x; !))] of [SMPEC-
] is locally Lipschitz continuous anddirectionally di�erentiable on X .Proof: Note that under the assumptions of Corollary 2.5, the integral in (1a)exists. As in Corollary 4.2, the implicit function x 7! S(x; !) is locally Lipschitzcontinuous. The integration preserves the locally Lipschitz continuity, since theLipschitz constant of f remains bounded on any bounded subset of X , and istherefore integrable. The result then follows by Theorem 4.1.The following result, adapted from Fiacco [6], illustrates that the require-ments needed to ensure the directional di�erentiability of the implicit upper-levelobjective function of [SBPOV] are weaker than those of [SMPEC].Corollary 4.4 (Directional di�erentiability for [SBPOV-L]). Let the assumption(a) hold, and the assumptions (b), (c), and (d0) be satis�ed for each ` 2 L. Then,the implicit upper-level objective function x 7! P`2L �`f(x; p`(x)) of [SBPOV-L]is locally Lipschitz continuous and directionally di�erentiable on X .Proof: By the result of [6], under the assumptions (b), (c) and (d 0), the optimalvalue function x 7! p`(x) is directionally di�erentiable on X , for all ` 2 L. Then,by Corollary 4.2, with assumption (a), the result follows.Corollary 4.5 (Directional di�erentiability for [SBPOV-
]). Let the assump-tions of Corollary 4.3 hold, except that the assumption (d) is replaced by theweaker assumption (d0). Then, the implicit upper-level objective function x 7!E![f(x; p(x; !))] of [SBPOV-
] is locally Lipschitz continuous and directionallydi�erentiable on X .Proof: Follows directly from using Corollary 4.3 and arguments similar to thosein the proof of Corollary 4.4. 10



5 Algorithms for SMPECDeterministic MPEC models are notoriously di�cult and time-consuming to solvebecause of their non-convexity coupled with the nondi�erentiability of the implicitupper-level objective function. (Di�erentiability can only be asserted under theadditional condition that strict complementarity holds.) The introduction ofa random distribution on some or all of its parameters causes an even greaterincrease in the problem size and computational complexity. For this reason, thedevelopment of e�cient methods is primordial, as are the use of parallel strategies,whenever possible.In this paper, we have presented a taxonomy which highlights the principalfeatures of each problem type, and which therefore facilitates the adaptation ofalgorithms.For example, descent algorithms developed for deterministic MPEC can beadapted to SMPEC as long as the local Lipschitz continuity and directional di�er-entiability of the stochastic objective function can be maintained. Corollaries 4.2and 4.3 present the conditions needed. Similarly, algorithms for solving BPOVcan be adapted to SBPOV as long as the conditions of Corollary 4.4 or 4.5 aresatis�ed.Further, in the case of [SMPEC-L] or [SBPOV-L], subgradients can be cal-culated e�ciently if one makes use of the decomposability of the problem.For example, based on the notation of [SMPEC-L], and following the approachof Outrata and Zowe [17] for [MPEC], a subgradient of the implicit upper-levelfunction f at x is given by the formula�f(x) := X̀2L �`[rxf(x; y`) +rxL`(x; y`; �`)Tdy` �rxgJ (x;`)(x; y`)Td�J (x;`)]; (8)where, for each ` 2 L, L`(x; y`; �`) := T`(x; y`)+ryg(x; y`)T�` is the Lagrangeanof the lower-level problem, with y` := y`(x) for brevity, and �` being the (unique,under the conditions of Corollary 4.2) vector of multipliers for the parameterizedlower-level constraints. Furthermore, for each ` 2 L, the set J (x; `) is chosensuch that I(x; `) � J (x; `) � I+(x; `) holds, where I(x; `) denotes the set ofactive lower-level constraints at (x; y`), and I+(x; `) is the subset for which themultiplier values are positive, and (dy`; d�J (x;`)) solves the linear system"ryL`(x; y`; �`) �rygJ (x;`)(x; y`)TrygJ (x;`)(x; y`) 0m�jJ (x;`)j # dy`d�J (x;`)! =  �ryf(x; y`)0m ! : (9)Each component of the subgradient can be calculated independently and inparallel. The subgradient can then be used in an algorithm for the heuristicsolution of the problem or be embedded within a more sophisticated algorithm.A simple scheme is to take, at some iteration t,xt+1 := PX [xt � t�f(xt)];11



for some t > 0 determined through an inexact line search. Note that, at pointsof nondi�erentiability, the method may break down because the negative of thesubgradient may then not be a descent direction; in order to obtain a well-de�nediteration at such points, one can envisage utilizing a step length which is themaximum of the one supplied by a backtracking line search and the result of apredetermined step length formula used in traditional subgradient optimizationtechniques. Outrata and Zowe [17] utilize the deterministic analog of the systems(8) and (9) in the development of a bundle method for the solution of [MPEC],which immediately extends to the solution of [SMPEC-L].Consider the following parallel resolution strategy for this model. In somecases, one may identify a cluster of similar scenarios. Allocating these to thesame processor, one may solve the corresponding lower-level problems by utilizinge�cient reoptimization procedures given that any of them have been solved tooptimality, since the optimal solution to any one of them is feasible as well asnear-optimal to all the others. Further, for scenarios with slightly di�ering sets,J (x; `), consider sorting subsets of the scenarios so that J (x; `1) � J (x; `2), andso on. Then, one may solve the preceding linear systems in sequence, expandingthe matrix with the necessary rows and columns and utilizing the solution to theformer system as a starting point in the search for the next. The fact that thechoice of J (x; `) is arbitrary in the range of active constraints may also assistin the construction of the afore-mentioned clusters (and the subsequent solutionsof the linear systems) through a minimization of the number of scenarios withdistinct values of J (x; `).Another algorithmic method that can be transfered to [SMPEC-L] is theclass of penalty methods for [MPEC]. Assume that for each ` 2 L there is a(continuous) function,  ` : <n+m 7! < [ f+1g, which satis�es  `(x; y) � 0 forall (x; y) 2 X � <m, and `(x; y) = 0 () y 2 S`(x):Then, the inclusion (2b) can be represented by a single equation in y. Thepenalized problem is then de�ned for �` > 0 byminimize X̀2L �`[f(x; y`) + �` `(x; y`)];subject to x 2 X :In the deterministic case, such approaches have been devised by Harker andChoi [9], and Marcotte and Zhu [15]. See also Larsson and Patriksson [12] forother examples of di�erentiable, and typically non-convex, merit functions forvariational inequality problems and Facchinei and Soares [5] for NCP-functionsfor the VIP primal{dual optimality conditions.Again, this penalty approach can be easily parallelized, since the evaluationof the penalty function and its derivatives can be done independently over thedi�erent scenarios. 12



Several other methods for solving BP and MPEC problems have appearedin the literature in recent years (see, e.g., [13, 21] for overviews, and the re-cent smoothing method of Facchinei et al. [4]). These methods can generally beadapted to solving the discretely-distributed stochastic models presented here.In the case of large-scale models, and when the number of scenarios is veryhigh, however, simple parallelization strategies over the scenarios may howevernot make the model tractable. In these cases it may be necessary to developfurther approximation schemes, such as approximating the lower-level problem, orconstructing aggregation/disaggregation strategies with respect to the scenarios.In the case of continuously distributed SMPEC problems like [SMPEC-
] or[SBPOV-
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