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Abstract

We introduce Stochastic Mathematical Programs with Equilibrium Con-
straints (SMPEC), which generalize MPEC models by explicitly incorpo-
rating possible uncertainties in the problem data to obtain robust solutions
to hierarchical problems. For this problem, we establish results on the ex-
istence of solutions, and on the convexity and directional differentiability
of the implicit upper-level objective function, both for continuously and
discretely distributed probability distributions. In so doing, we establish
links between SMPEC models and two-stage stochastic programs with re-
course. We also discuss basic parallel iterative algorithms for discretely
distributed SMPEC problems.

Key words: Bilevel programming, variational inequality problems, stochas-
tic programming, existence of solutions

1 Introduction

The present paper serves to introduce a framework for hierarchical decision-
making under uncertainty. Hierarchical decision-making problems are encoun-
tered in a wide variety of domains in the engineering and experimental natural
sciences, and in regional planning, management, and economics. These problems
are all defined by the presence of two or more objectives with a prescribed order
of priority or information. We consider in this paper a sub-class of these prob-
lems having two levels, or objectives. We refer to the upper level as the objective
having the highest priority and/or information level; it is defined in terms of an
optimization with respect to one set of variables. The lower-level problem, which
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in the most general case is described by a variational inequality, is then a supple-
mentary problem parameterized by the upper-level variables. These models are
known as generalized bilevel programming problems, or mathematical programs
with equilibrium constraints (MPEC); see, for example, Luo et al. [13].

In applications relating to Stackelberg game theory, economics, and decision
analysis, a number of the problem inputs will often be subject to uncertainty.
This is true in particular with respect to costs, demands, and system capacities,
which are subject to fluctuations and/or are difficult to measure. In hierarchical
models of engineering design and physical phenomena, external conditions and
measurement or manufacturing errors introduce uncertainty into the problems.
In both of these cases, the uncertainty can be included explicitly by generalizing
some of the problem parameters to random variables. However, this generaliza-
tion complexifies the model significantly; resolution strategies will in many cases
require some approximation methods to solve the resulting stochastic programs.

In the simplest case, the expected values of the random variables could be
substituted for their distributions and a deterministic model then solved. How-
ever, in a nonlinear problem subject to constraints, the effect of this simplification
can be quite costly. Indeed, not only will the optimal cost of the expected value
solution not necessarily represent the average of the possible optimal costs, but
the solution may not even be feasible with respect to the realized values of the
random variables. In the case of bilevel pricing and other applications of the
Stackelberg game model (consider, for example, the network design problem of
Marcotte [14]), user demands are often known only probabilistically. A robust
model should then take into account explicitly the range of possible demand
values in order to minimize the costs of insufficient capacity when the true de-
mands are realized. Similarly, in topology optimization in structural mechanics
(see, for example, Marti [16], and Christiansen et al. [3]), uncertainty enters nat-
urally through random properties of the materials used and possible obstacles,
and through conditions that will affect the structure once it has been built, such
as varying weather conditions and external forces (or, loads).

To take into account explicitly the variability of the random inputs, as well
as the possible infeasibility, we consider a stochastic programming extension of
the mathematical programming problem with equilibrium constraints.

We thus define the following stochastic MPEC:

SMPEC-Q]  minimize 5, [7(r,p())) = [ (2. y(w) dF (o), (12
subject to z= € X, (1b)

where, for every w € Q C R, y(w) € S(z,w) = {y € R | —T(z,w,y) €
Ny(zw)(y) } denotes the set of solutions to the lower-level variational inequality
problem, parameterized by the upper-level variable, . The random variable w
is defined on a probability space (2, A, P). Further, E, denotes the expected
value with respect to w € Q, f : R — R U {+00} denotes the upper-level



objective function, F' denotes the cumulative distribution function, assumed to
be continuously differentiable, with [, dF'(w) =1, by construction, and X C R"
denotes the upper-level feasible set.

The lower-level problem is defined by the parameterized mapping 7'(x,w, -)
and feasible set )Y (z,w) [presumed convex|, and Ny, .)(y) denotes the normal
cone to the set Y(z,w) at y € Y(z,w). Note that the lower-level problem may
admit multiple solutions or no solution for certain values of x and w; in the former
case, we assume that the value of y chosen is that in the set S(x,w) which yields
the lowest value of the integral in (1a). In this way, we may define an objective
function for [SMPEC-(2] which depends on z only.

In practice, it is often impossible to evaluate exactly the expected value in (1a)
for problems of realistic size due to the difficulty in calculating the multiple in-
tegrals. Therefore, in many applications, it is convenient to make the assump-
tion/approximation that the random variables w € Q are discrete or that the
joint distribution function can be adequately discretized. In this case the ex-
pected value reduces to a sum over a discrete set £ of random events, which we
number by ¢ = 1,...,|L]. The probability of each such event is then given by
pe > 0, with 3 ,c, pe = 1, by construction. We can then reformulate (1) as the
following discretely distributed stochastic MPEC:

[SMPEC-L] minimize E;[f(z,y,)] := Z pef (2, ye), (2a)
teL

subject to x € X, (2b)

where, for each £ € L, y, € So(x) :={y € R" | ~Ty(x,y) € Ny,)(y) }.

We note that the deterministic problem, which we will refer to as [MPEC],
is obtained when |£| = 1. (This observation will also aid in determining the
properties of [SMPEC-L].)

A special case of [MPEC] is bilevel programming, which is obtained when the
lower-level variational inequality problem reduces to the optimality conditions
for an optimization problem, that is, when, for all x € X', T'(z,-) = V,t(z,-) for
some function £ : X x R™ +— R. Usually, bilevel programming is formulated in
terms of the corresponding optimization problem, thus leading to the formulation

[BP] minimize f(x,y), (3a)
subject to x € X, (3b)

where y € argmin, ey, t(z, 2).

We will consider as well a special case of [BP], in which the upper-level objec-
tive function f depends on the lower-level solution only in the sense of its optimal
value. This problem has been analyzed in Shimizu et al. [21], and is defined as
follows:

[BPOV] minimize f(z, p()), (1a)
subject to x € X, (4b)



where
p(z) = inf t(z,y). (4c)
yeY(x)

The linear case of [BPOV] is denoted [BLPOV].

The formulations, as well as the notation, of the continuously and discretely
distributed stochastic extensions of these special cases, [SBP], [SBPOV], and
[SBLPOV], are the obvious.

We also introduce the classical canonical model of two-stage stochastic linear
programming with recourse (e.g., Birge and Louveaux [2]):

[2S-SLP] minimize "z + Q(z), (5a)
subject to x € X, (5b)

where Q(z) := E,[Q(z,w)], and Q(z,w) :=inf,{¢"y | Wy =w — Az; y >0},
w € 2, denotes the optimal value of the second-stage linear program.

Similarly, a non-linear form of the two-stage stochastic program with recourse
is given as follows:

[2S-SNLP] minimize E,[f(z, Q(z,w))], (6a)
subject to x € X, (6b)
where Q(z,w) = infycymw) t(z,y,w), w € . We note that nonlinear forms of

two-stage stochastic programs with recourse have been studied to a large extent
only for the quadratic case (e.g., Rockafellar and Wets [20] and Birge et al. [1]).

In the rest of the paper, we shall investigate some relationships among the con-
tinuously and discretely distributed stochastic extensions of the models [MPEC],
[BP], [BPOV], and [2S-SLP]. In particular, we analyze the links between these
problem classes, previously not considered together, and present new results on
the existence of solutions, and directional differentiability and convexity prop-
erties of the implicit upper-level objective function. A final section then briefly
mentions some possibilities for constructing parallel iterative resolution methods
for the case of discretely distributed probability distributions. We note that a
number of related properties of expectation functionals can be found in Wets [22].

First, let us establish the complexity relations between the problem classes.
These are illustrated in Figure 1. (The notation [A] C [B] denotes that the class
of problems represented by [A] is included in that of [B].)

All the relations described in Figure 1 follow directly from the problem formu-
lations. Most interesting here is the equality, which equates two-stage stochastic
programming with recourse to the optimal value form of stochastic bilevel pro-
gramming problems.

The figure also illustrates that a particular linear form of [SBPOV] reduces to
the classic two-stage stochastic linear program with recourse, [2S-SLP], namely a
stochastic version of the right-hand side perturbation model, as discussed in [21,
page 189], in which the upper-level variable is located only on the right-hand side

4



FIGURE 1: Relationships among problem classes

[SBLPOV] > [2S-SLP]

N N
[SMPEC] > [SBP] D [SBPOV] = [25-SNLP]
U U U

[MPEC] > [BP] D> [BPOV]

of the lower-level constraints. (We will see later that this simplification enjoys,
in many cases, certain convexity properties.)

Since [BP] is N'P-hard, even in the linear case (e.g., Hansen et al. [8]), it is
clear that the problem [SMPEC] introduced in this paper is N'P-hard, as are
the other problems in Figure 1, with the exception of the discrete version of the
problem [2S-SLP], which is equivalent to a linear program, and is thus in P.

2 Existence of solutions

Consider the following general hierarchical programming model, which encom-
passes all those presented in Section 1.

[HP] minimize f(x,v), (7a)
subject to = € X, (7b)

where v € §(z), and 8§ : R" — 2% denotes a point to set mapping on R". We
let grS :={(z,v) € R"™* | v € S(x) } denote the graph of the mapping S.

The main result of this section is a general existence result for [HP], which in
the forthcoming will be specialized to allow existence to be established for all of
the problem classes introduced in Section 1.

First, we show that [HP] encompasses the problems of Figure 1.

PROPOSITION 2.1 The problems [SMPEC-L] and [SMPEC-Q] reduce to [HP].

Proof: In the former case, let v = (vg)pe, where vy := y;, S := [lser Se, and
f(z,v) == Yperpef(x,y0). In the latter case, let v = y(w), and f(z,v) =
E,[f(z,y(w))]. 0

PROPOSITION 2.2 The problem [BPOV] reduces to [HP].

Proof: Let v := p(z) and S(z) := {p(x)}. a

Consider the following assumptions, which will be necessary for demonstrating
the existence of optimal solutions to the problem classes of interest:



(i) The upper-level constraint set, X C R", is nonempty and closed.

(ii) The lower-level constraint set, }(z), is nonempty for at least one z € X,
and bounded for all z € X.

(iii) (Slater CQ) The lower-level constraint set, J(z), is of the form Y(x) := {y €
R™ | gi(x,y) <0, i=1,...,k}, where each function g; : R"*™ — R is
continuous on R"*™ and convex in y for each x € X. Further, either
gi(x,-) =¢i(:),i=1,... k, that is, Y(x) = Y, or for each x € X there is a
y € R such that g;(z,y) <0,i=1,... k.

(iv) There exists an (z,v) € Z:={(z,v) € grS |z € X } with f(z,v) < 0.

(v) (Inf-compactness) f is lower semi-continuous (l.s.c.), proper, and has bounded
lower level sets on Z.

THEOREM 2.3 (Existence of optimal solutions to [HP]). Let the assumptions (i),
(iv), and (v) be satisfied. Further, assume that grS is closed. Then, [HP] has at
least one optimal solution.

Proof: The assumptions imply the inf-compactness of the extended function
f 4+ 6z, where dz is the indicator function for the closed set Z. The result
then follows from Weierstrass’ Theorem. d

A similar result is found in Zhang [23].

Next, we specialize this result to the problems defined in Section 1, and give
sufficient conditions for the hypotheses to be satisfied.

Note that the conditions required in the preceding existence result are weaker
than those of many previously considered requirements on bilevel model formu-
lations, and as such, may be particularly interesting for a number of important
applications.

For example, the following two corollaries allow one to establish the existence
of an optimal solution to stochastic (and indeed also deterministic) structural
optimization problems in the presence of zero lower bounds on the truss bar
volumes. (See [3] for further details.)

In the following corollaries, the assumptions above are expressed using the
notation of Propositions 2.1 and 2.2, for each problem class.

COROLLARY 2.4 (Existence of optimal solutions to [SMPEC-L]). Let the assump-
tion (iii) hold for each ¢ € L, and the mapping Ty : R"T™ — R™ be continuous
on X x R™. Then, grSy is closed for each ¢ € L. Suppose further that the as-
sumption (1) holds, that the assumption (iv) holds for some x over all the sets
Zy, U € L, and that the assumption (v) holds with Z replaced by Upep Zy. Then,
there exists at least one optimal solution to [SMPEC-L].



Proof: Each set Sy(x) can be equivalently described by

Si(x) ={y e Vi(x) | To(z,y)" (z —y) >0, VzeV(z)}, r e X.

By the assumption (iii), either Y,(z) = ), holds, in which case the closedness of
gr Sy follows from the continuity of the mappings 7, and g¢,, or the Slater condi-
tion holds, in which case the closedness of S; follows from Hogan [11, Lemma 1]. O

COROLLARY 2.5 (Existence of optimal solutions to [SMPEC-Q]). Let the as-
sumption (iii) hold for each w € Q. Further, let T : R*"TH™ — R™ and
g : R RE be continuous on X x Q x R™. Then, grS is closed. Sup-
pose further that the assumption (i) holds, that the assumption (iv) holds for
some x over all the sets Z(w), w € Q, almost surely, and that the assumption
(v) holds with Z replaced by UyeqZ(w). Then, there exists at least one optimal
solution to [SMPEC-Q].

Proof: The continuity assumptions on 7" and g, together with the assumption (iii)
for each w € Q, imply that the mapping (z,w) — S(x,w) is closed on X x 2, and
hence also the set grS is closed, following the proof of Corollary 2.4. It follows
from the lower semi-continuity of f that the integrand in (1a) is Ls.c. in w (and
hence integrable), and that, by the linearity of the integration operation and the
fact that f is proper, the integral in (1a) also is l.s.c. Since there exists an z € X
such that this integral has a finite value, by the assumption (v), it is inf-compact.
The desired result then follows as in Theorem 2.3. a

COROLLARY 2.6 (Existence of optimal solutions to [SBP-L]). Let the assumption
(iii) hold for each £ € L, and the function t, : R"T™ — R be continuous on
X xR™. Then, gr Sy is closed for each ¢ € L. Suppose further that the assumption
(i) holds, that the assumption (iv) holds for some x over all the sets Zy, 1 € L,
and that the assumption (v) holds with Z replaced by Uper 2. Then, there exists
at least one optimal solution to [SBP-L].

Proof: The proof is similar to that of Corollary 2.4, the closedness result following
from [11, Lemma 1]. a

COROLLARY 2.7 (Existence of optimal solutions to [SBP-Q]). Let the assumption
(iii) hold for each w € Q. Further, let t : R*HT™ s R and g : RV s R
be continuous on X X  x R™. Then, grS is closed. Suppose further that the
assumption (i) holds, the assumption (iv) holds for some x over all the sets Z(w),
w € Q, almost surely, and that the assumption (v) holds with Z replaced by
UweaZ(w). Then, there ezists at least one optimal solution to [SBP-()].

Proof: The proof follows from that of Corollary 2.5. a0



COROLLARY 2.8 (Existence of optimal solutions to [SBPOV-L]). Under the as-
sumptions of Corollary 2.6, there exists at least one optimal solution to [SBPOV-

L].
Proof: The result is a special case of Corollary 2.6. d

COROLLARY 2.9 (Existence of optimal solutions to [SBPOV-Q)|). Under the as-
sumptions of Corollary 2.7, there exists at least one optimal solution to [SBPOV-

Proof: The result is a special case of Corollary 2.7. d

The following is an example of a result that can be established for [2S-SLP] by
using the links to bilevel programming. (Existence results for two-stage stochastic
linear programming based on general linear programming properties can be found
in [2, Section 3.1].

COROLLARY 2.10 (Existence of an optimal solution to [2S-SLP]). Let assumption
(ii) hold for some x € X and for each w € Q. Suppose further that assumption
(i) holds, and that the upper-level feasible set, X, is bounded. Then, there exists
at least one optimal solution to [2S-SLP].

Proof: By the linearity of all of the problem functions, (i) and (ii) along with
the boundedness of X' imply (iv) and (v). Then, the result follows from that of
Corollary 2.7. 0

3 Convexity

We next establish the convexity of some interesting special cases of [SMPEC].

THEOREM 3.1 (Convexity of [SBPOV-L|). In addition to the assumptions of
Corollary 2.8, suppose, for each € L, that t; and g;y, @ = 1,...,k, are convex
on R"T™. Then, each function p, : X — R U {+oc}, defined by (4c), is convex
on X. Further, assume that X is convex, and that the function f: X x R — R
is convexr on X X R and increasing in its second argument. Then, the implicit

upper-level objective function x v Y ,cp pof (x,pe(x)) is convex on X, so that
[SBPOV-L] is a convez problem.

Proof: We need only to establish the convexity of py, £ € L, on X, but this result
follows from the assumptions and Geoffrion [7, Theorem 5]. a

THEOREM 3.2 (Convexity of [SBPOV-Q|). In addition to the assumptions of
Corollary 2.9, suppose, for each w € Q, that t(-,w,-) and g;(-,w,-), i =1,...,k,
are convex on R"T™. Then, each function p(-,w) : X — RU {+oc}, defined by



(4c), is conver on X. Further, assume that X is convez, and that the function
f: X XR—= R is conver on X X R and increasing in its second argument. Then,
the implicit upper-level objective function x — E,[f(z,p(x,w))] is conver on X,
so that [SBPOV-Q] is a convex problem.

Proof: The convexity of p(-,w), w € Q, on X follows as in the proof of Theo-
rem 3.1. The linearity of the integration then yields the desired result. a

[t is clear that the convexity of [2S-SLP] is a special case of that of [SBPOV-Q].
(Compare, for example, with [2, Corollary 3.33]).

4 Differentiability

In this section, we will examine the directional differentiability of the implicit
upper-level objective function of [HP], and, as before, specialize that result to
the different problem classes. Let us first consider a number of assumptions.

(a) The function f is continuously differentiable on X x R™.

(b) The lower-level constraint set, Y(zx), is of the form Y(x) := {y € R™ |
gi(z,y) <0, i=1,...,k}, where each function g; : R*"™™ — R is twice
continuously differentiable on R"*™ and convex in y for each x € X. Fur-
ther, for each zz € X, Y() # 0 and Y(x) C B, for some open and bounded
set B € 1.

(c) (Linearindependence CQ) Let Z(x,y) :={i=1,...,k | gi(z,y) = 0 }. Then,
for each © € X and y € S(z), the partial gradients V,g;(x,y), i € Z(x,y),
are linearly independent.

(d) The mapping T is continuously differentiable on X x R™ and strongly mono-
tone in y for each z € X.

(d’) The mapping T is continuously differentiable on X x R and monotone in
y for each x € X.

The following Theorem, presented without proof, follows directly from Robin-
son [18, 19].

THEOREM 4.1 (Directional differentiability for [HP]). Let the assumption (a) be
satisfied and the implicit mapping x +— S(x) be locally Lipschitz continuous on
X. Then, the implicit upper-level objective function x — f(x,S(x)) of [HP] is
locally Lipschitz continuous and directionally differentiable on X .

Next, we provide sufficient conditions for the directional differentiability of
the implicit upper-level objective functions for the problem classes presented in
Section 1.



COROLLARY 4.2 (Directional differentiability for [SMPEC-L]). Let the assump-
tion (a) hold, and the assumptions (b) (d) be satisfied for each € € L. Then, the
implicit upper-level objective function x — Y ,cp pof(x,ye(x)) of [SMPEC-L] is
locally Lipschitz continuous and directionally differentiable on X .

Proof: By Robinson [18, Theorem 2.1|, the assumptions (a)-(d) imply that for
each ¢ € L, the implicit mapping x — S,(x) is locally Lipschitz continuous.
Then, by Theorem 4.1, the result follows. a0

COROLLARY 4.3 (Directional differentiability for [SMPEC-Q]). Let the assump-
tions of Corollary 2.5 hold. Further, let the assumption (a) hold, and the assump-
tions (b)—(d) be satisfied, almost surely. Then, the implicit upper-level objective
function x — E,[f(x,y(z,w))] of [SMPEC-Q] is locally Lipschitz continuous and
directionally differentiable on X .

Proof: Note that under the assumptions of Corollary 2.5, the integral in (1a)
exists. As in Corollary 4.2, the implicit function x — S(x,w) is locally Lipschitz
continuous. The integration preserves the locally Lipschitz continuity, since the
Lipschitz constant of f remains bounded on any bounded subset of X', and is
therefore integrable. The result then follows by Theorem 4.1. a0

The following result, adapted from Fiacco [6], illustrates that the require-
ments needed to ensure the directional differentiability of the implicit upper-level
objective function of [SBPOV] are weaker than those of [SMPEC].

COROLLARY 4.4 (Directional differentiability for [SBPOV-L]). Let the assumption
(a) hold, and the assumptions (b), (¢), and (d') be satisfied for each ¢ € L. Then,
the implicit upper-level objective function x — > e pef(x,pe(x)) of [SBPOV-L]
15 locally Lipschitz continuous and directionally differentiable on X .

Proof: By the result of [6], under the assumptions (b), (¢) and (d’), the optimal
value function x — py(x) is directionally differentiable on X, for all £ € £. Then,
by Corollary 4.2, with assumption (a), the result follows. 0

COROLLARY 4.5 (Directional differentiability for [SBPOV-Q]). Let the assump-
tions of Corollary 4.3 hold, except that the assumption (d) is replaced by the
weaker assumption (d'). Then, the implicit upper-level objective function x —
E,[f(z,p(z,w))] of [SBPOV-Q] is locally Lipschitz continuous and directionally
differentiable on X.

Proof: Follows directly from using Corollary 4.3 and arguments similar to those
in the proof of Corollary 4.4. a0
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5 Algorithms for SMPEC

Deterministic MPEC models are notoriously difficult and time-consuming to solve
because of their non-convexity coupled with the nondifferentiability of the implicit
upper-level objective function. (Differentiability can only be asserted under the
additional condition that strict complementarity holds.) The introduction of
a random distribution on some or all of its parameters causes an even greater
increase in the problem size and computational complexity. For this reason, the
development of efficient methods is primordial, as are the use of parallel strategies,
whenever possible.

In this paper, we have presented a taxonomy which highlights the principal
features of each problem type, and which therefore facilitates the adaptation of
algorithms.

For example, descent algorithms developed for deterministic MPEC can be
adapted to SMPEC as long as the local Lipschitz continuity and directional differ-
entiability of the stochastic objective function can be maintained. Corollaries 4.2
and 4.3 present the conditions needed. Similarly, algorithms for solving BPOV
can be adapted to SBPOV as long as the conditions of Corollary 4.4 or 4.5 are
satisfied.

Further, in the case of [SMPEC-L] or [SBPOV-L], subgradients can be cal-
culated efficiently if one makes use of the decomposability of the problem.

For example, based on the notation of [SMPEC-L], and following the approach
of Outrata and Zowe [17] for [MPEC], a subgradient of the implicit upper-level
function f at x is given by the formula

Er(@) = pelVauf (@, ye) + VaLe(w, ye, M) dy, — Vg7 (2, .W)dej(m,ﬂﬂa (8)

lel

where, for each £ € L, Ly(x,ye, Ne) := To(z, y¢) + Vyg(x, ye)" A\ is the Lagrangean
of the lower-level problem, with y, := y,(z) for brevity, and A, being the (unique,
under the conditions of Corollary 4.2) vector of multipliers for the parameterized
lower-level constraints. Furthermore, for each ¢ € L, the set J(x,{) is chosen
such that Z(z,¢) 2 J(x,¢) 2 Z,(z,) holds, where Z(z,¢) denotes the set of
active lower-level constraints at (z,y,), and Z, (z, ¢) is the subset for which the
multiplier values are positive, and (d,,, d/\y(z,a) solves the linear system

VyLl (.Z', Yu, )‘/) _vy.gj(m,é) (.Z', ,W)T dyz — —Vyf(l', Uﬁ) (9)
V970, Ye) O (0] D g2 0™ .

Each component of the subgradient can be calculated independently and in
parallel. The subgradient can then be used in an algorithm for the heuristic
solution of the problem or be embedded within a more sophisticated algorithm.
A simple scheme is to take, at some iteration ¢,

= Px[azt - ’thf(l"t)};
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for some 7; > 0 determined through an inexact line search. Note that, at points
of nondifferentiability, the method may break down because the negative of the
subgradient may then not be a descent direction; in order to obtain a well-defined
iteration at such points, one can envisage utilizing a step length which is the
maximum of the one supplied by a backtracking line search and the result of a
predetermined step length formula used in traditional subgradient optimization
techniques. Outrata and Zowe [17] utilize the deterministic analog of the systems
(8) and (9) in the development of a bundle method for the solution of [MPEC],
which immediately extends to the solution of [SMPEC-L].

Consider the following parallel resolution strategy for this model. In some
cases, one may identify a cluster of similar scenarios. Allocating these to the
same processor, one may solve the corresponding lower-level problems by utilizing
efficient reoptimization procedures given that any of them have been solved to
optimality, since the optimal solution to any one of them is feasible as well as
near-optimal to all the others. Further, for scenarios with slightly differing sets,
J (z, ), consider sorting subsets of the scenarios so that J(z,¢;) C J(z,¢3), and
so on. Then, one may solve the preceding linear systems in sequence, expanding
the matrix with the necessary rows and columns and utilizing the solution to the
former system as a starting point in the search for the next. The fact that the
choice of J(x,¢) is arbitrary in the range of active constraints may also assist
in the construction of the afore-mentioned clusters (and the subsequent solutions
of the linear systems) through a minimization of the number of scenarios with
distinct values of J(z, ¢).

Another algorithmic method that can be transfered to [SMPEC-L] is the
class of penalty methods for [MPEC]. Assume that for each ¢ € L there is a
(continuous) function, ¢, : R*™™ — R U {+oc}, which satisfies ¥, (z,y) > 0 for
all (z,y) € X x R™, and

Ye(w,y) =0 — y € Sy(x).

Then, the inclusion (2b) can be represented by a single equation in y. The
penalized problem is then defined for n, > 0 by

minimize Y polf (2, ye) + nevbe(x, ye)],
tec

subject to x € X.

In the deterministic case, such approaches have been devised by Harker and
Choi [9], and Marcotte and Zhu [15]. See also Larsson and Patriksson [12] for
other examples of differentiable, and typically non-convex, merit functions for
variational inequality problems and Facchinei and Soares [5] for NCP-functions
for the VIP primal-dual optimality conditions.

Again, this penalty approach can be easily parallelized, since the evaluation
of the penalty function and its derivatives can be done independently over the
different scenarios.
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Several other methods for solving BP and MPEC problems have appeared
in the literature in recent years (see, e.g., [13, 21] for overviews, and the re-
cent smoothing method of Facchinei et al. [4]). These methods can generally be
adapted to solving the discretely-distributed stochastic models presented here.

In the case of large-scale models, and when the number of scenarios is very
high, however, simple parallelization strategies over the scenarios may however
not make the model tractable. In these cases it may be necessary to develop
further approximation schemes, such as approximating the lower-level problem, or
constructing aggregation/disaggregation strategies with respect to the scenarios.

In the case of continuously distributed SMPEC problems like [SMPEC-Q] or
[SBPOV-Q], no such decomposition over scenarios is available, and the presence
of the multiple integral in the objective function generally necessitates numerical
integration at each upper-level iteration. Birge et al. [1] propose an approximate
Newton method as well as a modification of the stochastic decomposition method
of Higle and Sen [10] to solve quadratic stochastic programs with recourse. These
problems are in fact quadratic instances of SBPOV with a separable objective
function and polyhedral constraints. Other strategies for solving [SMPEC-2] and
[SBPOV-Q] may make use of random sampling of the continuous distribution, as
is done within the class of stochastic quasi-gradient methods.
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