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Abstract

We consider a general discrete structural optimization problem including unilateral con-
straints arising from, for example, non-penetration conditions in contact mechanics or non-
compression conditions for elastic ropes. The loads applied (and, in principle, also other data
such as the initial distances to the supports), are allowed to be stochastic, which we handle
through a discretization of the probability space. The existence of optimal solutions to the
resulting problem is established, as well as the continuity properties of the equilibrium dis-
placements and forces with respect to the lower bounds on the design variables. The latter
feature is important in topology optimization, in which one includes the possibility of vanishing
structural parts by setting design variable values to zero. In design optimization computa-
tions, one usually replaces the zero lower design bound by a strictly positive number, hence
rewriting the problem into a sizing form. For several such perturbations, we prove that the
global optimal designs and equilibrium states converge to the correct ones as the lower bound
converges to zero.

1 Introduction

1.1 Motivation

Topology optimization of mechanical structures refers to the subfield of structural optimization
where parts of the design region are allowed to be occupied by a varying amount of solid material,
including no material at all. This means that the sets of admissible designs and the corresponding
structural responses are very large. On the one hand, some designs might result in a structure that
cannot carry the applied load at all, while, on the other hand, some designs carry the particular
load very efficiently. The distinction between sizing and topology optimization is usually that in
the latter the amount of material, for example, a thickness or cross-sectional area, is allowed to be
zero. Figure 1 shows a simple one-dimensional structure1 that consists of a bar suspended with one
cable. Suppose that one has chosen the bar material volume (or the cross-sectional area) x and the
cable material volume X to be design variables. If the objective is to maximize the displacement

∗This research is supported by a grant from the Swedish Research Council for Engineering Sciences (grant TFR
98-125), which is greatfully acknowledged.
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1This example will be studied in more detail in Section 3.1.2.
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Figure 1: The cable suspended one-bar truss.

in the middle, then there are in fact no optimal solutions in the topology optimization problem
unlike in the corresponding sizing optimization problem. The reason is that the objective value
can be made arbitrarily large by choosing x and X arbitrarily close to zero (which is not allowed
in the sizing case). Although the objective function is somewhat artificial, similar phenomena can
occur also in a more natural context, and it illustrates that it is in general not obvious that there
exist solutions to topology optimization problems as some mathematical properties are different
from the sizing case. In this example, the key issue can be described by a lack of closedness of the
feasible set (in the problem statement involving both the state and design variables), which has
been observed earlier to be an important factor in establishing existence of solutions in general
mathematical programs with equilibrium constraints in, e.g., [LPR96, Section 1.4].

Sizing problems are typically easier than topology optimization problems for more reasons than
that the existence issue is easier—for instance the design sensitivities, that is, the derivatives of
the state variables (in the nested version of the problem) with respect to changes in design, are
harder to determine in other problem types such as in shape optimization. Therefore, if topology
optimization problems could be cast into a sizing-like problem statement, then the problem would
be much easier to handle, since design sensitivities and unique equilibrium solutions always exist
and are computable. The traditional way to restate or modify the problem statement from a
topology optimization problem to a sizing-like statement is here referred to as an ε-perturbation
(or, an ε-relaxation). In order for the ε-perturbation to be valid, the solution sets of the restated
sizing-like problems should be close to those of the original problem statement for small parameter
values ε. Difficulties in finding and validating proper ε-perturbations should somehow be expected
since the unperturbed problem statements include many different structural topologies whereas
the sizing problems cover only one.

The most common ε-perturbation is to replace the design zero lower bounds by a small posi-
tive number ε—a perturbation which is valid for some minimum compliance problems (see, e.g.,
[Ach98]). Concerning stress-constrained minimum weight problems, however, the situation is more
complicated. Consider again the simple structure in Figure 1, and suppose that one wants, more
naturally, to minimize the total weight subject to the stress constraints shown in the figure.2 The
bar can sustain any stress with magnitude less than or equal to σ1 (specific for the bar material),
while the cable can sustain no compressive stresses and no tensile stresses exceeding σ2 (specific

2This example will be studied in more detail in Section 4.2.4.
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Figure 2: The admissible design domain. The optimal solution is at the black circle.

for the cable material). Figure 2 shows the feasible domain for the design variables (x, X) after
the state variables have been eliminated. Note that this domain consists of the union of a two-
dimensional, convex domain and a one-dimensional ”spike” appended to it. As seen in the figure,
the optimal design is located on the spike, and simply enforcing small strictly positive lower bounds
on x and X will obviously change the feasible set in a discontinuous fashion; no matter how small
lower design bound one uses, the distance to the desired optimal design will always be at least
1/

√
2.
Observations of this kind were done by Sved and Ginos as early as in 1968 [SvG68]. The

problem is sometimes referred to as the ”stress singularity phenomenon” or ”singular topologies”,
cf., e.g., [Kir90, Roz01]. Two different perturbations which include ε-terms in the stress constraints
were introduced by Svanberg [Sva94] and Cheng and Guo [ChG97]. Since it is of paramount
importance to know if, and for which type of ε-perturbation, the restated sizing-like problem’s
design solutions converge to the set of optimal designs in the original problem statement as the
parameter ε approaches zero, it is the main theme of this paper to prove such continuity results,
as well as the existence of optimal solutions, for several different problem classes. When justifying
correct ε-perturbations the proofs rely heavily on the continuity properties of the mappings that
provide the set of equilibrium states for given designs, including changes in the connectedness of
the mechanical structure. These continuity results are interesting in their own right, and based on
their generality we believe them to be useful also for applications other than those covered here.

We do not directly aim at providing methods for finding optimal solutions to the problems
studied, but focus on justifying the optimization statements. Having proven that some sizing-like
problem’s optimal solutions are close to the desired ones, one can usually rely on the fact that the
nested versions of sizing problems are often successfully solved by sequential convex or separable
programming algorithms in conjunction with standard sensitivity analysis.

1.2 Scope

Two of the most natural and classical structural optimization problems are minimum compliance,
or, equivalently, maximum stiffness, under a volume constraint, and minimum weight under stress
constraints. We consider these problem classes in a discrete framework, that is, we assume that the
state and design are specified by a finite number of variables, which is the case for example with
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trusses, where the state may be governed by a vector u of nodal displacements and the design by a
vector x of bar volumes (or cross-sectional areas). We also treat a discretized continuous problem,
namely the one that results from applying a finite element method (FEM) on the problem of
minimizing the effective stress in an elastic continuum in plane state of stress. The objective is
the minimum L2-norm of the effective stress (in the sense of von Mises), subject to a constraint on
the available amount of material volume. Different ε-perturbations are treated for all these three
problem classes.

Frequently it is assumed that the elastic structure’s state, for example nodal displacements and
internal bar forces, is governed by a system of linear equations. In this work, we wish to allow for
the modelling of mechanical contact and structures suspended by elements that can sustain only
tensile forces, whence the equilibrium framework must be extended to affine variational inequalities
(AVIs). These unilateral constraints appear in practice, for example, in machine elements such as
press-fits and turbine blade roots, and for structures such as bridges suspended by elastic cables.
When the state problem is governed by a variational inequality, the overall design problem is termed
a mathematical program with equilibrium constraints (MPEC), cf. [LPR96], or a generalized bilevel
optimization problem. For a general overview of optimization of structures subject to unilateral
constraints, we refer to [HKP99b].

We also consider stochastic loads, that is, we allow for the applied loads to be random. For
instance, a heavy weight hung by a crane could move in the wind in an unpredictable manner. The
procedure is expected to lead to more robust optimal designs, since structures that are optimal
for a single deterministic load can be very inefficient for slightly different loads, cf. [CPW01]. We
assume that the load components are specified by a probability space, formulate functions affected
by the stochastic data in terms of either expected values or worst-case scenarios, and then proceed
by discretizing the corresponding sample space. Among other things, this may lead to a traditional
multiple load-case formulation where a linear combination of the objective functions is used. The
weights in this linear combination can be determined from the probability density function and the
integration rule used to evaluate the expected value of the objective function. We remark that we
could have considered a more general stochastic model which involves uncertainties in the other
data of the problem, such as the initial distances to the rigid supports, which may be random
due to manufacturing tolerances, the stiffness matrices, etc. We have chosen to study, from a
mathematical standpoint, only one type of randomness, for two main reasons: first, external loads
are probably the most natural choice of randomness in the model; second, the analysis of a more
general stochastic model would be very similar.

1.3 A preview and a gentle introduction to the techniques used

In order to establish the topology optimization problems’ transformation to sizing-like statements,
continuity properties of the design–to–state mappings during topological changes need to be inves-
tigated. This requires in turn a proper description of the equilibrium relations for the states. The
principle used must be expressed in such a way that possible topological changes are accounted
for; consequently, it must distinguish between the active parts of the design, that is, those indices
of the design variables which are nonzero, and those corresponding to holes or voids, that is, zero
design variable values. It must also be amenable to sensitivity and perturbation analyses, wherein
we investigate the changes in the equilibrium state to changes in the design. Perhaps somewhat
surprisingly, neither does one equilibrium formulation suffice to reach the necessary results, nor
does current sensitivity analysis cover all the perturbation and sensitivity results needed. We shall
seek to explain below why this is the case, and to provide at the same time a gentle introduction
to the results to follow in the later sections.

We will use three formulations of the equilibrium conditions for a given design (x, X): (a) the
principle of minimum complementary energy, denoted (C)(x,X), which is described in terms of forces
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only; (b) the principle of minimum potential energy, denoted (P)(x,X), which is described in terms
of displacements only; and (c) an AVI which is described in terms of forces and displacements
simultaneously. The two first problems form, for a given design (x, X), a primal–dual pair of
quadratic programs, whose optimality conditions are exactly the AVI.

To each of these three formulations corresponds a main result on the continuity of the design–
to–state mapping. The first states that, given any convergent sequence of designs, and assuming the
elastic energy remains bounded, the limit design possesses a state of equilibrium and the sequence
of equilibrium forces converges to the limit design’s equilibrium force (Theorem 3.1). (This is
however not the case when the equilibrium principle is formulated in the displacement space.) The
proof of the result utilizes the lower semicontinuity property of the extended real-valued energy
function E , and the formulation (C)(x,X). The other two continuity results are less general, as
they are stated for particular design sequences where each element in the design vector decreases
strictly monotonically to a fixed design variable value (and which vector is assumed to have a state
in equilibrium). The total potential energy principle (P)(x,X) is in Theorem 3.2 utilized to establish
that the sequence of displacements converges to the least-energy displacement among all possible
equilibrium displacements. This is the only result presented which has been analyzed previously;
it is in fact a special case of the perturbation technique known as the regularization of a nonstrictly
convex program (e.g., [Bro66]); for this special caes, we felt however that an independent proof
would be illustrative. The Theorems 3.3 and 3.4, finally, utilize the AVI formulation. The first
result establishes that the convergence rate of the equilibria is at least linear. The proof is based
on the recent development of the theory of error bounds for the solutions to AVIs and systems of
linear inequalities, and on Theorem 3.2. The second result establishes that in the region where the
design is strictly positive, the state is locally Lipschitz continuous in the design.

The design–to–state mapping is somewhat special, and in fact it is less ”continuous” than
what current sensitivity analysis presumes. The obstacle is the effect of changes in the topology.
As the set of active indices in the design changes, the quadratic programs corresponding to the
two equilibrium principles will have different numbers of constraints, in which case the feasible
sets are not lower semicontinuous [the case of (C)(x,X)], or the dimension of the null space of the
objective’s Hessian changes [the case of (P)(x,X)]. (Sensitivity results are normally not formulated
such that the number of constraints or dimension of the null space of a matrix are allowed to
differ.) In an equivalent reformulation of (C)(x,X), the number of constraints is constant, but the
objective is instead extended real-valued, with infinite values whenever a force is nonzero in an
inactive design element. Although the energy functional is lower semicontinuous (lsc), it is not
continuous at an equilibrium as it is not upper semicontinuous, which, again, precludes the use
of existing analysis, such as Theorem 4.3.3 in [BGK+83]. (Present quantitative characterizations
of continuity, e.g., upper- and lower-semicontinuity results, all require at least continuity of the
objective function near the ”reference point” jointly in the problem variables and parameters. It
seems rather unlikely to be able to obtain a result applicable to a general class of optimization
problems without this requirement. What helps us to be able to reach the sensitivity results sought
are, in short, the favourable properties of the lsc function (x, y) 7→ x2/y on R×R+, and the recent
theory of error bounds for the solutions to AVIs.) The complementary energy problem’s optimal
solution is unique if a feasible solution exists. Restricted to a set where the energy is bounded, the
design–to–force mapping is closed. The total potential energy principle can however in general have
an unbounded solution set, due to the singularity of the stiffness matrix when some design variables
are zero; further, the rank of this matrix changes dramatically with the index set of active design
variables. To a sequence of equilibrium forces may correspond a divergent sequence of equilibrium
displacements, if the limit design corresponds to a singular stiffness matrix. Thus, the design–
to–displacement mapping is not closed. The two quadratic programs are hence not amenable to
traditional sensitivity analysis. The AVI is constructed such that a constraint enforces an inactive
design element to have a zero force, so the problem is in some ways better posed. On the other
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hand, the sensitivity analysis of AVIs is weaker than for quadratic programs: the sensitivity analysis
available is only local, unless the limit design is strictly positive, and can not be used to establish
the existence of an equilibrium for a limit design.

Each of the three continuity results is applied in the results which then follow in Sections 4 and
5, which are devoted to cable suspended trusses and finite element discretized sheets in contact,
respectively. For each problem, we analyze the existence of optimal designs, and correct forms
of ε-perturbation, for two problem statements: minimum compliance given a limited amount of
material, and stress-constrained minimum weight. The compliance minimization problem is the
easiest by far; the proofs use the design–to–force mapping’s continuity as the main ingredient.
The straightforward ε-perturbation mentioned earlier is sufficient, and the optimal design problem
can be given several convex, or convex–concave, optimization formulations. The stress-constrained
minimum weight problem is the most difficult. Existence relies on using design–to–force continuity;
in the perturbation results, also the rate of convergence is needed, and in addition to setting the
lower design bound to ε, we must introduce a term which converges to zero—faster than ε but slower
than ε2—into the stress constraints. The problem where the effective stress in an elastic continuum
is minimized is in character somewhat ”in between” the other two problems in difficulty. Besides
the design–to–force continuity, the displacements’ convergence to the least-energy displacement is
utilized. These results make it all the more clear that each of the three equilibrium principles
studied have an important role to play.

To summarize, the rest of the paper is organized as follows. Section 2 deals with the three
principles of equilibrium: minimum of complementary energy, minimum total potential energy,
and an AVI expressed in all state variables simultaneously. Section 3 states and proves several
propositions on the continuity properties of the state variables with respect to changes in the
design variables, including changes in topology. The following two sections deal with interesting
instances of structural optimization problems. Section 4 accounts for cable suspended trusses,
minimum compliance as well as stress constrained minimum weight. Section 5 treats the FE-
discretized sheet problem where the L2-norm of the effective stress is minimized. Finally, Section
6 includes some remarks and comments on interesting further research.

2 The equilibrium problem

The structure is assumed to consist of at most m parts such as bars or finite elements. The material
volume allocated at part i is described by xi, i = 1, . . . , m. Clearly, xi ≥ 0 holds, and xi = 0 is
interpreted as a structural void. We denote the set of present (or, active) parts of the structure by
the index set

I(x) := { i | xi > 0 } ⊆ {1, . . . , m}.

The structure is further assumed to consist of nodes, the displacements of which are collected in
a (column) vector u ∈ R

n (note: prescribed zero-displacements are removed). The deformation of
each (present) part is described by sc strain components, collected in a vector εi for i = 1, . . . , m.
This strain is connected to the displacement through the relation

εi = Biu, i ∈ I(x), (1)

where Bi ∈ R
sc×n is a kinematic transformation matrix. The stress state of each present part is

described by σi ∈ R
sc, and is assumed to be related to the strain according to Hooke’s generalized

law:

σi = Eεi, i ∈ I(x), (2)
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where E ∈ R
sc×sc is the symmetric and positive definite matrix of elasticity constants. We define

the force-like variable si as

si = xiσi, i ∈ I(x), (3)

which in fact has unit (force × length). (For a bar it is simply the bar force times the bar length.)
We set Di(x) = xiE, and then (1)–(3) give

si = Di(x)Biu, i ∈ I(x). (4)

External forces (including forces due to unilateral contact and cables) are represented by a vector
F ∈ R

n; static force equilibrium is governed by

F =
∑

i∈I(x)

BT
i si. (5)

Note that, if we define the structural stiffness matrix as

K(x) =

m∑

i=1

xiB
T
i EBi, (6)

then (4) and (5) yield

F = K(x)u. (7)

We assume that there are sufficiently many prescribed zero-displacements for K(1m) to be positive
definite. (Here, 1m denotes the m-vector of ones.)

2.1 Special case 1: Linear triangular finite elements

In this particular case, we consider a plane structure, sc = 3 and strains εi = (εx, εy, γxy)
T , stresses

σi = (σx, σy , τxy)
T , and, assuming plane stress and an isotropic elastic body,

E =
E0

1 − ν2




1 ν 0
ν 1 0
0 0 1−ν

2



 ,

where ν ∈ (−1, 1/2) is Poisson’s ratio and E0 > 0 is Young’s modulus. Let the set ηi contain the
node numbers for the nodes belonging to element i. If we define matrices

BA =




∂NA

∂x1
0

0 ∂NA

∂x2
∂NA

∂x2

∂NA

∂x1


 ,

where NA are shape functions, then the Bi’s are constructed so that

εi =
∑

A∈ηi

BAuA = Biu,

where uA ∈ R
2 is the displacement at node A.

Based on the different stress components in a finite element one can calculate a single effective
stress according to

σe
i =

√
σT

i Mσi,
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where, in the case of von Mises effective stress,

M =




1 − 1

2 0
− 1

2 1 0
0 0 3



 .

2.2 Special case 2: Truss structures

This particular case involves a set of bars in one, two or three dimensions. We have sc = 1, σi is
simply the stress in the bar, and εi the strain. The matrix E is Young’s modulus of the bar, and

Di = xiE, si = xiσi.

Hence, si is the bar force times its length, Bi is 1/Liγ̄
T
i , where Li is the bar’s length, and γ̄i

contains the bar’s direction cosines.
The effective stress in a bar is the absolute value of the single stress value; hence, σe

i =√
σT

i Mσi = |σi| holds, where here M = 1 holds.

2.3 The unilateral constraints

Suppose we have unilateral rigid supports that cannot be penetrated by the nodes of the structure.
Then, these unilateral constraints can be formulated as

C1u ≤ g1, (8)

where C1 ∈ R
r1×n is a kinematic transformation matrix, and g1 ∈ R

r1 is the vector of the initial
gaps. If we let λ ∈ R

r1 be the vector of contact forces, then the relations

λ ≥ 0, λT (C1u − g1) = 0 (9)

reflect the facts that the contact is non-adhesive and that contact forces do not develop at a
distance. We shall assume that each node is subject to not more than one contact condition
(or, more generally, that if there are more than one contact condition for one node then they
are orthogonal), whence C1C

T
1 equals the r1 × r1 identity matrix. (We refer to this as C1 being

quasi-orthogonal.)
Suppose now also that there are at most r2 cables (or, ropes), the ends of which are attached to

nodes of the structure and (possibly) also suspended at rigid foundations. The jth cable’s volume
is denoted by Xj, and similarly to I(x) we define

J (X) := {j | Xj > 0} ⊆ {1, . . . , r2}.

We let ej be the cable’s elongation, (g2)j its initial slack, and Sj its tensile force. Then, the
behavior of the cables can be described by

γT
j u − ej − (g2)j ≤ 0, Sj ≥ 0, (γT

j u − ej − (g2)j)Sj = 0, j ∈ J (X), (10)

where γj is a vector which contains the unit vector of cable j (in the same way as for a bar element).
The cables’ stiffness constants are

kj(X) =
XjEc

L2
j

, j ∈ J (X), (11)
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where Ec > 0 is Young’s modulus for the cable material and Lj > 0 the cable lengths. Therefore,
the cable elasticity is modelled by

Sj = kj(X)ej , j ∈ J (X), (12)

(and hence Sj ≥ 0 if and only if ej ≥ 0). We interpret (10) and (12) as follows: if Sj = 0, then
by (12), ej = 0, and what is left of (10) is γT

j u ≤ (g2)j which asserts that the elongation of the
straight line between the cable’s end points cannot exceed the initial slack. If, on the other hand,
Sj > 0, then (10) states that γT

j u − ej = (g2)j , that is, the cable elongation equals the elongation
of the straight line between the cable’s end points minus the initial slack.

The cable forces are directed along the direction of the cables, defined through the vector
γj ; we presume frictionless contact, whence the directions of contact forces are known (namely
orthogonally to the unilateral supports). Hence, if f ∈ R

n denotes external prescribed forces
(different from cable and contact forces), static equilibrium [see (5)] is governed by

CT
1 λ +

∑

i∈I(x)

BT
i si +

∑

j∈J (X)

Sjγj = f, (13)

since

F = f − CT
1 λ −

∑

j∈J (X)

Sjγj .

Given a structure and cable design (x, X), the overall equilibrium problem can now be sum-
marized as follows: For all i ∈ I(x) and j ∈ J (X), find nodal displacements u, cable elongations
ej , contact forces λ, cable forces Sj and internal structure forces si such that (4), (8)–(10), and
(12)–(13) hold.

2.4 Energy principles

2.4.1 Minimum complementary energy

The principle of minimum of complementary energy states that among all force distributions that
satisfy static force equilibrium [that is, (5)], the one present in equilibrium (if any), is one which
minimizes the elastic energy of the structure. In parts of the structure where xi = 0 or Xj = 0
holds, elastic energy cannot be stored. Using the notation I(x) and J (X) for positive elements
xi and Xj, respectively, and sI(x) and SJ (X) for the corresponding sub-vectors, we can then state
the elastic energy minimization problem as follows:

(C)(x,X)






min
(sI(x),SJ (X),λ)

EI,J (x, X, s, S, λ) :=
1

2

∑

i∈I(x)

sT
i E−1si

xi
+ gT

1 λ

+
∑

j∈J (X)

(
(LjSj)

2

2EcXj
+ (g2)jSj

)
,

s.t.






CT
1 λ +

∑

i∈I(x)

BT
i si +

∑

j∈J (X)

Sjγj = f,

λ≥0,

SJ (X) ≥0.

In the below result, we use the notions that a real-valued function, say ϕ : R
n 7→ R ∪ {+∞},

is coercive (with respect to a set Y ) if Y is bounded or lim‖xt‖→∞, xt∈Y ϕ(xt) = ∞, and that ϕ is
lower semicontinuous (lsc) if for any x ∈ R

n, lim infy→x ϕ(y) ≥ ϕ(x).
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Theorem 2.1 (Existence of optimal solutions to (C)(x,X)). Suppose the feasible set of the problem
(C)(x,X) is nonempty. Then, there exists a unique optimal solution to the problem (C)(x,X).

Proof. The objective function of (C)(x,X) is coercive and lsc. The former follows for (sI(x), SJ (X))
immediately, and for λ we note that by the quasi-orthogonality of C1, λ is uniquely determined
by them. Lower semicontinuity follows from continuity. Since EI,J is strictly convex in those
variables, also uniqueness follows.

We investigate the optimality conditions for this problem. We introduce u as the Lagrange
multipliers for the equality constraints. The stationarity conditions for the Lagrangian then become
the following: stationarity with respect to s gives (4); through the definition (11) we derive (10)
and (12) as the stationarity conditions with respect to S ≥ 0; stationarity with respect to λ ≥ 0
yields (8) and (9); finally, stationarity with respect to u of course gives us (13). Summarizing, then,
the conditions which characterize the minimal complementary energy are precisely the conditions
(4), (8)–(10), and (12)–(13), discussed from a mechanical standpoint in the previous section.

2.4.2 Minimum total potential energy

We will next state and investigate a principle of minimum potential energy. Given a design (x, X)
the problem is the following:

(P)(x,X)






min
(u,eJ (X))

1

2

∑

i∈I(x)

xiu
T BT

i EBiu +
1

2

∑

j∈J (X)

EcXj

L2
j

e2
j − fT u,

s.t.

{
C1u≤ g1,

γT
j u − ej ≤ (g2)j , j ∈ J (X).

Investigating its optimality conditions, we introduce λ ≥ 0 and Sj ≥ 0, j ∈ J (X), as the
Lagrange multipliers for the inequality constraints. Pursuing, as for the problem (C)(x,X), the
stationarity conditions for the resulting Lagrangian reformulation, we obtain the following. We
first note that although s does not enter into this problem, we will use (4) as its definition. Then,
stationarity with respect to u yields (13); stationarity with respect to e gives (12); stationarity
with respect to λ ≥ 0 gives (8) and (9); finally, stationarity with respect to S ≥ 0 gives (10). So,
to summarize, the characterization of the minimum potential energy is, again, the conditions (4),
(8)–(10), and (12)–(13), discussed from a mechanical standpoint in the previous section.

This development also establishes that the problems (C)(x,X) and (P)(x,X) constitute equivalent,
primal–dual pairs of convex quadratic programs, since they have the same optimality conditions.
This means that if there exists an optimal solution to (C)(x,X), then there are optimal solutions
to (P)(x,X), and, conversely, if there is at least one optimal solution to (P)(x,X), then (C)(x,X) is
uniquely solvable.

In the optimal solution to these problems, the values of the variables sI\I(x) and (S, e)J\J (X)

are unspecified. (This is a direct effect of the way in which the primal–dual pair of equilibrium
problems were stated, as these variables are not present in their formulations or in their Lagrangian-
based optimality conditions.) This is, however, a drawback when we want to consider existence,
continuity and other sensitivity issues for varying values of (x, X) [and consequently for varying
index sets I(x) and J (X)], in particular as a subset of their elements tend to zero. In order to state
a complete set of equilibrium conditions, containing all the variables, we shall next formulate an
affine variational inequality problem which embraces the conditions (4), (8)–(10), and (12)–(13).
The idea is to introduce the conditions (4) and (12) explicitly into the formulation, for the entire
sets of variables, and not just for the index sets I(x) and J (X), whereby we explicitly account for

10



the active parts of the structure by forcing zero elements in (x, X) to correspond to zero elements
in (s, S). Mechanically speaking, the only possible force in a void is zero.

2.4.3 Equilibrium characterization as an affine variational inequality

Let Q be a matrix in R
p×p, q a vector in R

p and Y a polyhedral subset of R
p. The affine variational

inequality (AVI) problem associated with this data is to find y∗ ∈ Y such that

[Qy∗ + q]T (y − y∗) ≥ 0, y ∈ Y. (14)

(In case Q is symmetric, this variational inequality constitutes the necessary conditions for y∗ to
be a local minimum point of the function y 7→ 1

2yT Qy + qT y over the set Y .) We denote this
problem by AVI (q, Q, Y ).

We now state the equilibrium conditions for forces and displacements as an AVI. To this end,
we first define C2 as the r2 × n matrix of the vectors γj , B as the (m · sc) × n matrix created by
stacking the matrices Bi on top of each other, s as the m ·sc vector created by stacking the vectors
si on top of each other, D(x) as the (m ·sc)× (m ·sc) block-diagonal matrix created by placing the
matrices Di(x) along the diagonal, and, finally, k(X) as the r2 × r2 diagonal matrix with diagonal
elements kj(X). Let

y :=




u
e
s
S
λ




, Q :=




0 0 BT CT
2 CT

1

D(x)B 0 −I 0 0
0 k(X) 0 −I 0

−C2 I 0 0 0
−C1 0 0 0 0




, and q :=




−f
0
0
g2

g1




, (15)

and Y := R
n ×R

r2 × R
m·sc × R

r2
+ ×R

r1
+ . (Note: R+ denotes the set of nonnegative reals, whereas

R++, to be used later, denotes the set of strictly positive reals.)
It is easy to check that the AVI with this data is a statement of the conditions (13), (4), (12),

(10), (8), (9), in that order, where now the conditions are stated over all the variables.
For the AVI given by (14), (15) we next establish an elementary result on the closedness property

of its solution set when viewing (x, X) as parameters. To this end, we shall introduce the new
notation AVI (q, Q(x, X), Y ) and SOL (q, Q(x, X), Y ) to denote the AVI problem (14), (15) and its
solution set for a given pair (x, X).

Theorem 2.2 (Closedness of the mapping (x, X) 7→ SOL(q, Q(x, X), Y )). The mapping (x, X) 7→
SOL(q, Q(x, X), Y ) is closed on R

m × R
r2 .

Proof. Consider a sequence R
m × R

r2 ⊃ {(xt, Xt)} → (x∗, X∗), and an arbitrary sequence {yt}
fulfilling yt ∈ SOL(q, Q(xt, Xt), Y ) for all t. Suppose that the latter sequence has a limit point,
y∗. Closedness amounts to having y∗ ∈ SOL(q, Q(x∗, X∗), Y ). In order to establish this inclusion,
consider, for a fixed vector y ∈ Y in the AVI given by (14), (15), the sequence of solutions over t.
Then, noting that Q(·, ·) + q is continuous in (x, X), the result clearly follows.

The reader is advised not to conclude that there always exist limit states for a limit design: the
assumption of boundedness of the sequence of states, made in the proof of the above lemma, is cru-
cial. Subsequently, we shall illustrate in detail that there are indeed cases where limit displacements
do not exist (see Section 3.1.2).

Further, the above result can not be used to claim that a bounded sequence of forces accumulate
at equilibrium forces for a limit design. For this to be true, the energy needs to remain bounded,
cf. Theorem 3.1 and Corollary 3.1.
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3 Continuity of design–to–state mappings

We now investigate the behavior of the equilibrium states (u, e), (s, S), and λ as functions of the
designs (x, X). In particular, we are interested in the continuity of sequences of equilibrium states
as a sequence of designs tends to a limit. This will be very useful in the analysis of ε-perturbation
schemes, wherein small but positive lower design bounds are used, and which may subsequently
be allowed to tend to zero.

3.1 Design–to–force

3.1.1 Theoretical results

We first consider the conditions under which a limit state exists for a design. We begin by two
useful lemmas.

Lemma 3.1 (Lower semicontinuity of a convex function). Let the convex function ϕ : R × R+ 7→
R+ ∪ {+∞} be defined by

ϕ(x, y) =





x2/y, if y > 0,

+∞, if x 6= 0 and y = 0,

0, if x = y = 0.

Then, ϕ is lsc on R × R+, and ϕ(x, ·) is continuous on R+ for any x ∈ R.

Proof. The analysis of this function is similar to that in Rockafellar [Roc70, p. 83], which, however,
concerns its lsc property over a larger domain. Let R ⊃ {xt} → x and R+ ⊃ {yt} → y. We need
to show that (i) lim inft→∞ ϕ(xt, yt) ≥ ϕ(x, y), and (ii) limt→∞ ϕ(x, yt) = ϕ(x, y).

Consider first the case (x, y) = (0, 0). Here, ϕ(x, y) = 0 ≤ ϕ(xt, yt), so (i) follows immediately.
Also (ii) holds since ϕ(0, yt) = 0 = ϕ(x, y).

The second case is x 6= 0 and y = 0. Here, ϕ(x, y) = +∞. Since |xt| ≥ c > 0 for all sufficiently
large t, one has either that ϕ(xt, yt) ≥ c2/yt (if yt > 0) or ϕ(xt, yt) = +∞ (if yt = 0). In either
case, (i) follows, and (ii) follows similarly.

The third case is y > 0. Here, ϕ(xt, yt) = (xt)2/yt for all sufficiently large t, so both (i) and
(ii) holds. This completes the proof.

We next apply this result to our energy functional. For the sake of a subsequent discussion, we
will state the following result for a more general energy function.

Lemma 3.2 (Lower semicontinuity of an energy functional). Let M be an arbitrary symmetric and
positive definite sc×sc matrix, and M1/2 an arbitrary symmetric and positive definite square root.
With ϕ being the function in Lemma 3.1, the function

EM (x, X, s, S, λ) :=
1

2

m∑

i=1

sc∑

k=1

ϕ
(
(M1/2si)k, xi

)
+ gT

1 λ +

r2∑

j=1

(
L2

j

2Ec
ϕ(Sj , Xj) + (g2)jSj

)

is convex and lsc on R
m
+ ×R

r2
+ ×R

m·sc ×R
r2 ×R

r1 , and EM (·, ·, s, S, λ) is continuous on R
m
+ ×R

r2
+

for any (s, S, λ) in R
m·sc × R

r2 × R
r1 .

Proof. The result follows from Lemma 3.1 and the fact that the sum of convex, lsc functions is
convex and lsc (e.g., [Roc70, Theorem 9.3]).
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Note that with M = E−1, EM agrees with the energy functional EI,J appearing in (C)(x,X) at
arguments where it is finite. Note further that if we want the energy functional to stay finite also
when considering the case where some design variables in (x, X) are zero, then we must enforce
the corresponding force elements in (s, S) to be equal to zero. [This corresponds to applying the
definitions (4) and (12).]

We shall, however, henceforth consider formulations of the equilibrium problems where all
design and state variables are present, since we believe it to be more appropriate when analyzing
existence and sensitivity questions. So, when referring to the problems (C)(x,X) and (P)(x,X), we
shall (implicitly) presume that all elements of (x, X) are present both in the objective function
and in the constraints, whether they are active (all having positive values) or not. Moreover, the
vectors sI\I(x) and SJ\J (X) are included and, whenever the energy is finite, forced to zero. The
effect on the problem (C)(x,X) is twofold, the first resulting in a simplification, the second in a
slight complication: (1) the feasible set, henceforth denoted by FC , does no longer depend on
the design (x, X); and (2) the energy functional, E , is an extended real-valued function, possibly
taking on infinite values where one or more design variable values are zero. For the problem
(P)(x,X), the effect is also twofold: (1) the feasible set, denoted by FP , is not dependent on the
design; and (2) the elements eJ\J (X) may be specified to arbitrary values, but large enough so
that γT

j u − ej − (g2)j ≤ 0 holds for all j ∈ J \ J (X).
From now on, whenever referring to a functional, like E , where only the active design elements

are present, we shall write EI,J . (Further, whenever M = E−1 in the energy functional, the
superscript M will be suppressed.)

Recall that a function ϕ : R
n 7→ R ∪ {+∞} is proper if ϕ(x) < +∞ holds for at least one

x ∈ R
n and ϕ(x) > −∞ holds for all x ∈ R

n. We also refer to a function ϕ as being proper with
respect to a set Y , then meaning that the function ϕ + δY is proper, where δY is the indicator
function of the set Y (δY (x) = 0 for x ∈ Y ; δY (x) = +∞ for x /∈ Y ).

Theorem 3.1 (Existence of a force equilibrium). Let {(xt, Xt)} be a nonnegative sequence of
designs, converging to (x, X). Suppose that {(st, St, λt)} is the corresponding sequence of opti-
mal solutions to (C)(xt,Xt), and assume that the sequence of energies is bounded, that is, that
E(xt, Xt, st, St, λt) ≤ c < ∞ for all t. Then, there exists a unique optimal solution (s, S, λ) to
(C)(x,X), and {(st, St, λt)} → (s, S, λ).

Proof. That the sequence {(st, St, λt)} is bounded follows by the coercivity of E , which is uniform
with respect to (x, X) [cf. the proof of Theorem 2.1], and the boundedness of {(xt, Xt)}, together
with the assumed existence of c. Let (s, S, λ) be an arbitrary limit point of this sequence. The lsc
property of E (cf. Lemma 3.2) and the assumption yields that

E(x, X, s, S, λ) ≤ lim inf
t→∞

E(xt, Xt, st, St, λt) ≤ c < ∞,

so we can conclude that (s, S, λ) ∈ FC and that E(x, X, ·, ·, ·) is proper with respect to FC ; moreover,
by Theorem 2.1, the optimal solution to (C)(x,X) is unique.

Let now (s̄, S̄, λ̄) ∈ FC . Then, from E(xt, Xt, st, St, λt) ≤ E(xt, Xt, s̄, S̄, λ̄) for all t follows

E(x, X, s, S, λ) ≤ lim inf
t→∞

E(xt, Xt, st, St, λt)

≤ lim
t→∞

E(xt, Xt, s̄, S̄, λ̄)

= E(x, X, s̄, S̄, λ̄),

where the equality follows by the continuity of E(·, ·, s̄, S̄, λ̄) [cf. Lemma 3.2]. It follows that
(s, S, λ) is optimal in (C)(x,X). Therefore, (s, S, λ) must also be the only limit point of the se-
quence {(st, St, λt)}.
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As remarked after Theorem 2.2, the projection of SOL (q, Q(x, X), Y ) onto the subspace of
forces (s, S, λ), that is, the result of eliminating the displacements, leads not to a closed mapping.
Under the condition that the energy remains bounded, however, we can establish such a result. To
this end, we define, respectively, the graph of the equilibrium mapping in terms of forces only, and
the lower level set of the energy function E , as follows:

grS := { (x, X, s, S, λ) | (u, e, s, S, λ) solves (14) and (15) }, (16)

LE
ν := { (x, X, s, S, λ) | E(x, X, s, S, λ) ≤ ν }. (17)

Corollary 3.1 (Closedness of the force equilibrium mapping). Let ν ∈ R. Then, the set grS ∩ LE
ν

is closed.

Proof. Let ν ∈ R. Consider a sequence {(xt, Xt, st, St, λt)} ⊂ grS ∩ LE
ν with {(xt, Xt)} ⊂

R
m
+ × R

r2
+ , and assume that {(xt, Xt, st, St, λt)} → (x, X, s, S, λ). The lsc property of E ensures

that E(x, X, s, S, λ) ≤ lim inft→∞ E(xt, Xt, st, St, λt) ≤ ν. So, (x, X, s, S, λ) ∈ LE
ν . By Theo-

rem 3.1, (s, S, λ) is moreover the optimal solution to (C)(x,X), whence (x, X, s, S, λ) ∈ grS also
holds.

A result of a character similar to that of Theorem 3.1 will be useful in the subsequent analysis.

Corollary 3.2 (Convergence of equilibrium forces). Let (x, X) be a nonnegative design for which
E(x, X, ·, ·, ·) is proper with respect to FC , and let (s, S, λ) be the optimal solution to the problem
(C)(x,X). Let {(xt, Xt)} be a sequence of nonnegative designs which converges to (x, X), and
suppose that {(st, St, λt)} is the corresponding sequence of optimal solutions to (C)(xt,Xt). Then,
{(st, St, λt)} → (s, S, λ).

Proof. The relations

lim sup
t→∞

E(xt, Xt, st, St, λt) ≤ lim
t→∞

E(xt, Xt, s, S, λ)

= E(x, X, s, S, λ) < ∞

follow from the optimality of (st, St, λt) in the problem (C)(xt,Xt) and the continuity of E(·, ·, s, S, λ)
[cf. Lemma 3.2]. Therefore, the sequence {E(xt, Xt, st, St, λt)} of energies is bounded, whence the
desired result follows from Theorem 3.1.

3.1.2 Example: One-bar truss with a cable

The example in this section is given to show a simple concrete mechanical structure covered by
the general mathematical setting, and, moreover, to illustrate that the closedness of the feasible
set is intimately connected with the boundedness of the energy (cf. Corollary 3.1). The closedness
property will apparently be of paramount importance in order to establish the existence of optimal
designs.

The example, shown in Section 1 in Figure 1, is a one-dimensional structure that consists of
a bar, suspended with one cable. The initial slack is zero, and both lengths, specific weights and
elastic modulii are one. The material volume for the bar and cable is x and X , respectively. (The
example will be reconsidered in Section 4.2, when maximal limits σ1, σ2 of stresses will be used,
hence these additional symbols in the figure.)

If the load f = 1, then the equilibrium relations in terms of displacement u, cable elongation e
and bar and cable force (s, S) become

u − e ≤ 0, S ≥ 0, (u − e)S = 0, S = Xe, −s = xu = 1 − S. (18)
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It is always implicitly understood that the design variables are nonnegative. From (18) it is
straightforward to verify that

(s, S) solves (C)(x,X)

is equivalent to

s = − x

x + X
, S =

X

x + X
, x + X > 0. (19)

Hence the graph of the equilibrium mapping in terms of forces becomes

grS = { (x, X, s, S) | S = X/(x + X), s = S − 1, x + X > 0 }.

We now consider a structural optimization problem. Typically the upper-level feasible region
is of the form

Zε = { (x, X, s, S) | (ε, ε) ≤ (x, X) ≤ (U, U) },

for some values ε ≥ 0 and U > ε. To illustrate the effects of topological changes on the existence of
optimal solutions, we here choose the design objective function to be to maximize the (unknown)
displacement u(x, X, s, S). Then, we can write the structural optimization problem as

{
max

(x,X,s,S)
u(x, X, s, S),

s.t. (x, X, s, S) ∈ Zε ∩ grS.

Consider first the sizing case, ε > 0. It follows from (18) that u(x, X) = 1/(x + X). It is
therefore immediate to see that the optimal design is x∗ = X∗ = ε and the optimal displacement
u∗ = 1/(2ε).

Consider next the topology case, ε = 0. As opposed to the sizing case, the problem now lacks
optimal solutions. Define for n = 1, 2, . . . the sequence

(xn, Xn, sn, Sn) = (1/n2, 1/n,−1/(n + 1), n/(n + 1)).

It holds that, for all n large enough, (xn, Xn, sn, Sn) belongs to the feasible set F := Z0 ∩ grS of
the structural optimization problem, and

lim
n→∞

(xn, Xn, sn, Sn) = (0, 0, 0, 1).

However, clearly (0, 0, 0, 1) 6∈ grS, that is, the graph is not closed, and (0, 0, 0, 1) is infeasible!
Moreover,

u(xn, Xn, sn, Sn) = 1/(xn + Xn) = n2/(n + 1) → ∞,

and therefore the structural optimization problem cannot possess any optimal solutions. Assuming
that both design variables are nonzero, the energy is given by

E(x, X, s, S) =
s2

2x
+

S2

2X
, (20)

and therefore

E(xn, Xn, sn, Sn) =
n2

2(1 + n)2
+

n3

2(1 + n)2
=

n2

2(1 + n)
→ ∞,
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that is, maximizing the displacement requires an unbounded elastic energy.
One could argue that maximizing the displacement is an objective that has no engineering

meaning—it is rather the opposite that might be interesting. Assuming now that for problem
statements that make engineering sense, the constraints and objective function in combination
are such that an optimizing sequence does not demand unbounded energies, we again consider
the set LE

ν defined in (17), where the value of ν is not important, as long as it is finite. (Later,
for the minimum compliance problem, we will see that compliance equals energy, and since this
quantity is to be minimized it is certainly finite. Moreover, in stress-constrained problems these
constraints imply bounded energies.) Using (19) in (20) one shows that E(x, X, s, S) ≤ ν implies
x + X ≥ 1/(2ν), and therefore the constraint x + X > 0 in grS is redundant. Consequently,

grS ∩ LE
ν = { (x, X, s, S) | S = X/(x + X), s = S − 1, x + X ≥ 1/(2ν) },

which is a closed set (as predicted by Corollary 3.1)!
One main reason for working with forces as state variables is that the energy (for bounded

design variables) is coercive with respect to forces; hence, if the energy is bounded, then the forces

are bounded too. Indeed, if (x, X, s, S) belongs to the new feasible set F̃ := Z0 ∩ grS ∩ LE
ν , then

1

2C
(‖s‖2 + ‖S‖2) ≤ E(x, X, s, S) ≤ ν.

This coercivity property does generally not hold in topology optimization when displacements are
chosen as state variables, and therefore the displacements are then not bounded in general.

The reason for introducing the set LE
ν is twofold: first, in combination with the set Z0 it bounds

all the variables; second, when intersected with the set grS it produces a closed set. Therefore,
whence Z0 is also closed, it follows that the feasible set F̃ is compact, and therefore the topology
optimization problem possesses optimal solutions for any proper and lsc objective function whose
effective domain intersects F̃ (thanks to Weierstrass’ Theorem).

3.2 Design–to–displacement

Although the equilibrium states (s, S) are uniquely determined by the design (x, X), the displace-
ments (u, e) are in general only unique when (x, X) is strictly positive. Especially interesting then
becomes the question to which, if any, displacement vector (u, e) the sequence of equilibrium dis-
placements {(ut, et)} converges when {(xt, Xt)} tends to a limit for which some elements are zero.
To determine the answer to that question, we shall look at a particular kind of design sequence,
in which small positive quantities are added to each element.

To that end, let (Ψ, Γ) > (0, 0) be arbitrary in R
m × R

r2 . Then, K(Ψ) and k(Γ) are positive
definite, and we can define an energy inner product in R

m × R
r2 as

〈(v1, v2), (w1, w2)〉 := vT
1 K(Ψ)w1 + vT

2 k(Γ)w2,

and a corresponding energy norm as

‖(v1, v2)‖Ψ,Γ :=
√
〈(v1, v2), (v1, v2)〉 =

√
vT
1 K(Ψ)v1 + vT

2 k(Γ)v2.

Let (x, X) ≥ (0, 0) be an arbitrary design and let U(x, X) denote the solution set of the problem
(P)(x,X). One way to pick a unique displacement vector is to choose the one with least-energy
norm. If U(x, X) is nonempty, then there indeed exists a unique such element,

{(ū(x, X), ē(x, X))} := arg min
(u,e)∈U(x,X)

‖(u, e)‖Ψ,Γ, (21)

since ‖ · ‖2
Ψ,Γ is strictly convex and U(x, X) is polyhedral convex. We will now establish that the

sequence of displacements does converge to the least-energy displacement solution.
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Theorem 3.2 (Convergence to least-energy displacements). Let (x, X) ≥ (0, 0) be a design for
which (P)(x,X) has an optimal solution. Let (Ψ, Γ) > (0, 0) be arbitrary in R

m × R
r2 , and set, for

ε > 0,

(xε, Xε) := (x, X) + ε(Ψ, Γ).

Further, denote by (uε, eε) the unique optimal solution to the perturbed problem (P)(xε,Xε). Then,

lim
ε→0

(uε, eε) = (ū(x, X), ē(x, X)).

Proof. Let (u, e) and (uε, eε) be optimal in (P)(x,X) and (P)(xε,Xε), respectively. Then, the vector
(u, e) [respectively, (uε, eε)], is feasible in the problem (P)(xε,Xε) [respectively, (P)(x,X)], so it
follows that

1

2
uT K(x)u +

1

2
eT k(X)e − fT u ≤ 1

2
uT

ε K(x)uε +
1

2
eT

ε k(X)eε − fT uε (22)

and

1

2
uT

ε K(xε)uε +
1

2
eT

ε k(Xε)eε − fT uε ≤ 1

2
uT K(xε)u +

1

2
eT k(Xε)e − fT u. (23)

Adding (22) and (23) yields that

ε

2

[
uT

ε K(Ψ)uε + eT
ε k(Γ)eε

]
≤ ε

2

[
uT K(Ψ)u + eT k(Γ)e

]
,

that is,

‖(uε, eε)‖Ψ,Γ ≤ ‖(u, e)‖Ψ,Γ.

Clearly, then, the sequence {(uε, eε)} is bounded, and since the pair (u, e) was arbitrary in U(x, X),
each of the limit points (ū, ē) of the sequence {(uε, eε)} satisfies, in particular, the relation

‖(ū, ē)‖Ψ,Γ ≤ ‖(ū(x, X), ē(x, X))‖Ψ,Γ,

where (ū(x, X), ē(x, X)) was defined in (21). But the least-energy displacement is unique, so the
limit point must be unique, and (ū, ē) = (ū(x, X), ē(x, X)) must hold, whence the result follows.

In principle, this result on the convergence to least-energy displacements can be obtained from
more general principles for regularizations of ill-posed variational inequalities ([Bro66]) and per-
turbations of variational inequalities ([Sta69]). However, we believe it is more instructive and
convenient for the reader with our direct proof rather than specializing the general frameworks to
our notation.

3.3 Design–to–overall state

In this section, we establish the convergence rate and local Lipschitz continuity of the sequences
{(uε, eε)}, {(sε, Sε)} and {λε} simultaneously. These results hinge on the use of error bounds for
the solutions to affine variational inequality problems, first established by Luo and Tseng [LuT92,
LuT97] (see also [LPR96, Theorem 2.3.3 and 2.3.5]). Letting SOL (q, Q, Y ) denote the solution set
of the AVI (q, Q, Y ) [see (14)], dist [z, Z] the least Euclidean distance from a vector z to a set Z,
and proj [z, Z] the Euclidean projection of a vector z onto a set Z, we then have the following: if
SOL (q, Q, Y ) is nonempty, then there exist positive constants τ and δ such that

dist [y, SOL (q, Q, Y )] ≤ τ‖y − proj [(y − Qy − q), Y ]‖ (24)

holds for all y ∈ R
n with ‖y − proj [(y − Qy − q), Y ]‖ ≤ δ.
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Theorem 3.3 (Convergence rate of forces and displacements). Let (x, X) ≥ (0, 0) be a design for
which (P)(x,X) has an optimal solution, and (s, S, λ) be the optimal solution to (C)(x,X). Let
(Ψ, Γ) > (0, 0) be arbitrary in R

m × R
r2 , and set, for ε > 0,

(xε, Xε) := (x, X) + ε(Ψ, Γ).

Further, denote by (uε, eε) the optimal solution to the perturbed problem (P)(xε,Xε), and by
(sε, Sε, λε) the corresponding optimal solution to (C)(xε,Xε). Then, for some positive constant τ̂ ,

dist [(uε, eε),U(x, X)] ≤ τ̂ ε and ‖(sε, Sε, λε) − (s, S, λ)‖ ≤ τ̂ ε

holds for all sufficiently small ε > 0.

Proof. We begin by stating the equilibrium conditions for forces and displacements of the perturbed
problem as an AVI of the form AVI (qε, Qε, Y ). Let

yε :=




uε

eε

sε

Sε

λε




, Qε := Q + ε




0 0 0 0 0
D(Ψ)B 0 0 0 0

0 k(Γ) 0 0 0
0 0 0 0 0
0 0 0 0 0




, and qε = q.

We then obtain from the above error bound that

dist [yε, SOL (q, Q, Y )] ≤ τ‖yε − proj [(yε − Qyε − q), Y ]‖

= τ

∥∥∥∥∥∥∥∥∥∥




uε

eε

sε

Sε

λε




−




uε

eε + εD(Ψ)Buε

sε + εk(Γ)eε

[Sε + C2uε − eε − g2]+
[λε + C1uε − g1]+




∥∥∥∥∥∥∥∥∥∥

= τε

∥∥∥∥∥∥∥∥∥∥




0
D(Ψ)Buε

k(Γ)eε

0
0




∥∥∥∥∥∥∥∥∥∥

≤ τ̂ ε,

where [y]+ := max{0, y}, taken component-wise, and the second inequality holds because the se-
quence {(uε, eε)} is bounded (cf. Theorem 3.2). The result follows.

The error bound (24) is clearly local, since it is valid only near the solution set SOL (q, Q, Y ).
A global version where (24) is valid for any y (and in fact for any fixed vector q) however holds
under the condition that the problem AVI (0, Q, Y ) has zero as the unique solution (cf. [LuT97]).
Using this result and a similar proof technique to that which is used in the above result, we next
establish that the equilibrium state (u, e, s, S, λ) varies in a locally Lipschitz continuous manner
with the design (x, X) in the positive orthant.

Theorem 3.4 (Local Lipschitz continuity of the equilibrium state). Let D ⊂ R
m
++ × R

r2
++ be a

nonempty, convex and compact set. Let (x1, X1) and (x2, X2) be two arbitrary designs in D.
Denote the respective equilibrium states by y1 := (u1, e1, s1, S1, λ1) and y2 := (u2, e2, s2, S2, λ2).
Then, for some nonnegative constant κ (depending on D),

‖y2 − y1‖ ≤ κ‖(x2, X2) − (x1, X1)‖. (25)
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Proof. Consider the AVI (0, Q(x1, X1), Y ). Since (x1, X1) > (0, 0), the solution to this prob-
lem is unique. Clearly, the zero solution is one solution to the problem, whence it is also the
unique solution. Therefore, according to the above, the error bound (24) is valid globally for the
AVI (q, Q(x1, X1), Y ). Applying this error bound to the AVI (q, Q(x1, X1), Y ) with y := y2, we
obtain for some τ, τ̄ > 0, that

‖y2 − y1‖ ≤ τ‖(0, D(x2 − x1)Bu2, k(X2 − X1)e2, 0, 0)‖
≤ τ̄‖(x2, X2) − (x1, X1)‖ · ‖(u2, e2)‖.

Since the equilibrium state is bounded over D, the result (25) follows, with κ equal to τ̄ times the
supremum of the length of the (u, e) component over the equilibrium states in D.

This result extends that of Christiansen et al. [CPW01] for the cable-less case, where local
Lipschitz continuity is established for y by the use of Robinson’s [Rob80, Rob91] sensitivity analysis
of parametric variational inequality problems.

4 Cable suspended trusses

4.1 Minimum compliance

4.1.1 The design optimization model

In case of unilateral constraints due to elastic cables, we define the (extended) compliance as

1

2
(fT u + gT

2 S), (26)

assuming Sj = 0 for all j 6∈ J (X). (Note that C1, λ, and g1 do not enter the problem.) Minimizing
this objective hence means to minimize displacements weighted by forces plus cable forces weighted
by slacks. This choice of design (or, upper level) objective function actually coincides with the
objective function in (C)(x,X), which we now turn to establish.

Using (4) and (12) in the objective function appearing in the principle of minimum of comple-
mentary energy, this objective becomes

EI,J (x, X, s, S) :=
1

2

∑

i∈I(x)

s2
i

Exi
+

∑

j∈J (X)

(
(LjSj)

2

2EcXj
+ (g2)jSj

)

=
1

2
uT

∑

i∈I(x)

BT
i si +

∑

j∈J (X)

(
1

2
Sjej + (g2)jSj

)
.

The complementarity part of (10) gives Sjej = γT
j uSj − (g2)jSj , which simplifies the expression

further to

1

2
uT



∑

i∈I(x)

BT
i si +

∑

j∈J (X)

Sjγj


+

1

2

∑

j∈J (X)

(g2)jSj ,

which, by (13), reduces to

1

2



fT u +
∑

j∈J (X)

(g2)jSj



 ,

19



and therefore

EI,J (x, X, s, S) =
1

2

(
fT u + gT

2 S
)

(27)

on grS.
We let the (x, X) be design variables, having bounds

0 ≤ x ≤ x ≤ x; 0 ≤ X ≤ X ≤ X.

With x = 0 and X = 0 one obtains true topology optimization in a framework that looks like a
sizing problem.

The design problem of minimizing the compliance, given a limited amount of cable and structure
material, can now be posed as






min
(x,X,s,S)

E(x, X, s, S),

s.t.





x ≤ x ≤ x, 1T
mx ≤ v,

X ≤ X ≤ X, 1T
r2

X ≤ V,

(s, S) solves (C)(x,X).

4.1.2 Example: Crane subject to stochastic wind force

Suppose that the external loads f = fω, where ω belongs to a probability space (Ω,A, P ). Here, Ω
is the sample space, p the probability density function, and P the cumulative distribution function.
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F
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x

y

Figure 3: A crane which carries a load subjected to a random wind force.

Consider the cable-suspended crane in Figure 3. We suppose that the initial slacks are zero
and that there are no contact constraints. Then the compliance can be expressed in terms of
displacements as

f̄(u) :=
1

2
fT u.
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Assume now that the crane carries a weight mg and that a wind force on the weight acts horizontally
with a random magnitude. The wind force is assumed to take values according to the probability
density function shown in Figure 4. Hence the load vector f ∈ R

12 depends on the value ω = Fwind:

ω

p

ω

(ω)

=F
wind

(ω , p(ω ))
i         i

=P’(ω)

1 N0 i
ω ω ω

Figure 4: Probability density function for the wind force.

fω =




0
...
0
ω

−mg
0
...
0




, ω ∈ Ω = [ ω, ω ] = [ ω0, ωN ].

Since the load vector depends on ω, so does (P)(x,X), and we write (P)(x,X)(ω) for the equilibrium
problem and [u(ω), e(ω)] for its solution. Then the compliance can be written as f̄ω(u(ω)) :=
1
2fT

ω u(ω). This value is different for different values of the stochastic variable ω, but we need a
single value in the objective of the design optimization problem. One natural choice is to take the
expected value of the compliance as the objective. The minimum compliance problem can for this
example then be formulated as





min
(x,X,u,e)

Eω[f̄ω(u(ω))],

s.t.






x ≤ x ≤ x, 1T
mx ≤ v,

X ≤ X ≤ X, 1T
r2

X ≤ V,

u(ω), e(ω) solves (P)(x,X)(ω), ω ∈ Ω.

The expected value is given by

Eω[f̄ω(u(ω))] =
1

2

∫ ω

ω

fT
ω u(ω)p(ω) dω. (28)

For each design candidate (x, X) it is in general impossible to calculate the structure’s displacement
response u(ω) for every ω ∈ Ω, unless Ω is a discrete sample space. Hence, when Ω is continuous as
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in this example, one way is to discretize Ω, see Figure 4. Applying Simpsons’s rule on the integral
in (28), we can approximate the expected value as

Eω[f̄ω(u(ω))] ≈ 1

2

N−1∑

i=1

fT
ωi

u(ωi)p(ωi)
hi + hi+1

2
=

1

2

∑

ℓ∈L

ρℓ(f
ℓ)T uℓ, (29)

where

f ℓ = fωℓ
, uℓ = u(ωℓ), ρℓ = p(ωℓ)

hℓ + hℓ+1

2
, L = {1, . . . , N − 1}, (30)

and

hℓ = ωℓ − ωℓ−1, ℓ = 1, . . . , N. (31)

Before continuing with the problem formulation, we introduce the new notation (ũ, ẽ, s̃, S̃) to
denote the collection of vectors (uℓ, eℓ, sℓ, Sℓ)ℓ∈L.

Consequently, we arrive at the problem formulation






min
(x,X,ũ,ẽ)

1

2

∑

ℓ∈L

ρℓ(f
ℓ)T uℓ,

s.t.





x ≤ x ≤ x, 1T
mx ≤ v,

X ≤ X ≤ X, 1T
r2

X ≤ V,

(uℓ, eℓ) solves (P)(x,X)(ωℓ), ℓ ∈ L.

This looks like a traditional multiple load-case formulation. Here, however, the weight ρℓ (hence-
forth presumed strictly positive for every ℓ ∈ L) in the objective function for each load-case is
determined by a probability function for some event in the structure’s environment.

We can now write down the general stochastic minimum compliance problem:

(P1)





min
(x,X,s̃,S̃)

cf (x, X, s̃, S̃) :=
∑

ℓ∈L

ρℓEℓ(x, X, sℓ, Sℓ) =

∑

ℓ∈L

ρℓ


1

2

∑

i∈I(x)

(sℓ
i)

2

Exi
+

∑

j∈J (X)

(
(LjS

ℓ
j)

2

2EcXj
+ (g2)jS

ℓ
j

)
,

s.t.





x ≤ x ≤ x, 1T
mx ≤ v,

X ≤ X ≤ X, 1T
r2

X ≤ V,

(sℓ, Sℓ) solves (C)(x,X)(ωℓ), ℓ ∈ L.

4.1.3 Existence of optimal designs

The following result establishes the existence of optimal solutions to this problem. (We note that in
the statement of the result, the existence of a feasible solution is guaranteed whenever the bounds
on the design (x, X) are such that a strictly positive design is feasible, which, clearly, will always
be the case.)

Theorem 4.1 (Existence of optimal solutions to (P1)). Suppose the feasible set FP1 of (P1) is
nonempty. Then, there exists at least one optimal solution to (P1).
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Proof. The design objective is to minimize a (strictly positive) weighted sum of terms with (sℓ, Sℓ)
being the optimal solution to (C)(x,X)(ωℓ). Hence, by the feasibility assumption (which implies

that the functions Eℓ are proper with respect to FP1), without any loss of generality, we may
assume that all feasible solutions satisfy

Eℓ(x, X, sℓ, Sℓ) ≤ νℓ < ∞, ℓ ∈ L.

We may therefore replace the constraints of (P1) with the design constraints and the constraints
that

(x, X, sℓ, Sℓ) ∈ grSℓ ∩ LEℓ

νℓ
, ℓ ∈ L,

which forms a closed set by Corollary 3.1. Hence, the feasible set of (P1) is closed as well as
nonempty. As remarked above, the upper-level objective function is proper with respect to FP1 ,
and it is further lsc (cf. Lemma 3.2) and coercive, since it is coercive in (s̃, S̃) and the feasible set
in terms of (x, X) is bounded. Hence, Weierstrass’ Theorem applies.

4.1.4 Convex–concave saddle-point and convex programming formulations

When the (extended) compliance is used as the upper-level design objective, the optimal design
problem can be equivalently rewritten as a convex–concave saddle-point problem, or a convex (but
nondifferentiable) optimization problem. This has an immediate advantage computationally, since
it means that the problem can be attacked by techniques from convex programming, but it can also
be utilized as an alternative formulation when establishing, for example, the existence of optimal
solutions. In the case of the current problem (P1), the equivalent saddle-point formulation has the
following form:

(SP1)

{
find (x∗, X∗, u∗, e∗) ∈ Z × U :

J (x, X, u∗, e∗) ≤ J (x∗, X∗, u∗, e∗) ≤ J (x∗, X∗, u, e), ∀(x, X, u, e) ∈ Z × U ,

where

J (x, X, u, e) :=
∑

ℓ∈L

ρℓ


1

2

m∑

i=1

xi(u
ℓ)T BT

i EBiu
ℓ +

1

2

r2∑

j=1

EcXj

L2
j

(eℓ
j)

2 − (f ℓ)T uℓ


 ,

Z :=
{
(x, X)

∣∣ (x, X) ≤ (x, X) ≤ (x, X); 1T
mx ≤ v; 1T

r2
X ≤ V

}
,

U :=
{
(u, e) = (uℓ, eℓ)ℓ∈L

∣∣ γT
j uℓ − eℓ

j ≤ (g2)j , j = 1, . . . , r2, ℓ ∈ L
}

.

A convex programming formulation in terms of only displacement variables can be obtained by
eliminating the design variables from the problem:

(CP1)

{
find (u∗, e∗) ∈ U :

J ∗(u∗, e∗) ≤ J ∗(u, e), ∀(u, e) ∈ U ,

where

J ∗(u, e) := max
(x,X)∈Z

J (x, X, u, e).
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(The function J ∗ is a finite convex function.) The minimum (extended) compliance objective
appears if we eliminate the displacement variables: it holds that

J∗(x, X) := inf
(u,e)∈U

J (x, X, u, e) = −1

2

∑

ℓ∈L

ρℓ

(
fT uℓ + gT

2 Sℓ
)
,

where Sℓ is the equilibrium tensile force solution of (C)(x,X)(ωℓ). A nested, convex optimization
formulation of the design problem in terms of the design variables only is then obtained as:

(CP2)

{
find (x∗, X∗) ∈ Z :

J∗(x
∗, X∗) ≥ J∗(x, X), ∀(x, X) ∈ Z,

where we remark that J∗ is a concave function.
Obviously, this development can be done also in the presence of unilateral contact conditions,

for the problem (P) in case the design objective is minimal extended compliance. For general
references on saddle-point and convex programming formulations in truss topology optimization
including unilateral constraints, we refer to [PeK94, PeP97].

We note, finally, that the existence of optimal solutions can be established also for more general
upper-level design objectives, as has been done, for example, in [CPW01], in the case of cable-less
structures. Essentially, they provide two types of existence results. The first is similar to The-
orem 4.1, in that it relies on Weierstrass’ Theorem, the main presumptions being the closedness
of the set of feasible solutions and the coercivity of the upper-level objective function. The sec-
ond result, which is close in spirit to the existence result in quadratic programming in [FrW56],
amounts to replacing the coercivity assumption on the design objective with the less stringent set
of assumptions that it is lower bounded on the graph of equilibrium solutions and quadratic in the
lower-level variables, and further that a specially constructed lower level set is closed. The last
presumption is equivalent to assuming that for all sufficiently good feasible designs (with respect
to the design objective), the set of equilibrium displacements can be taken to lie in a compact set,
a presumption which we have seen above to be a rather natural assumption to make.

4.1.5 ε-perturbation

In topology optimization, the lower design bounds (x, X) are taken to be zero. According to
Theorem 4.1, this is, in principle, also legitimate from a solvability point of view. However, for
designs with vanishing material, neither equilibrium states nor derivatives needed in a first-order
method may be computable. Therefore, a common strategy is to replace the zero lower design
bound with a small lower bound ε > 0, thereby allowing for the computations needed in a standard
nested approach.

When perturbing the problem by enforcing a lower bound ε > 0, (P)(x,X) is always uniquely
solvable, so we can switch from (C)(x,X) to (P)(x,X), as it is generally considered easier to work in
the displacement space. The ε-perturbed problem reads

(Pε
1)





min
(x,X,ũ,ẽ)

cd(x, X, ũ, ẽ) :=
1

2

∑

ℓ∈L

ρℓ(f
ℓ)T uℓ +

1

2

∑

ℓ∈L

ρℓ

r2∑

j=1

(XjEc)

L2
j

· (g2)je
ℓ
j,

s.t.






ε1m ≤ x ≤ x, 1T
mx ≤ v,

ε1r2 ≤ X ≤ X, 1T
r2

X ≤ V,

(uℓ, eℓ) solves (P)(x,X)(ωℓ), ℓ ∈ L.

The reader should note that we use the notation cf and cd, respectively, for the design ob-
jectives in the problems (P1) and (Pε

1 ), in order to distinguish the use of force and displacement
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variables in the equilibrium conditions. However, the two objectives are equal when evaluated at
equilibrium points, which is of course always the case in the structural optimization problems, and
therefore we can interchange them whenever desired. We shall also let the entire vector (ũ, ẽ, s̃, S̃)
[respectively, (ũε, ẽε, s̃ε, S̃ε)] be part of the optimal solution to the problem (P1) [respectively,
(Pε

1)], although it is not part of the optimization formulation in its entirety. (It, however, of
course constitutes the solution to the primal–dual pair of problems (C)(x,X)(ωℓ) and (P)(x,X)(ωℓ)
[respectively, (C)(xε,Xε)(ωℓ) and (P)(xε,Xε)(ωℓ)].)

The following result motivates the use of the above problem manipulation.

Theorem 4.2 (Convergence of ε-perturbed solutions). Suppose the feasible set FP1 of (P1) is
nonempty. For each ε > 0, let (x∗

ε , X
∗
ε , ũ∗

ε, ẽ
∗
ε, s̃

∗
ε, S̃

∗
ε ) denote an arbitrary optimal solution to

(Pε
1). Then, the sequence {(x∗

ε, X
∗
ε , s̃∗ε, S̃

∗
ε )} is bounded, and converges to the optimal solution set

SOL (P1) of (P1), in the sense that

{
min

(x,X,s̃,S̃)∈SOL (P1)
‖(x∗

ε, X
∗
ε , s̃∗ε, S̃

∗
ε ) − (x, X, s̃, S̃)‖

}
→ 0.

Moreover, {cf(x∗
ε , X

∗
ε , s̃∗ε, S̃

∗
ε )} and {cd(x∗

ε, X
∗
ε , ũ∗

ε, ẽ
∗
ε)} converges to the optimal value of (P1).

Proof. According to Theorem 4.1, an optimal solution exists to the problem (Pε
1 ) for every ε > 0,

as well as to the problem (P1). Consider first the sequence {(x∗
ε, X

∗
ε )}. Clearly, this sequence is

bounded since the feasible sets of (Pε
1) in (xε, Xε) are bounded, as well as that in (x, X) of (P1). We

further note that since these sets increase with a decreasing ε, the sequence {cf (x∗
ε , X

∗
ε , s̃∗ε, S̃

∗
ε )}

is decreasing. In particular, it is then bounded from above. We may then use Theorem 3.1 to
conclude that also the sequence {(s̃∗ε, S̃∗

ε )} is bounded and further that if (x̄, X̄) is an arbitrary
limit point of the sequence {(x∗

ε, X
∗
ε )} then {(sℓ∗

ε , Sℓ∗
ε )} converges to the unique optimal solution

(cf. Theorem 2.1), say, (s̄ℓ, S̄ℓ), to (C)(x̄,X̄)(ωℓ), for each ℓ ∈ L.

Consider next an arbitrary feasible solution (x, X, s̃, S̃) to the problem (P1), and an arbitrary
sequence {(xε, Xε, s̃ε, S̃ε)} of feasible solutions to the problems (Pε

1 ), where however {(xε, Xε)} →
(x, X). [For any given design (x, X) satisfying the design constraints in (P1), Proposition 1.1.2 of
Aubin and Frankowska [AuF90] ensures the existence of a sequence {(xε, Xε)} of designs satisfying
the design constraints in (Pε

1 ).] Corollary 3.2 then implies that the sequence {(s̃ε, S̃ε)} of states
converges to the limit state (s̃, S̃).

We then have that

cf (x̄, X̄, s̄, S̄) ≤ lim inf
ε→0

cf (x∗
ε , X

∗
ε , s̃∗ε, S̃

∗
ε )

≤ lim inf
ε→0

cf (xε, Xε, s̃ε, S̃ε)

≤ lim
ε→0

cf (xε, Xε, s̃, S̃)

= cf (x, X, s̃, S̃), (32)

where the inequalities follow from the lsc property of cf , the optimality of (x∗
ε, X

∗
ε , s̃∗ε, S̃

∗
ε ) and fea-

sibility of (xε, Xε, s̃ε, S̃ε) in (Pε
1 ), and the optimality of (s̃ε, S̃ε) in (C)(xε,Xε); finally, the equality

follows from the continuity of cf (·, ·, s̄, S̄). By (32), (x̄, X̄, s̄, S̄) is optimal in (P1). The conver-
gence of the sequence {(x∗

ε, X
∗
ε , s̃∗ε, S̃

∗
ε )} to the optimal solution set of (P1) then follows from its

compactness. Since cf equals cd on grSℓ, ℓ ∈ L, the last result follows also.

As remarked above, it is computationally quite often preferable to work in the displacement
space as compared to working in the force space when solving for an equilibrium. However,
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as the lower design bound tends to zero, it seems that the sequence {(u∗
ε, e

∗
ε)} of equilibrium

displacements may be unbounded if the final design is such that the corresponding equilibrium
displacement solution is unspecified along certain directions. This can be contrasted with the
result of Theorem 3.2 which establishes that the sequence of equilibrium displacements tends to
a minimum-energy equilibrium solution for the limit design provided that the design sequence
tends strictly monotonically towards it. The reason for this perhaps surprising difference is that
the optimal designs in the ε-perturbed problems need not tend strictly monotonically to a limit
design; certain elements of the sequence {(x∗

ε , X
∗
ε )} may even converge finitely.

4.2 The stress-constrained minimum weight problem

4.2.1 The design optimization model

Let ρ1 > 0 be the density of the structure material and ρ2 > 0 the density of the cable material,
and suppose that the effective stress is not allowed to exceed σ1 in the structure and σ2 in the
cables. Since the effective stress in the structure is σe

i = |σi|, the bound in part i can be expressed
as

xi|σi| ≤ σ1xi, (33)

where the factor xi has been introduced to ”remove” the constraint when there is no material to
carry any stress. Using (3) in (33), we get

|si| ≤ σ1xi.

Consider now also the effect of introducing a stochastic load in this problem. The structural
response depends on the stochastic variable ω. In this formulation the state variable is represented
by the internal forces s and S. Previously we started with the deterministic problem and then
replaced the state variable by its expected value. Proceeding similarly one gets:





min
(x,X,s,S)

w(x, X) := ρ11
T
mx + ρ21

T
r2

X,

s.t.






x ≤ x ≤ x,

X ≤ X ≤ X,

Eω[|si(ω)|] ≤ σ1xi, i = 1, . . . , m,

Eω[Sj(ω)] ≤ σ2Xj, j = 1, . . . , r2,

(s, S)(ω) solves (C)(x,X)(ω), ω ∈ Ω.

(We allow for the vectors x and X to take on infinite values.) It makes more sense to use Eω[|si(ω)|]
instead of |Eω[si(ω)]| since it is more conservative. (One can get |Eω [si(ω)]| = 0 even if the stresses
are very large for all events.)

Discretizing Ω into Ω = {ω1, . . . , ω|L|} and using Simpson’s rule as before,

Eω[|sj(ω)|] =

∫ ω

ω

|sj(ω)|p(ω) dω ≈
N−1∑

i=1

|sj(ωi)|p(ωi)
hi + hi+1

2
=
∑

ℓ∈L

ρℓ|sℓ
j |,

where sℓ
j = sj(ωℓ), and, again, ρℓ = p(ωℓ)(hℓ + hℓ+1)/2. In the same manner,

Eω[Sj(ω)] ≈
∑

ℓ∈L

ρℓS
ℓ
j ,
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and therefore we arrive at the optimization problem






min
(x,X,s̃,S̃)

w(x, X) := ρ11
T
mx + ρ21

T
r2

X,

s.t.





x ≤ x ≤ x,

X ≤ X ≤ X,
∑

ℓ∈L

ρℓ|sℓ
i | ≤ σ1xi, i = 1, . . . , m,

∑

ℓ∈L

ρℓS
ℓ
j ≤ σ2Xj , j = 1, . . . , r2,

(sℓ, Sℓ) solves (C)(x,X)(ωℓ), ℓ ∈ L.

Instead of taking the expected value, we can ensure that the stresses are below the bounds for all
ω ∈ Ω by adding side constraints. This was not an option in the same way before, where the state
variable appeared in the objective function.3 One arrives finally at

(P2)





min
(x,X,s̃,S̃)

w(x, X) := ρ11
T
mx + ρ21

T
r2

X,

s.t.





x ≤ x ≤ x,

X ≤ X ≤ X,

|sℓ
i | ≤ σ1xi, i = 1, . . . , m, ℓ ∈ L,

Sℓ
j ≤ σ2Xj , j = 1, . . . , r2, ℓ ∈ L,

(sℓ, Sℓ) solves (C)(x,X)(ωℓ), ℓ ∈ L.

This is a more conservative model, and the number of side constraints is in general very large.
This formulation looks like the traditional worst-case multiple load-case formulation for the stress-
constrained minimum weight problem.

4.2.2 Existence of optimal designs

Theorem 4.3 (Existence of optimal solutions to (P2)). Suppose the feasible set FP2 of (P2) is
nonempty. Then, there exists at least one optimal solution to (P2).

Proof. We begin by constructing a global upper bound on the energy function Eℓ(x, X, sℓ, Sℓ),
ℓ ∈ L, defined in the objective of (P1), over FP2 . Consider a feasible design (x, X). Since the
constraints on (sℓ, Sℓ) are linear and Eℓ(x, X, ·, ·) is convex, the maximum, if it exists, is attained
at an extreme point (e.g., [BSS93, Theorem 3.4.7]). An upper bound of this value is obtained by
considering only the stress constraints, as follows.

Each term in
(sℓ

i)
2

Exi
, i ∈ I(x), when maximized with respect to sℓ

i over the set |sℓ
i | ≤ σ1xi,

attains its maximum at sℓ
i = ±σ1xi.

Each term in
(LjSℓ

j)2

2EcXj
+ (g2)jS

ℓ
j , j ∈ J (X), is either maximal at Sℓ

j = 0 or at Sℓ
j = σ2Xj .

Hence, we obtain that for any feasible (x, X) and ℓ ∈ L,

Eℓ(x, X, sℓ, Sℓ) ≤ 1

2

∑

i∈I(x)

xi(σ1)
2E−1 +

∑

j∈J (X)

max

{
0,

(
Xj(Ljσ2)

2

2Ec
+ (g2)jσ2Xj

)}
.

3This is true of course if we refrain from modelling our problem as a multi-objective optimization problem.
The side constraints can alternatively be written as maxℓ∈L{|s

ℓ

i
|} ≤ σ1xi, i = 1, . . . , m, whence the analogous

modification in the compliance problem leads to a min-max formulation.
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Since the objective is to minimize the (strictly positive) weighted sum of the total weights, and

the design is nonnegative, there exists an upper bound (x̂, X̂) ≤ (x, X) on the design vector (x, X)

such that no candidate for an optimum exceeds (x̂, X̂). If we add the constraints

Eℓ(x, X, sℓ, Sℓ) ≤ 1

2

m∑

i=1

x̂i(σ1)
2E−1 +

r2∑

j=1

max
Xj≤Xj≤ bXj

{
0,

(
Xj(Ljσ2)

2

2Ec
+ (g2)jσ2Xj

)}

=: νℓ < ∞, ℓ ∈ L,

we then add constraints which are redundant in the problem (P2). Moreover, according to Corol-

lary 3.1, the sets grSℓ ∩ LEℓ

νℓ
are closed. Hence, since the rest of the constraints are defined by

continuous functions in (x, X, sℓ, Sℓ), the feasible set of (P2) is closed, as well as nonempty. The
upper-level objective function is continuous, and coercive since the set of candidate designs (x, X)
is bounded and the same is true for the set of equilibrium forces (sℓ, Sℓ), ℓ ∈ L, thanks to the
stress constraints. Hence, Weierstrass’ Theorem applies.

4.2.3 ε-perturbation

In the case of a topology optimization, where (x, X) = (0, 0), for computational reasons we need
to add small positive design bounds. Cheng and Guo [ChG97] have however proven that the naive
approach—replacing the zero design bounds by ε1m ≤ x and ε1r2 ≤ X for some small positive value
of ε—will in general not generate solutions that are close to the desired ones in stress-constrained
problems. They therefore suggested another ε-relaxation where also the stress constraints are
modified. Generalizing this procedure somewhat, and introducing the function o : R++ 7→ R++ to
be continuous and such that {o(ε)/ε} tends to zero while {o(ε)/ε2} is bounded away from zero, as
ε tends to zero, we arrive at

(Pε
2)





min
(x,X,s̃,S̃)

w(x, X) := ρ11
T
mx + ρ21

T
r2

X,

s.t.





o(ε)1m ≤ x ≤ x + o(ε)1m,

o(ε)1r2 ≤ X ≤ X + o(ε)1r2 ,

|sℓ
i | ≤ σ1xi + ε, i = 1, . . . , m, ℓ ∈ L,

Sℓ
i ≤ σ2Xi + ε, i = 1, . . . , r2, ℓ ∈ L,

(sℓ, Sℓ) solves (C)(x,X)(ωℓ), ℓ ∈ L.

Similarly to Theorem 4.2, we establish that this problem indeed gives solutions close to the
ones of (P2).

Theorem 4.4 (Convergence of ε-perturbed solutions). Suppose the feasible set FP2 of (P2) is
nonempty. For each ε > 0, let (x∗

ε , X
∗
ε , s̃∗ε, S̃

∗
ε ) denote an arbitrary optimal solution to (Pε

2). Then,
the sequence {(x∗

ε, X
∗
ε , s̃∗ε, S̃

∗
ε )} is bounded, and converges to the optimal solution set SOL (P2) of

(P2), in the sense that

{
min

(x,X,s̃,S̃)∈SOL (P2)
‖(x∗

ε, X
∗
ε , s̃∗ε, S̃

∗
ε ) − (x, X, s̃, S̃)‖

}
→ 0.

Moreover, {w(x∗
ε , X

∗
ε )} converges to the optimal value of (P2).

Proof. Similarly to the proof of Theorem 4.3, we will establish that the energy functionals Eℓ

are bounded on the feasible set of the problem (Pε
2) for any ε > 0, by introducing an upper
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design bound (x̂ε, X̂ε) and the upper bound νℓ,ε < ∞. [In fact, it is sufficient to take (x̂ε, X̂ε) =

(x̂ + o(ε), X̂ + o(ε)).] Using the relaxed stress constraints, the inequality (a + b)2 ≤ 2a2 + 2b2 (for
any a, b ∈ R), and xi, Xi ≥ o(ε), one has

Eℓ(x, X, sℓ, Sℓ) ≤
∑

i∈I(x)

(σ1xi + ε)2

2Exi
+

∑

j∈J (X)

(
L2

j(σ2Xj + ε)2

2EcXj
+ |(g2)j |(σ2Xj + ε)

)

≤
∑

i∈I(x)

(
σ2

1xi

E
+

ε2

Exi

)
+

∑

j∈J (X)

(
L2

jσ
2
2Xj

Ec
+

ε2L2
j

EcXj
+ |(g2)j |(σ2Xj + ε)

)

≤
m∑

i=1

(
σ2

1(x̂ε)i

E
+

1

Eo(ε)/ε2

)

+

r2∑

j=1

(
L2

jσ
2
2(X̂ε)j

Ec
+

L2
j

Eco(ε)/ε2
+ |(g2)j |(σ2(X̂ε)j + ε)

)

=: νℓ,ε < ∞, ℓ ∈ L,

where νℓ,ε are bounded as ε → 0 since {o(ε)/ε2} stays bounded away from zero. We conclude

that the sequence {(x∗
ε, X

∗
ε , s̃∗ε, S̃

∗
ε )} is bounded. Suppose that (x∗, X∗, s̃∗, S̃∗) is a limit point of

this sequence. Invoking Theorems 2.2 and 3.1 then yields that (s̃∗, S̃∗) is the optimal solution to
(C)(x∗,X∗)(ωℓ), ℓ ∈ L. The continuity properties of the other constraints of the problem (P2) then

imply that (x∗, X∗, s̃∗, S̃∗) is feasible in (P2). Let (x, X, s̃, S̃) be an arbitrary feasible solution to
(P2), set xε = x + o(ε)1m, Xε = X + o(ε)1r2 and let (sℓ

ε, S
ℓ
ε) solve (C)(xε,Xε)(ωℓ), ℓ ∈ L.

We then have, by Theorem 3.3, that for some κ > 0 and every i = 1, . . . , m and ℓ ∈ L,

|(sℓ
ε)i|≤κo(ε) + |sℓ

i |≤κo(ε) + σ1[xi − o(ε) + o(ε)]=(κ − σ1)o(ε) + σ1(xε)i≤σ1(xε)i + ε,

for all ε small enough, where we have used the assumption that {o(ε)/ε} → 0. Sε can be treated in
the same way, and since clearly (xε, Xε) satisfies the design constraints, (xε, Xε, s̃ε, S̃ε) is permis-
sible in (Pε

2 ). Hence, w(x∗
ε , X∗

ε ) ≤ w(xε, Xε). Letting ε tend to zero in this inequality, we obtain
that w(x∗, X∗) ≤ w(x, X), whence we may conclude that (x∗, X∗, s̃∗, S̃∗) solves (P2). The result
then follows from the compactness of SOL (P2) and the continuity of w.

4.2.4 Example: One-bar truss with a cable revisited

Consider again the one-dimensional structure in Figure 1. Assume that allowable stresses are
σ1 = 1 and σ2 = 1/2 for the bar and cable material, respectively. Invoking the stress constraints
|s| ≤ x and S ≤ X/2, the nested version of (P2) with x = X = 0 becomes





min
(x,X)

x + X,

s.t.






x ≥ 0, X ≥ 0, x + X > 0,

x ≤ (x + X)x,

X ≤ (x + X)X/2,

recalling (19). We presume the upper design bounds are passive. The admissible domain is shown
in Figure 2.

One sees immediately from the figure that the optimal solution is

x∗ = 1, X∗ = 0, with optimal weight = x∗ + X∗ = 1.

29



When this type of optimal solution and design domain appears, in the structural optimization com-
munity one talks about the ”stress singularity phenomenon”, and the optimal solution is sometimes
referred to as a ”singular topology”. The first example of a singular topology was reported by Sved
and Ginos [SvG68], and design domains very similar to the one in Figure 2 were presented by Kirsch
[Kir90] and later also by Rozvany and Birker [RoB94] and by Cheng [Che95].

From a mathematical programming point of view, the singularity stems from the constraints
not being qualified (in the sense of, for example, Slater), cf. [BSS93, DuB98]. This implies that the
Karush–Kuhn–Tucker (KKT) conditions need not be necessary for (local) optimality. [Obviously,
the nonconvexity of the problem adds to this the fact that the KKT conditions neither are sufficient
for (local) optimality.] Almost every practical numerical algorithm generates solutions that are only
guaranteed to fulfill the KKT conditions [e.g., (x, X) = (2, 0) in Figure 2], which, hence, need not
have anything to do with the desired global (or even local) minima. If small strictly positive lower
design bounds are enforced, that is, x = X = ε, then one gets the incorrect ”optimal” weight 2,
and the optimal solutions (x∗

ε , X
∗
ε ) satisfy

‖(x∗, X∗) − (x∗
ε , X

∗
ε )‖ ≥ 1√

2
, ∀ε ∈ (0, 1),

so the straightforward ε-perturbation is clearly incorrect.
In this example, the stress bounds were chosen differently in the bar and cable. When the elastic

modulii, specific weights and stress bounds are uniform, then, for a single load, the problem (P2)
seems to provide no major complications; in fact optimal solutions can, at least in the non-unilateral
case, be obtained by solving a dual pair of linear programs [DGG64, Sva94]. However, since it is
very plausible that one wishes to use cable and bar materials that are not the same, or that they are
subject to different allowable stresses, one must deal with this type of problem. Moreover, Stolpe
and Svanberg [StS01] showed that multiple loads (while keeping the other data uniform) suffice to
produce difficult problem instances, where global optima are situated at degenerate parts of the
feasible domain. Since multiple load-cases appear after discretization of the probability space, this
means that one can expect the optimal solution to be singular, even if the elastic modulii, specific
weights and stress bounds are uniform.

Let us now consider the example in view of the ε-relaxed (or, ε-perturbed) statement (Pε
2). We

take o(ε) := ε2, so x = X = ε2, presume the upper bounds to be passive, and write the stress
constraints on the form

|s| ≤ x + ε, S ≤ X/2 + ε.

Then the nested version of (Pε
2 ) becomes





min
(x,X)

x + X,

s.t.





x ≥ ε2, X ≥ ε2,

x ≤ (x + X)(x + ε),

X ≤ (x + X)(X/2 + ε).

The admissible domain for ε = 0.1 is shown in Figure 5.
The optimal solution, for a general ε > 0, is given by

x∗
ε =

1 − 5ε +
√

1 − 2ε + 9ε2

2
, X∗

ε =
x∗

ε

x∗
ε + ε

− x∗
ε ,

and the optimal weight is x∗
ε/(x∗

ε + ε). Clearly,

lim
ε→0

x∗
ε = x∗, lim

ε→0
X∗

ε = X∗,

as Theorem 4.4 predicts.
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Figure 5: The admissible design domain for ε = 0.1. The optimal solution is at the black circle.

5 FE-discretized sheets in contact

5.1 The design optimization model

Consider a family of linearly elastic continua occupying a region B(h) in space,

B(h) = { (ξ1, ξ2, ξ3) ∈ R
3 | (ξ1, ξ2) ∈ Ω̂, |ξ3| < h(ξ1, ξ2)/2 },

where Ω̂ is a fixed open and plane two-dimensional set and h : Ω̂ → R+ is a thickness function.
Note that the topology of B(h) can be changed by introducing holes through setting h(ξ1, ξ2) = 0.

We assume that B(h) is loaded in such a way that the state of stress is plane. The design
objective now is to minimize the (in some sense) effective stress σM : B(h) → R+. It would have
been desirable to minimize the maximum effective stress, that is, ‖σM‖L∞(B(h)), but since σM is
only guaranteed to belong to L2, we instead choose

‖σM‖2
L2(B(h)) =

∫

B(h)

σ2
M dB

=

∫

Ω̂

∫ h(ξ1,ξ2)/2

−h(ξ1,ξ2)/2

σ2
M dξ3dξ1dξ2

=

∫

Ω̂

hσ2
M dξ1dξ2 (plane stress)

≈
m∑

i=1

hiAi(σ
e
i )

2 (FE-discretization step)

=
∑

i∈I(x)

xiσ
T
i Mσi, (xi is the material volume) (34)

where Ai is the area of the finite element, σT
i = (σx, σy, τxy), and M is a positive definite and

symmetric matrix, cf. Section 2.1. Finally, using (3), we get

‖σM‖2
L2(B(h)) ≈

∑

i∈I(x)

sT
i Msi

xi
. (35)
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We assume that the unilateral constraints are due to rigid supports, so no cables are present, that
is, the variables (S, e) do not appear in the equilibrium problems and x is the only design variable.
The energy function hence now takes the form

E(x, s, λ) =
1

2

∑

i∈I(x)

sT
i E−1si

xi
+ gT

1 λ

whenever it is finite. If the initial gaps are zero, that is, if g1 = 0, then compliance is equal to
1
2

∑
i∈I(x)

sT
i E−1si

xi
, which is obtained in (35) by choosing M = 1

2E−1. By choosing the matrix

given in Section 2.1 one minimizes the L2-norm of the von Mises effective stress. We enforce an
upper bound on the available material volume,

∫
B(h) dB ≤ v. Further,

∫

B(h)

dB =

∫

Ω̂

∫ h(ξ1,ξ2)/2

−h(ξ1,ξ2)/2

dξ3dξ1dξ2

=

∫

Ω̂

h dξ1dξ2

≈
m∑

i=1

hiAi (FE-discretization step)

=

m∑

i=1

xi, (36)

so the constraint becomes 1T
mx ≤ v. Including stochastic loads and performing a discretization of

the probability space as before, we can pose the following problem statement:

(P3)





min
(x,s̃,λ̃)

cf,M (x, s̃) :=
∑

ℓ∈L

ρℓ

∑

i∈I(x)

(sℓ
i)

T Msℓ
i

xi
,

s.t.

{
1T

mx ≤ v, x ≥ 0,

(sℓ, λℓ) solves (C)(x)(ωℓ), ℓ ∈ L.

For more details on how to arrive at the mathematical programming problem by FE-discretization,
we refer to [PeH98].

5.2 Existence of optimal designs

The following result is proven similarly to Theorem 4.1.

Theorem 5.1 (Existence of optimal solutions to (P3)). Suppose the feasible set FP3 of (P3) is
nonempty. Then, there exists at least one optimal solution to (P3).

Proof. Since cf,M is to be minimized, we can presume that FP3 is such that cf,M is proper with
respect to FP3 , and even bounded from above on FP3 (or construct it as such, by introducing an
additional redundant constraint of the form cf,M (x, s̃) ≤ ν, with ν < ∞). Matrix norms being
essentially equivalent, we obtain, for some κ > 0, that

∑

ℓ∈L

ρℓEℓ(x, sℓ, λℓ) ≤ κcf,M (x, s̃) +
∑

ℓ∈L

ρℓg
T
1 λℓ

= κcf,M (x, s̃) +
∑

ℓ∈L

ρℓg
T
1 C1[f

ℓ − BT sℓ] (37)
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holds for all (x, s̃, λ̃) ∈ FP3 , where the equality stems from the quasi-orthogonality of C1 and the
equilibrium conditions. This implies that without any loss of generality we may add constraints of
the form

Eℓ(x, sℓ, λℓ) ≤ νℓ + (aℓ)T sℓ, ℓ ∈ L, (38)

to the constraints of the problem (P3), for some appropriate choice of (aℓ, νℓ). By the lsc property
of the energy functional, the corresponding set is closed. Due to the relation (37), and Corol-
lary 3.1, the intersection of these new constraints with the graphs grSℓ, ℓ ∈ L, is nonempty and
closed. Hence, the feasible set of (P3) is nonempty and closed. The upper-level objective function
is (again by assumption) proper, and it is further lsc and coercive, since it is coercive in s (M
being positive definite, cf. further Lemma 3.2 and the proof of Theorem 2.1) and the feasible set
in terms of x is bounded. Hence, Weierstrass’ Theorem applies.

5.3 ε-perturbation

When perturbing the problem by enforcing a volume lower bound ε > 0, (P)(x) is always uniquely
solvable, so we can switch from (C)(x) to (P)(x). Then we have to note that, by using (4), the
design objective becomes

‖σM‖2
L2(B(h)) ≈

m∑

i=1

xiu
T BT

i EMEBiu.

Therefore, by setting M̄i = BT
i EMEBi, we can pose

(Pε
3)





min
(x,ũ)

cd,M (x, ũ) :=
∑

ℓ∈L

ρℓ

m∑

i=1

xi(u
ℓ)T M̄iu

ℓ,

s.t.

{
1T

mx ≤ v + εm, x ≥ ε1m,

uℓ solves (P)(x)(ωℓ), ℓ ∈ L.

Similarly to Theorem 4.2, we establish that this problem indeed gives optimal solutions close
to the ones of (P3).

Theorem 5.2 (Convergence of ε-perturbed solutions). Suppose the feasible set FP3 of (P3) is
nonempty. For each ε > 0, let (x∗

ε , ũ
∗
ε, s̃

∗
ε, λ̃

∗
ε) denote an arbitrary optimal solution to (Pε

3 ). Then,
the sequence {(x∗

ε , s̃
∗
ε, λ̃

∗
ε)} is bounded, and converges to the optimal solution set SOL (P3) of (P3),

in the sense that
{

min
(x,s̃,λ̃)∈SOL (P3)

‖(x∗
ε , s̃

∗
ε, λ̃

∗
ε) − (x, s̃, λ̃)‖

}
→ 0.

Moreover, {cf,M (x∗
ε , s̃

∗
ε)} and {cd,M(x∗

ε , ũ
∗
ε)} converge to the optimal value of (P3).

Proof. According to Theorem 5.1, an optimal solution exists to the problem (Pε
3) for every ε > 0

(since also cd,M is coercive whenever ε > 0), as well as to the problem (P3). Consider first the
sequence {x∗

ε}. Clearly, this sequence is bounded since the feasible sets of (Pε
3) in xε are bounded,

as well as that in x of (P3). The sequence {cf,M (x∗
ε , s̃

∗
ε)} is bounded as well. To see this, consider,

for any ε > 0, an optimal solution, say (x̂∗
ε , ŝ

∗
ε), to the problem which equals (Pε

3) except that the
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volume constraint is [the original from (P3)] 1T
mx ≤ v. (This problem clearly has optimal solutions

for every ε > 0 small enough.) Then, obviously,

0 ≤ cf,M (x∗
ε, s̃

∗
ε) ≤ cf,M (x̂∗

ε , ŝ
∗
ε)

holds, and the sequence {cf,M (x̂∗
ε , ŝ

∗
ε)} is furthermore monotonically decreasing (hence upper

bounded), since the feasible set of the corresponding problem increases monotonically with a de-
creasing value of ε.

Since {cf,M (x∗
ε , s̃

∗
ε)} is bounded, so is the sequence {(s̃∗ε, λ̃∗

ε)}. Further, by (37) and Theo-
rem 3.1, if x̄ is an arbitrary limit point of the sequence {x∗

ε} then {(s̃∗ε, λ̃∗
ε)} converges to the

optimal solution (cf. Theorem 2.1), say, (s̄, λ̄), to the problems (C)(x̄)(ωℓ), ℓ ∈ L.

Consider next an arbitrary feasible solution (x, s̃, λ̃) to the problem (P3), let xε := x + ε1m,
(s̃ε, λ̃ε) be the optimal solution to the problems (C)(xε)(ωℓ), ℓ ∈ L, and ũε the optimal solutions to

the problems (P)(xε)(ωℓ), ℓ ∈ L. Clearly, (xε, s̃ε, λ̃ε) is a feasible solution to (Pε
3). Corollary 3.2

implies that the sequence {(s̃ε, λ̃ε)} of states converges to the limit state (s̃, λ̃). Further, Theo-
rem 3.2 states that the sequence {ũε} converges to the least-energy displacement solution, here
denoted ũ, to the problems (P)(x)(ωℓ), ℓ ∈ L.

We then have that

cf,M (x̄, s̄) ≤ lim inf
ε→0

cf,M (x∗
ε , s̃

∗
ε)

≤ lim inf
ε→0

cf,M (xε, s̃ε)

= lim
ε→0

cd,M (xε, ũε)

= cd,M (x, ũ)

= cf,M (x, s̃), (39)

where the inequalities follow from the lsc property of cf,M and the optimality of (x∗
ε , s̃

∗
ε, λ̃

∗
ε) and

feasibility of (xε, s̃ε, λ̃ε) in the problem (Pε
3), and the equalities follow from the identity between

cf,M and cd,M on the equilibrium sets grSℓ, ℓ ∈ L, the continuity of cd,M , and again from the
identity between cf,M and cd,M on the equilibrium set. By (39), (x̄, s̄) is optimal in (P3). The
convergence of the sequence {(x∗

ε, s̃
∗
ε, λ̃

∗
ε)} to the optimal solution set of (P3) then follows from its

compactness. Since cf,M equals cd,M on grSℓ, ℓ ∈ L, the last result follows also.

With the available proof techniques, an ε-perturbation of the volume constraint was needed
in the definition of (Pε

3), even though we suspect Theorem 5.2 may be true also without it. For
instance, it can be shown that the ε-relaxation is not necessary with respect to the total volume
constraint in the problem (Pε

3) if M = E−1, since, in this case, the design objective equals that of
the problems (C)(x)(ωℓ), ℓ ∈ L, whence we obtain that

cf (x̄, s̄) ≤ lim inf
ε→0

cf (x∗
ε , s̃

∗
ε)

≤ lim inf
ε→0

cf (xε, s̃ε)

≤ lim
ε→0

cf (xε, s̃)

= cf (x, s̃),

where the equality follows from the continuity of cf (·, s̃) [cf. Lemma 3.1].
We finally note that in order to avoid checkerboard-like numerical instabilities, it may be

necessary to slightly change the design parametrization by assigning the same thickness value to
more than one finite element. For instance, triangular elements could be ordered in neighboring
pairs and assigned the same thickness.
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6 Concluding remarks and further research

In this paper, we have considered quite general problems in structural topology optimization of
unilaterally constrained mechanical structures. This class of optimization problems provides sev-
eral difficulties, such as principal problems connected to the alteration of topology; for instance,
many permissible designs lack equilibria. The remedy to this problem, achieved by providing and
validating ε-perturbations that transform the problem statement to a sizing form, is one of the
main themes of this paper. However, even if the topology has been fixed in the sizing problem, the
design–to–state mappings are only locally Lipschitz continuous and generally not differentiable.
This is due to the inclusion of unilateral constraints in the equilibrium formulations. Therefore,
when including mechanical contact or cables, the nested versions of the structural optimization
problems are not differentiable.

In the future we will investigate appropriate numerical solution algorithms for some of the
problems investigated—a topic which is not covered in this paper. The monograph [LPR96] in-
cludes several algorithms for this class of problems, such as the implicit programming algorithm
for the nested problem, and the penalty interior point algorithm for the simultaneous version of
the problem, cf. also [OKZ98, HKP99a]. The nested problem can in principle be treated by any
method from nondifferentiable optimization, for example, bundle methods ([OKZ98]) and subgra-
dient methods ([CPW01]). Another possibility is to use smoothing (cf. [FJQ99, Hil00]), that is,
to replace the equilibrium problem by a sequence of smooth approximations. Then any standard
first-order algorithm, such as sequential explicit approximation methods, can be used for the nested
problem.

As always in structural optimization, nonconvexity is a potential problem, in that first-order
methods may terminate at non-global, local optima, corresponding to rather inefficient structures.
Sometimes this seems to be especially pronounced in ε-relaxed topology optimization (cf. [StS01])
and in optimization in unilateral mechanics. In [Hil00], it was however reported that a smoothing
modification may improve a first-order algorithm’s ability to avoid (non-global) local optima that
are due to the presence of unilateral constraints.

Compliance minimization is a rare special instance of the class of structural optimization prob-
lems, since it can be formulated as convex optimization problems and convex–concave saddle-point
problems. Moreover, in the nested approach, the derivatives (when they exist) of compliance
with respect to changes in designs, are very cheap to calculate. For other structural optimization
problems, such as stress-constrained problems, the constraints are numerous, and the sensitivity
analyses can be expected to require much more computational time.

In this paper, we handled stochastic forces through a straightforward discretization of the
sample space. Other data can also be allowed to be random, such as the gaps g1 or initial cable
slacks g2, as a way of accounting for mounting uncertainties. Moreover, alternative probability
space discretizations, or other means to handle stochastic data, are possible and will be investigated,
as well as the most natural choices of objective functions in the more general settings mentioned.

The aggregate effects on the proper choices of numerical procedures, of all the generalizations
of design problems previously considered which we have either investigated in detail in this paper
or only briefly mentioned, will be the subject of substantial forthcoming theoretical and numerical
investigations. Some of the complications introduced because of the added complexity have already
been mentioned in this section; some others, pertaining to the introduction of stochastic data, are
discussed in [CPW01].
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