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Abstract

We provide a new mathematical model for strategic traffic management, formulated and analyzed
as a mathematical program with equilibrium constraints (MPEC). The model includes two types of
control (upper-level) variables, which may be used to describe such traffic management actions as
traffic signal setting, network design, and congestion pricing. The lower-level problem of the MPEC
describes a traffic equilibrium model in the sense of Wardrop, in which the control variables enter
as parameters in the travel costs. We consider a (small) variety of model settings, including fixed
or elastic demands, the possible presence of side constraints in the traffic equilibrium system, and
representations of traffic flows and management actions in both link–route and link–node space.

For this model, we also propose and analyze a descent algorithm. The algorithm utilizes a new
reformulation of the MPEC into a constrained, locally Lipschitz minimization problem in the product
space of controls and traffic flows. The reformulation is based on the Minty parameterization ([Min67])
of the graph of the normal cone operator for the traffic flow polyhedron. Two immediate advantages
of making use of this reformulation are that the resulting descent algorithm can be operated and
established to be convergent without requiring that the travel cost mapping is monotone, and without
having to ever solve the lower-level equilibrium problem. We provide example realizations of the
algorithm, establish their convergence, and interpret their workings in terms of the traffic network.

Key words: Traffic equilibrium; Stackelberg game; mathematical program with equilibrium con-

straints; bilevel programming; toll optimization; queueing model; network design; system optimal
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1 Introduction

The need for measures to reduce congestion in the metropolitan traffic areas is becoming more serious
as citizens keep clustering in cities with the immediate side effect of an increase in traffic demand.
A functioning society depends upon the mobility provided by the transportation network to enable
its members to participate in essential activities such as production, consumption, communication and
recreation. It is however necessary for society also to introduce congestion-relief measures in order for
the quality of life and the environment, and the safety of the citizens, not to deteriorate.

Any well-founded traffic model recognizes the individual network user’s right to decide when, where
and how to travel. The criteria by which the user makes these choices are selfish, and are therefore on
the aggregate level not entirely in par with society’s goals of an efficient and safe utilization of the traffic
network. A classical example of this conflict is that the typical traveller can be expected to choose a
route between his/her origin and destination such that the combined travel time and cost is minimal
given the network conditions when the travel is made; the aggregate effect of these decisions is a network
flow which does not minimize the total system costs.

We may model this conflict in the traffic system as a noncooperative Stackelberg game, in which a
traffic manager, represented as the leader, takes some action, such as a change in the infrastructure or in
the traffic signal plans, so as to achieve some overall management goal with respect to the distribution of
the traffic in the network and some measure of network performance. The travellers are then modelled
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as the followers; they react to the actions of the manager by modifying their behaviour, for example by
adjusting their route choices, travel modes or time of day to travel. If the manager’s actions are adequate,
then the travellers’ response is the desired one. Common means for achieving such a change in the traffic
flows are to invest in traffic network capacity, to introduce or adjust traffic controls such as traffic lights,
to introduce tolls on some links, or to supply the travellers with information about alternative routes.
The common point in all these traffic management models is that the main control variable is the users’
travel costs (or, rather, travel cost adjustments), even though they may be influenced indirectly through
the actions implemented.

Taking as the starting point a general Stackelberg model of the decision problem, we thereafter provide
several examples of possible management goals and the corresponding model instances. Measures that
one can model through this strategy are variations in traffic signal plans, alterations of the network
infrastructure, also referred to as network design, and the introduction and setting of tolls in the network.
We begin however with a short discussion on the equilibrium model which represents the behaviour of the
network users given a network infrastructure. We stress already at this stage that we shall be concerned
only with the case of static equilibrium conditions, thus ignoring in this work possible time-dependent
(dynamic) effects.

2 Wardrop equilibrium

Let G = (N ,A) be a transportation network, where N and A are the sets of nodes and directed links
(arcs), respectively. For certain ordered pairs of nodes, (p, q) ∈ C, where node p is an origin, node q is
a destination, and C is a subset of N × N , there are positive travel demands dpq (which initially shall
be assumed fixed) giving rise to a link traffic flow pattern. We assume that the network is strongly
connected, that is, that at least one route joins each origin–destination (OD) pair.

Wardrop’s user equilibrium principle states that for every OD pair (p, q) ∈ C, the travel costs of the
routes utilized are equal and minimal. We denote by Rpq the set of simple (loop-free) routes for OD pair
(p, q), by hpqr the flow on route r ∈ Rpq , and by c̄pqr := c̄pqr(h) the travel cost on the route given the
vector h ∈ <|R| of route flows, where |R| denotes the total number of routes in the network; with this
notation, an equilibrium flow is defined by the conditions

hpqr > 0 =⇒ c̄pqr = πpq , r ∈ Rpq , (p, q) ∈ C, (1a)

hpqr = 0 =⇒ c̄pqr ≥ πpq , r ∈ Rpq , (p, q) ∈ C, (1b)

where the value of πpq := πpq(h) is the minimal (i.e., equilibrium) route cost in OD pair (p, q). By the
nonnegativity of the route flows, the system (1) can more compactly be written as the complementarity
system

0 ≤ hpqr ⊥ (c̄pqr − πpq) ≥ 0, r ∈ Rpq , (p, q) ∈ C, (2)

where a ⊥ b, for two arbitrary vectors a, b ∈ <n, means that aTb = 0. The Wardrop conditions state that
an equilibrium state is reached precisely when no traveller can decrease his/her travel cost by unilaterally
shifting to another route.

In order to cast the Wardrop conditions as a variational inequality problem, we need to decide in which
space we wish to represent the flows and the flow feasibility requirements. A general form is obtained by
describing the set of feasible, aggregate, link flows as the solution in f ∈ <|A| to the linear system

f = V v, (3a)

Wv = d, (3b)

v ≥ 0, (3c)

where v is the (disaggregated) vector of the commodity flows, V is an incidence matrix which describes
the aggregation of these flows into a corresponding link flow f , and W is an incidence matrix which
describes the feasibility requirements with respect to the demand, d, in the commodity flow space.

The most common representation of the Wardrop conditions as a variational inequality problem is in

terms of the route flow variables hpqr. We obtain this formulation by identifying v = h, d ∈ <
|C|
++ as the

vector of each OD pair’s demand, and W = ΓT, where Γ ∈ <|R|×|C| is the route–OD pair incidence matrix
(i.e., the element γrk is 1 if route r joins OD pair k = (p, q) ∈ C, and 0 otherwise). In a disaggregated
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version of the Wardrop conditions, we consider only utilizing the part (3b)–(3c) of the system (3) above,
thus describing the (bounded polyhedral) set

H :=
{
h ∈ <

|R|
+

∣∣∣ ΓTh = d
}

of demand-feasible route flows. The condition (1) is equivalent to h satisfying

−c̄(h) ∈ NH(h), [VIP-H ]

where c̄ : <
|R|
+ 7→ <

|R|
++ is the vector of route travel cost functions, and NS(s) denotes the normal cone to

a nonempty, closed and convex set S ⊆ <n at s ∈ <n, that is, the set

NS(s) :=

{
{ z ∈ <n | zT(y − s) ≤ 0, ∀y ∈ S }, s ∈ S,

∅, s /∈ S.

To see this equivalence directly, we utilize the notation Γ to rewrite (2) as follows:

0 ≤ h ⊥ (c̄(h) − Γπ) ≥ 0. (4)

Together with the feasibility requirement that ΓTh = d must hold, the system (4) describes the optimality
conditions for h solving the linear program to minimize c̄(h)Ty over y ∈ H ; this is precisely [VIP-H ].

We remark here that the existence of several groups of users or modes of transport is easily modelled
within the above framework, by simply creating a copy of the network for each user group and mode,
and relating their travel costs, if needed, through the vector c̄.

In the case where the travel cost of a route is the sum of the travel costs on the links defining it (i.e.,
the route costs are additive), then the above Wardrop conditions can be described in terms of link flows.
We then further identify V = Λ in (3a), where Λ ∈ {0, 1}|A|×|R| is the link–route incidence matrix (i.e.,
the element λar equals 1 if route r utilizes link a, and 0 otherwise), and thus the (bounded polyhedral)
set of demand-feasible link flows

F̂ :=
{
f ∈ <|A|

∣∣∣ ∃h ∈ H with f = Λh
}
.

Then, the problem [VIP-H ] can be equivalently written as

−t̄(f) ∈ N
F̂
(f), [VIP-F̂ ]

where t̄ : <
|A|
+ 7→ <

|A|
++ is the vector of link travel cost functions. (The link and route costs are related by

c̄(h) = ΛT t̄(f), for any pair (h, f) ∈ H × F̂ .)
The set of feasible link flows can also be described by the OD-specific link flows that satisfy the demand

for transportation and flow conservation constraints for all the nodes of the network; this is the second
most popular representation of feasible flows. In the system (3), we then identify W as a block-diagonal
matrix with |C| blocks Wk , with Wk = A, A ∈ {−1, 0, 1}|N |×|A| being the node–link incidence matrix
of the network. Further, d is a (|C| · |A|)-vector, with |C| vectors dk, each being a vector of OD-specific
demands, stacked on top of each other. (The elements of dk sum to zero.) We also identify v as the
(|C| · |A|)-vector of commodity link flows fak. Hence, (3b) corresponds to the commodity-specific flow
conservation constraints

Afk = dk, k ∈ C.

Finally, V is the block-diagonal (|A| × |C|)-matrix which describes the aggregation of the commodity
link flows fk into f . Summarizing, then, the system (3) describes the (unbounded polyhedral) set of
demand-feasible link flows

F :=

{
f ∈ <|A|

∣∣∣∣∣ ∃fk ∈ <
|A|
+ , k ∈ C, with f =

∑

k∈C

fk and Afk = dk

}
.

In the present setting, of course, k is identified with an OD pair (p, q) ∈ C, and, further, each vector dk

has precisely two nonzeros. We may, however, consider k to denote a less disaggregated flow, such as
flows from different origins, or different vehicle types, etc. The two representations that we have chosen
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here are in that sense at the two extremes in terms of level of aggregation. We also note that in more
generality, we may consider different networks, that is, different matrices Ak, for each commodity k, or
type k of traffic. This will necessarily also lead to a proper modification of the matrix V above.

Note that F̂ ⊂ F holds, because the latter contains cyclic flows, but due to the positivity assumption
on t̄ no equilibrium flow will utilize any cyclic flow, so this alternative representation is, in that sense,
equivalent. In the following, we shall always consider the version [VIP-F ] whenever considering a link
flow-based equilibrium system.

More general considerations, such as the possible presence of side constraints in the equilibrium system,
or that the demand at equilibrium depends on the cost of the trip, is relegated to Section 7

3 A general Stackelberg model

3.1 The mathematical model

This section introduces a general Stackelberg model for the society’s traffic management problem. We
introduce two vectors, ρ and β, of parameters denoting the actions taken by the traffic manager.

The parameter ρ is assumed to enter the travel cost function, leading to the parameterized (and
presumed continuous) function t(ρ, f) (in the case of the equilibrium model [VIP-F ]), or c(ρ, h) (in the
case of the equilibrium model [VIP-H ]). Further, ρ is constrained to a polyhedral set, which we denote by
P ⊂ <p, and which may be determined by political, practical, environmental and economical constraints,
and possibly other considerations as well. (The assumption that P is polyhedral is not essential to the
results to be presented, but simplifies some parts of the algorithm.)

The parameter β enters the travel cost function as an additive term. So, given actions (ρ, β), the
travel cost mapping takes the form f 7→ t(ρ, f) + β (respectively, h 7→ c(ρ, h) + β). We allow for no
explicit constraints on β, since we wish for an equilibrium to always exist whatever the choice of ρ ∈ P .
However, one could always include smooth penalties for any constraints one wishes to impose on β into
the objective function ϕ, to be discussed next.

Among the possible actions, the manager optimizes a function, ϕ, defined over P × <|A| × <|A|

(respectively, P ×<|R| ×<|R|), of the actions and traffic flows. This function may include some further
measures of network performance as well as measures of the cost and/or benefits associated with a given
action. We shall presume throughout that this function is continuously differentiable on P ×<|A|×<|A|,
but remark that in principle, piecewise differentiability would suffice.

Taking [VIP-F ] as the underlying equilibrium model, the general problem then is to

[MPEC-F ] minimize ϕ(ρ, β, f) (5a)

subject to ρ ∈ P, (5b)

−t(ρ, f) − β ∈ NF (f). (5c)

For further reference, we shall denote the set f of solutions to (5c) by S(ρ, β). If the lower-level
problem (5c) has unique solutions f , then the problem [MPEC-F ] is well-defined, but in situations where
there is more than one equilibrium solution, it is not clear how to interpret the minimization operation
in [MPEC-F ], since the value of ϕ(ρ, β, f) then is impossible to predict. We next turn to explain our
proposal to resolve this issue.

3.2 Sensitivity analysis and well-posedness under lower-level nonuniqueness

In the case where the cost mapping f 7→ t(ρ, f) + β is positive and strictly monotone on F , the solution,
f , to (5c) is uniquely determined by (ρ, β), that is, S(ρ, β) is a singleton set. We may, in the situation
that this is true for every (ρ, β) ∈ P ×<|A|, think of the problem [MPEC-F ] as that to find the minimum
of the function (ρ, β) 7→ ϕ(ρ, β, f(ρ, β)) over P ×<|A|, where f(ρ, β) denotes the unique solution to (5c).
This implicit function is continuous on P ×<|A|.

For the development of efficient algorithms for finding a minimum of the function (ρ, β) 7→ ϕ(ρ, β, f(ρ, β))
over P ×<|A| it is however detrimental that it has stronger differentiability properties. Much is of course
known about the sensitivity and stability of solutions to perturbed variational problems (see, for example,
the monographs [LPR96, RoW98, OKZ98, BoS00]), and specialized analyses have been conducted also
for the case at hand. Important to note is that in traffic equilibrium models, the presence of variables at
different levels of aggregation (total link flows together with commodity link flows or route flows) means
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that some of the traditional techniques in sensitivity analysis, such as the strong regularity results by
Robinson [Rob80], are applicable only by vieweing the problem in terms of the aggregated variables (total
link flows). In the sensitivity analysis of traffic equilibria, this possibility has most often been overlooked,
and much (unnecessary) effort has been spent on the choice of an appropriate disaggregated flow (cf.
[ToF88, QiM89, Yen95, CSF00]). The fact that the sensitivity analysis is independent of any such choice
was demonstrated first in [PaR01] for the case of elastic demands. Patriksson [Pat01] provides a rather
complete analysis of the sensitivity of traffic equilibria, and improves and extends the analyses made
in [ToF88, QiM89, Yen95, Out97, CSF00, PaR01], including characterizations of the differentiability,
and the generation of subgradients, of the mapping S at a reference point (ρr, βr). An overview of the
sensitivity analysis of the problem at hand follows.

Assume that the parameterization is rich enough so that the rank of the Jacobian matrix ∇ρt(ρ
r, fr) is

full (that is, p). (This condition can always be fulfilled through the introduction of dummy parameters.)
We introduce the sensitivity problem as that of, given a perturbation (δρ, δβ), finding a solution to the
variational inequality

DS((ρr, βr) | fr)(δρ, δβ) :=
{
δf ∈ <|A|

∣∣∣ − r(δρ, δβ, δf) ∈ NK(δf)
}
, (6)

where

r(δρ, δβ, δf) := ∇ρt(ρ
r, fr)δρ+ δβ + ∇f t(ρ

r, fr)δf (7)

is the problem mapping, and where its feasible set is the critical cone,

K := TF (fr) ∩ [t(ρr, fr) + βr]⊥, (8)

where TF (fr) is the tangent cone to F at f r. Further, for any vector z ∈ <n, z⊥ := { y ∈ <n | zTy = 0 }
is the orthogonal subspace associated with the vector z. The problem (6) amounts to solving an affine
variational inequality defined such that we retain first-order optimality and feasibility in the original
model. (In [QiM89, PaR01, Pat01] it is shown that these types of problems are special affine traffic
equilibrium problems over variations of the original traffic network.) The first result states that the
mapping S is strongly regular in the sense of Robinson [Rob80, Rob85], that is, single-valued and locally
Lipschitz continuous, at (ρr, βr), if, and only if, the solution δf to the sensitivity problem (6) is unique
for each choice of perturbation. Moreover, when this condition is satisfied, this unique value is the
directional derivative of the equilibrium link flow solution at (ρr, βr) in the direction of (δρ, δβ), and the
mapping S is B-differentiable (in the sense of [Rob85]), and, equivalently, semi-differentiable (in the sense
of [RoW98]). This property is important, in that it is exactly what is needed to apply a Newton-type
algorithm for the problem to minimize (ρ, β) 7→ ϕ(ρ, β, f(ρ, β)) over P ×<|A|, a subject which has yet not
found application in the context of traffic management. (See further the references [PaQ93, Qi93, QiS93],
for more information about Newton methods for semi-smooth functions.) It is also enough to be able to
devise bundle subgradient algorithms for the problem; see the further research section and [Pat01] for
further details on that subject.

A sufficient, but not necessary, condition for strong regularity is that the partial Jacobian ∇f t(ρ
r, fr)

satisfies the condition that

sT∇f t(ρ
r, fr)s > 0, s ∈ K −K, (9)

that is, a positive definiteness condition on the critical subspace associated with the problem (5c) at
(ρr, βr, fr). This type of condition has been utilized in [QiM89, Yen95, Out97].

The mapping S is moreover differentiable at (ρr, βr) if, and only if, for every choice of perturbation
vector (δρ, δβ), it holds that if a route r or a link for a specific commodity is such that its flow in
every equilibrium solution is zero, then it remains zero in every solution to the sensitivity problem.
This result in [Pat01] improves upon those previously stated in [ToF88, CSF00], which assume that
there is a strictly complementary equilibium link flow. Not only is it shown in [Pat01] that the strict
complementarity condition is stronger than necessary, but that the computational formula in [ToF88,
CSF00] may fail to produce a gradient value even if one exists, and even provide a value when no
gradient exists. Patriksson [Pat01] also supplies a calculus formula for a subgradient of S at (ρr, βr) in
the absence of a gradient; the problem solved to obtain a subgradient is similar to that of calculating a
directional derivative in each coordinate direction, but it contains only equality constraints.
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In all events, the technical conditions stated above amount to some form of positive definiteness of the
Jacobian of the travel cost function, which is naturally implied by some strict (or, strong) monotonicity
assumption with respect to t(ρ, ·) on F for every ρ ∈ P . The assumption that the equilibrium solution
is unique (which it will boil down to of course) is, however, often too strong to be accepted easily. We
mention two such cases. If we wish to consider the underlying traffic equilibrium model [VIP-H ] in our
development of traffic management instruments, we must note that the equilibrium solution h is likely
to never be uniquely determined by (ρ, β) even if f is, since a link flow is not uniquely decomposable
into route flows in general. (A counterexample is however the stochastic user equilibrium (SUE) model
of Fisk [Fis80], in whose solution the route flows are unique; a necessary condition for this to hold is
that the route costs are not additive. See [Dav94] for an application of the SUE model in bilevel network
design, and [Pat01] for a characterization of the gradient of the equilibrium link flow as an asymptotic
result of SUE sensitivity analysis.) Further, if we model cost interactions between links, particularly for
links joining the same intersection, it has been demonstrated (e.g., [Hey83]) that the appropriate travel
cost mapping t will not even be monotone, whence the equilibrium link flow solution determined by the
Wardrop conditions will not necessarily be unique either. (The same is true for multiclass user traffic
equilibrium models; see [ToW96].) In our continued development, we will presume that the cost mappings
t and c are continuously differentiable on their respective domains F and H , but we make no assumption

about their monotonicity.
The effect of a nonuniqueness in the lower-level problem is of course that the value of ϕ becomes

unpredictable (and may also in some cases imply the nonexistence of optimal solutions to the bilevel
problem altogether; see, e.g., [BaF82]). We therefore need a finer rule for choosing one element in the set
of solutions, S(ρ, β), to the equilibrium system (5c). [In the literature of Stackelberg games, this set is
known as the rational reaction (or, response) set.] There are several approaches to this problem (see, e.g.,
[LoM92, DeS96, LoM96, Dem00]). The two most common ones are usually referred to as the optimistic

(or, strong or cooperative) approach and the pessimistic (or, weak or noncooperative) approach. The
optimistic approach is to asssume that the followers (travellers) in the game establish (or, choose) one
equilibrium which minimizes ϕ(ρ, β, ·) over the set S(ρ, β), thereby assuming a kind of cooperation on
the part of the followers. The resulting objective value for [MPEC-F ] then is

ϕ̂(ρ, β) := min
f∈S(ρ,β)

ϕ(ρ, β, f),

whenever the minimum is attained. The pessimistic approach is precisely the opposite assumption, leading
to a kind of worst-case optimal solution wherein the damage resulting from an unwelcome choice of the
followers is minimized. A third alternative ([Dem97]) is to introduce a perturbation of the optimistic
solution in order to better try to reflect the behaviour of the followers. Finally, a completely different way
out ([DeS96, Dem00]) is to introduce a strictly or strongly monotone regularizing term in the lower-level
cost mapping, making the lower-level solution uniquely determined, and whose associated positive scaling
factor is forced to zero in order to approach the original equilibrium problem.

The Minty parameterization of the equilibrium system (5c) provided in the next section leads to a
one-level optimization problem, which we will show is equivalent to [MPEC-F ] (in the sense that they
have the same set of locally optimal solutions), provided that we take the optimistic approach, but not
necessarily otherwise. In that section, we will also complete the discussion on the possible nonuniqueness
of lower-level solutions with some remarks on its consequences for decentralized traffic control through
link tolls.

3.3 Instances

We next illustrate the scope of the Stackelberg model [MPEC-F ]. (An overview of bilevel optimization
models in the field of transportation is found in [Mig95].)

Example 1 (network design). A familiar form of the equilibrium network design problem ([LeA79,
Mar86]) is an instance of [MPEC-F ]. Let ρa denote an investment in network capacity on link a; the
effect of an investment is that of a reduced travel time; its form is often taken to be ta(ρ, f) := t̄a(fa/ρa).
An investment ρa is associated with an investment cost, ψa(ρa). The goal is to minimize the total travel
time, at a user equilibrium flow [that is, ϕ(ρ, f) :=

∑
a∈A ca(ρ, f)fa], while satisfying budget constraints

on the investments made, ρ ∈ P := { ρ ∈ <
|A|
+ | ` ≤ ρ ≤ u; ψ(ρ) ≤ b;

∑
a∈A ρa ≤ U }.

The parameters ρa may also be associated with the lowering of capacity of a link, such as when a lane
is narrowed to allow for the construction of a bicycle lane. The lowering of capacity on certain links then
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acts as an influence on the travellers to choose other routes, other modes, etc. If the lower-level model
(5c) is a multi-modal model which allows for the demand d to differentiate between different modes of
transport, then [MPEC-F ] may be used, for example, to model an influence on the travellers to utilize
public transport or the bicycle alternative through inducing an additional delay for cars.

Example 2 (signal control). A problem of a form similar to the equilibrium network design problem is
the signal setting problem. The solution of this problem aims at finding a set of signal control parameter
values which, under user equilibrium conditions, optimizes some measure of the performance of the
network, such as the total queueing delay, but without altering the traffic infrastructure. In this case,
then, the variables ρ are the signal control parameters, for example the portion of green times allocated
to the signal controls, and the parameterized travel cost mapping f 7→ t(ρ, f) measures the sum of travel
times and delays at intersections. (See Cantarella and Sforza [CaS87], and Smith and Van Vuren [SmV93],
and references therein for examples of traffic control policies and mathematical models.) In this case, the
set P is the unit simplex.

We note that the generality of the model allows for the introduction of queueing delays for private
vehicles only, in order to favour public transport.

Example 3 (toll optimization). The actions discussed in the above examples lead indirectly to an adjust-
ment in the travellers’ cost perception, through the increase or decrease in queueing delays, for example.
It is also possible to associate the parameters with monetary expenses (although properly measured in
time equivalents), such as link or route tolls. In such cases, we could let t(β, f) := t̄(f) + β. Larsson
and Patriksson [LaP98] discuss several alternative interpretations and uses of such a model, for example
to induce mode changes through changes in ticket prices, and indirect derivations of β so as to satisfy
some flow side constraints in equilibrium. As an example, let ϕ denote the total travel costs, and let
the equilibrium problem be [VIP-F ]. The well-known marginal cost pricing solution (e.g., Dafermos and
Sparrow [DaS71]) is one optimal solution to this problem. (See further Larsson and Patriksson [LaP98]
and Bergendorff et al. [BHR97], for discussions about alternative pricing solutions.) In the case where
the underlying traffic model is an elastic demand model (cf. the model [EVIP-Hd] of Section 7.1), the
optimal solution is however the zero flow. We then note that toll optimization under constraints can be
modelled through the framework of this paper by letting t(ρ, f) := t̄(f) + ρ, and by adding penalties in
order to avoid a nonzero β.

4 A reformulation based on a Minty parameterization

4.1 The Minty parameterization

We will consider a reformulation of the problem [MPEC-F ] into an equivalent (one-level) optimization
problem in the space (ρ, f). The conversion is based on the Minty [Min67] parameterization of the graph
of the normal cone operator NF .

That f solves (5c) is equivalent to the existence of a vector v ∈ NF (f) such that v = −[t(ρ, f) + β].
Recall the definition of the graph of NF :

graphNF = { (v, f) | v ∈ NF (f) }.

Since NF is maximal monotone, it has a Minty parameterization, that is,

(v, f) ∈ graphNF ⇐⇒ ∃f̂ ∈ <|A| with f = ProjF (f̂) and v = (I − ProjF )[f̂ ] = f̂ − f,

where ProjF is the Euclidean projection operator for the convex set F . (This identity is in fact a very
simple form of the Minty parameterization which utilizes the relation v ∈ NF (f) ⇐⇒ ProjF (f + v) = f .)

We will utilize the Minty parameterization as follows. The condition (5c) may be viewed as the

existence of a vector f̂ ∈ <|A| such that −t(ρ,ProjF (f̂)) − β = f̂ − ProjF (f̂), or, in other words,

β = ProjF (f̂) − f̂ − t(ρ,ProjF (f̂)). (10)

We define the mapping Ψ : <p ×<|A| 7→ <|A| by

Ψ(ρ, f̂) = ProjF (f̂) − f̂ − t(ρ,ProjF (f̂)). (11)
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(This is a mapping which induces ProjF (f̂) to become a traffic equilibrium by adjusting the value of β.)
Thus, we recast the problem [MPEC-F ] as the problem to

[P-F ] minimize Φ(ρ, f̂) := ϕ(ρ,Ψ(ρ, f̂),ProjF (f̂)), (12a)

subject to ρ ∈ P, (12b)

f̂ ∈ <|A|. (12c)

The corresponding parameterization of the normal cone operator NH leads to a problem, [P-H ], based

on the equilibrium system [VIP-H ]. We remark that the vector f̂ does not correspond to a network flow

in general, whereas its projection onto F , ProjF (f̂), certainly does.

4.2 Properties of the equivalent problem

We next turn to look at the equivalence between the two problems [MPEC-F ] and [P-F ], and the basic
properties of the latter.

First, consider any feasible triple (ρ̄, β̄, f̄) in [MPEC-F ], that is, a triple which satisfies (5c), ϕ̂(ρ̄, β̄) =

ϕ(ρ̄, β̄, f̄), and is such that ρ̄ ∈ P . Let f̂ := f̄ − t(ρ̄, f̄) − β̄. From the Minty parameterization, it follows

immediately that f̄ = ProjF (f̂) holds, and so, from (11),

Φ(ρ̄, f̂) = ϕ(ρ̄, β̄, f̄) = ϕ̂(ρ̄, β̄).

We conclude that every feasible solution to [MPEC-F ] corresponds to a feasible solution to [P-F ] with
the same objective function value.

Second, consider any feasible pair (ρ̄, f̂) in [P-F ], that is, one with ρ̄ ∈ P , and let the pair (β̄, f̄)

be given by β̄ := Ψ(ρ̄, f̂) and f̄ := ProjF (f̂). Then, again from the Minty parameterization, the triple
(ρ̄, β̄, f̄) satisfies (5c), and so

ϕ̂(ρ̄, β̄) ≤ ϕ(ρ̄, β̄, f̄) = Φ(ρ̄, f̂)

holds, where the inequality follows from the fact that the equilibrium flow f̄ is not determined through
any optimization over the set S(ρ̄, β̄). [Equality holds however if S(ρ̄, β̄) is a singleton set.] Since, for
some values of the parameters (ρ̄, β̄), the two models may have different objective values, the two models
are not equivalent in that sense. The optimistic approach is inherent in the setup of the problem [P-F ],
so embracing this approach in [MPEC-F ] becomes necessary in order to achieve an equivalence at locally
optimal solutions. We establish below that local minimizers of Φ does constitute local minimizers for ϕ̂.

Proposition 4 (the locally optimal solutions to [MPEC-F ] and [P-F ] coincide). The sets of constrained

locally optimal solutions to [MPEC-F ] and [P-F ] are the same.

Proof. We establish that locally optimal solutions (ρ∗, f̂∗) to the problem [P-F ] translate to locally
optimal solutions (ρ∗, β∗, f∗) to [MPEC-F ]. The converse follows immediately from the correspondence
between feasible solutions of [MPEC-F ] and [P-F ] established above.

Consider a locally optimal solution (ρ∗, f̂∗) to the problem [P-F ], and let the triple (ρ∗, β∗, f∗) be

given by β∗ := Ψ(ρ∗, f̂∗) and f∗ := ProjF (f̂∗). Arguing by contradiction, we assume that there exists a
triple (ρ̃, β̃, f̃), arbitrarily close to (ρ∗, β∗, f∗), and satisfying ρ̃ ∈ P , (5c) and ϕ(ρ̃, β̃, f̃) < ϕ(ρ∗, β∗, f∗).

Let f̄ := f̃ − t(ρ̃, f̃) − β̃ (which likewise can be made arbitrarily close to f̂∗). Through the Minty
parameterization, we then obtain that

Φ(ρ̃, f̄) := ϕ(ρ̃,Ψ(ρ̃, f̄),ProjF (f̄)) = ϕ(ρ̃, β̃, f̃) < ϕ(ρ∗, β∗, f∗) = Φ(ρ∗, f̂∗).

We have therefore reached a contradiction to the local optimality of (ρ∗, f̂∗) in [P-F ]. This completes
the proof.

This result has the interesting consequence that when we have at hand a locally optimal solution,
(ρ∗, f̂∗), to the problem [P-F ], a vector (ρ∗, β∗, f∗) which locally minimizes ϕ̂ is (rather immediately)
available. A final note on the nonuniqueness issue in association with the optimistic approach is the
following: if we do not work under the assumption of an optimistic condition, then the optimal value
ϕ̂(ρ∗, β∗) may not be achieved when the control (ρ∗, β∗) is implemented, since the equilibrium solution
f∗ actually reached by the travellers then may be such that ϕ(ρ∗, β∗, f∗) > ϕ̂(ρ∗, β∗).
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The existence of optimal solutions to [MPEC-F ] (and, simultaneously, to [P-F ]), follows from standard
existence results for nonlinear programs. We first recall an abstract result; the corollary then translates
it into our problem setting. The abstract (cooperative) MPEC problem is given as follows:

[MPEC] minimize ω(x, y) (13a)

subject to (x, y) ∈ Z , (13b)

y ∈ S(x), (13c)

where ω : <n ×<m 7→ < ∪ {∞}, Z ⊆ <n ×<m, and S : <n 7→ 2<
m

.
We recall that a function ω : <p 7→ < ∪ {∞} is proper if ω(x) > −∞ for every x ∈ domω, and finite

for at least one x. Let
levα ω := {x ∈ <p | ω(x) ≤ α }

denote the lower level set of ω for the level α. We then say that ω is weakly coercive (or, level-bounded)
if levα ω is bounded for every α ∈ <. (This property is equivalent to lim‖x‖→∞ ω(x) = ∞.) Next, let
the function δX denote the indicator function for X ⊆ <p, that is, δX(x) equals zero if x ∈ X , and ∞
otherwise. We then say that the function ω is inf-compact relative to the set X if ω+δX is lsc, proper and
weakly coercive. The below result extends the famous Weierstrass Theorem, and has been established,
for example, in [Zha94, Proposition 2.3].

Proposition 5 (existence of optimal solutions to [MPEC]). Let

graphS := { (x, y) ∈ <n ×<m | y ∈ S(x) }

denote the graph of the mapping S. Suppose that the objective function ω is inf-compact relative to the

feasible set Z ∩ graphS. Then, there exist globally optimal solutions to the problem [MPEC].

Corollary 6 (existence of optimal solutions to [MPEC-F ]). Let Z := P ×<|A| ×<|A| and

graphS := { (ρ, β, f) ∈ <p ×<|A| ×<|A| | −t(ρ, f) − β ∈ NF (f) }. (14)

Suppose that the function ϕ : P ×<|A| ×<|A| is weakly coercive relative to the feasible set Z ∩ graphS.

Then, there exist globally optimal solutions to the problem [MPEC-F ].

Proof. Since F is polyhedral and t is continuous on <p ×<
|A|
+ , graphS is closed. Further, since NF (f)

is nonempty for every f ∈ F , it is clear that for every pair (ρ, f) ∈ P ×F , we can choose a vector β such
that (ρ, β, f) ∈ graphS. Since P was assumed to be polyhedral, we may conclude that the feasible set
Z ∩ graphS is closed as well as nonempty.

The function ϕ is in C1 on Z , and is hence both lsc and proper on the set Z ∩ graphS. The property
which remains to be ascertained in order to be able to invoke Proposition 5 is the weak coercivity of ϕ
on Z ∩ graphS, but this follows by the assumption. This completes the proof.

The weak coercivity assumption is rather natural. First, it is natural to assume that the controls ρ
are confined to a bounded set P . (It is in particular true for Examples 1 and 2 in Section 3.3.) Second,
it is also reasonable that the function ϕ is such that infinitely large (positive or negative) tolls β, or flows
in infinite cycles, are discouraged in the minimization (as discussed in Example 3 in the same section).
We remark that in the case of the problem [MPEC-H ], the boundedness of H implies that ϕ always is
weakly coercive in the flow space.

The problem [P-F ] is obviously both nonsmooth and nonconvex. Since ϕ and t are smooth and the
mapping ProjF is piecewise affine (e.g., [RoW98, Proposition 12.30]), [P-F ] however is a problem of
minimizing the piecewise smooth and, in particular, locally Lipschitz continuous and subdifferentially
regular [RoW98, Definition 7.25], hence semidifferentiable (or, B-differentiable) function Ψ over the
polyhedral set Z , for which descent methods can be devised. We shall study such a method in the next
section.

5 A descent algorithm for the traffic management model

5.1 Introduction

The algorithm to be developed starting in this section produces a stationary point for the problem [P-F ],

which in this context is a feasible point (ρ∗, f̂∗) such that

Φ′(ρ∗, f̂∗; δρ, δf̂) ≥ 0, δρ ∈ TP (ρ∗), δf̂ ∈ <|A|,
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where TP denotes the tangent cone mapping for the set P .
Previous solution methods for traffic management models have mostly been heuristic (see, e.g., [Mig95,

Fer97, LaP98]). In some cases (e.g., [Fri+90, YaL96]), a heuristic type of sensitivity analysis is applied
to the solution f(ρ, β) to (5c), in order to find profitable search directions for the implicit objective
function (ρ, β) 7→ ϕ(ρ, β, f(ρ, β)). Such a strategy—known as the implicit approach—as well as most
of the other heuristics that have been proposed in the literature, forces one to solve for an equilibrium
in each iteration, which is numerically challenging. It further presumes that the equilibrium link flow
solution is uniquely determined, that is, that the link cost function t(ρ, ·) is (at least) strictly monotone.

Other complications which may arise, and which in some cases have been ignored in the construction
of descent algorithms based on the calculation of “gradients,” stem from the fact that the equilibrium
commodity flow (that is, commodity link flow or route flow) is however not unique (cf. the discussion
in Section 3.2), but, more importantly, does not necessarily satisfy the conditions for differentiability,
especially not those based on satisfying the Wardrop conditions (1) with strict complementarity [that
is, with “>” in (1b)]; the calculus rules for the “directional derivatives” or “gradients” most often used
include a procedure for the selection of a proper representative commodity flow in trying to achieve this.
See [ToF88, QiM89, Out97, CSF00] for some such attempts, all of which require a positive definiteness
property of the Jacobian of t(ρ, ·) at the equilibrium.

In contrast, our scheme for calculating descent directions for Φ relies not on the solution of traffic
equilibrium problems but rather on the (simpler) solution of strictly convex quadratic network flow
problems (in fact, projections onto either flow polyhedra or subsets of their circulation flow subspaces),
and no monotonicity requirements are made on the travel cost function.

We note that the reformulation of a variational inequality problem into a system of nonsmooth equa-
tions through the application of the projection operation has been utilized in sensitivity analyses of para-
metric nonlinear programs and variational inequality problems (see, e.g., [Rob92, LPR96, PaR96] and
references therein), and in algorithms for the solution of variational inequality problems (e.g., [FeR95]),
but as far as we are aware the Minty parameterization has not previously been used directly to devise an
algorithm for an MPEC problem.

In the next subsection, we investigate how to compute the directional derivative of Φ for the case where
the underlying equilibrium problem is [VIP-F ] or [VIP-H ]. The main effort is to solve a strictly convex
quadratic flow circulation problem over a subnetwork. Then, we consider the generation of a descent
direction for Φ based, essentially, in the minimization of a quadratic regularization of this derivative over
all feasible directions, and discuss how its computation can be performed. The main complication here
is that the directional derivative is only piecewise linear as a function of the search direction, and the
search direction problem is in fact a linear complementarity (LCP) constrained strictly convex quadratic
optimization problem. (In the case that an iteration point is differentiable, however, it reduces to a system
of equations.) In the following section, we then formalize the algorithm, and establish its convergence
to a stationary point of [P-F ] and [P-H ] under some additional, technical assumptions. The algorithm
and its convergence conditions are adapted from Pang et al. [PHR91] (see also [LPR96, Sections 4.2
and 6.3]). (Of course, also other approaches are possible to apply; we refer to the MPEC text books
[LPR96, Bar98, OKZ98] for examples and references to other algorithms, and to the last section for a
brief discussion on one such example.) All along, we discuss simultaneously how to perform computations
and how to meet the technical conditions in practice, thus leading to a realization of the algorithm.

5.2 Computation of directional derivatives

5.2.1 The case of [P-F ]

In order to compute the directional derivative of Φ at (ρ, f̂) in the direction of (δρ, δf̂), we need to analyze

the derivative of the projection operator ProjF . In terms of f := ProjF (f̂), define the set

δF := { δf ∈ TF (f) | δf ⊥ (f − f̂) }.

This set is a subset of the flow circulation subspace for the multi-commodity network, wherein some arcs
are restricted in sign or direction for certain commodities. (Formulas for computing the cones TF (f) and
NF (f) are discussed in detail in [PaR01, Pat01], and will be used henceforth.)

According to [RoW98, Corollary 13.43], we have that

Proj′F (f̂ ; δf̂) = ProjδF (δf̂). (15)
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The directional derivative of Φ at (ρ, f̂) in the direction of (δρ, δf̂) then is

Φ′(ρ, f̂ ; δρ, δf̂) = lim
t↓0

1

t
[Φ(ρ+ tδρ, f̂ + tδf̂) − Φ(ρ, f̂)] (16a)

= ∇ρϕ(ρ, β, f)Tδρ+ ∇βϕ(ρ, β, f)Tδβ + ∇fϕ(ρ, β, f)TProjδF (δf̂), (16b)

where β is given by the formula (10), and where

δβ = ∇ρΨ(ρ, f̂)δρ+ ∇
f̂
Ψ(ρ, f̂)δf̂ (16c)

= −∇ρt(ρ, f)δρ+ ProjδF (δf̂) − δf̂ −∇f t(ρ, f)ProjδF (δf̂). (16d)

We note that the calculation of Φ′(ρ, f̂ ; δρ, δf̂) separates into simple calculations for each component of

δρ, and that it is linear in this vector. The calculation of ProjδF (δf̂) is analyzed next.

Clearly, ProjδF (δf̂) constitutes a strictly convex quadratic programming problem over a subset of the

circulation subspace of the flow polytope. In detail, then, the following problem provides ProjδF (δf̂):

minimize
z∈<|A|

1

2
‖z − δf̂‖2, (17a)

subject to Azpq = 0, (p, q) ∈ C, (17b)
∑

(p,q)∈C

zpq − z = 0, (17c)

zapq ≥ 0, a ∈ A0
pq , (p, q) ∈ C, (17d)

zapq = 0, a ∈ A>
pq , (p, q) ∈ C, with fa 6= f̂a, (17e)

where, for each (p, q) ∈ C, πp
pq is the vector of multipliers for the constraints Afpq = dpq in the definition

of ProjF (f̂), and A0
pq := { a = (i, j) ∈ A | fapq = 0 and fa − f̂a = πp

pqj − πp
pqi }, and A>

pq := { a = (i, j) ∈

A | fapq = 0 and fa − f̂a > πp
pqj − πp

pqi } denote the set of links where the commodity flow is zero while,

respectively, it lies on a shortest route, and it does not. (Note that f̂ , f , fpq , (p, q) ∈ C, and δf̂ all
are given |A|-vectors, and that the choice of disaggregate flow solution (fpq)(p,q)∈C is immaterial to the
definition of the feasible set of the problem (17) in terms of z, as established in [PaR01, Pat01].)

5.2.2 The case of [P-H]

In the case where [VIP-H ] is the underlying traffic equilibrium model, we are instead interested in the

calculation of ProjδH(δĥ), where δH := { δh ∈ TH(h) | δh ⊥ (h − ĥ) }. This projection separates over

the different commodities (p, q) ∈ C to projection problems of the form ProjδHpq
(δĥpq) for the respective

commodity flow polyhedron Hpq . To be precise, ProjδHpq
(δĥpq) is the unique solution to the problem to

minimize
zpq∈<|Rpq |

1

2
‖zpq − δĥpq‖

2, (18a)

subject to
∑

r∈Rpq

zpqr = 0, (18b)

zpqr ≥ 0, r ∈ R0
pq , (18c)

zpqr = 0, r ∈ R>
pq with hpqr 6= ĥpqr, (18d)

where πp
pq is the Lagrange multiplier for the constraint

∑
r∈Rpq

hpqr = dpq in the definition of ProjHpq
(ĥpq),

and R0
pq := { r ∈ Rpq | hpqr = 0 and hpqr−ĥpqr = πp

pq } and R>
pq := { r ∈ Rpq | hpqr = 0 and hpqr−ĥpqr >

πp
pq } denote the set of routes where the flow is zero while, respectively, it is a shortest route, and it is

not. (Note that ĥpq , hpq and δĥpq all are given |Rpq |-vectors.)

As we are not really focusing on merely calculating ProjδF (δf̂) [or, ProjδH (δĥ)] for one fixed value

of δf̂ (or, δĥ), we will not discuss their numerical computation by network optimization techniques, but
refer to [QiM89, PaR01, Pat01] for numerical examples of related sensitivity problems.

We finally remark that ProjδF (ProjδH) is piecewise linear in δf̂ (δĥ) (see also [RoW98, Proposi-
tion 12.30]).
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5.3 Computation of descent directions

5.3.1 The case of [P-F ]

In order to construct descent directions for Φ, we consider applying the techniques of Pang et al. [PHR91]
for the constrained minimization of locally Lipschitz continuous functions. In our notation, given an
iteration point (ρτ , f̂τ ), the search direction is found by solving the problem to

minimize Φ′(ρτ , f̂τ ; δρ, δf̂) + (δρ, δf̂)TBτ (δρ, δf̂), (19a)

subject to ρτ + δρ ∈ P, (19b)

δf̂ ∈ <|A|, (19c)

where Bτ is a symmetric and positive definite matrix in <(p+|A|)×(p+|A|). [Here, (19b) could be re-
placed with δρ ∈ TP (ρτ ).] As we shall see, the problem (19) can be interpreted as an LCP constrained
quadratic optimization problem corresponding to the minimization of a quadratically regularized linear
approximation of the original problem [P-F ].

As has already been established, the computation of Φ′(ρ, f̂ ; δρ, δf̂) separates into independent prob-

lems for δρ and δf̂ , and is furthermore linear and piecewise linear, respectively, in the respective argu-
ments. From the standpoint of computational efficiency, this suggests choosing the matrix Bτ such that
it is block-diagonal. On the other hand, the quality of the search direction suggests choosing the matrix
so that a quasi-Newton type method is produced, which would require it to contain second-order infor-
mation about the function ϕ about the point (ρτ , f̂τ ). Until this conflict has been resolved by performing
numerical tests, we henceforth assume that Bτ is block-diagonal, as discussed above. The problem (19)
then separates into one problem for δρ which is strictly convex, quadratic and linearly constrained, and
whose solution is straightforward in comparison with that of the part in δf̂ , and shall not be discussed
further. The other separate problem is of the form

minimize
δf̂

(α1,τ )TProjδF (δf̂) + (α2,τ )Tδf̂ + δf̂TBτ

f̂
δf̂ , (20)

where αi,τ are constant vectors in <|A|, i = 1, 2.
The difficulty of the problem (20) originates from the complementarity conditions arising from the

inequalities (17d) which enter into the calculation of ProjδF (δf̂). In order to analyze this problem further,
we study the characterization of the projection in (17), that is, the system

Azpq = 0, (p, q) ∈ C, (21a)
∑

(p,q)∈C

zpq − z = 0, (21b)

zapq − δf̂apq + (ATπpq)a + va = 0, a ∈ A, (p, q) ∈ C, with fapq > 0, (21c)

0 ≤ (zapq − δf̂apq + (ATπpq)a + va) ⊥ zapq ≥ 0, a ∈ A0
pq , (p, q) ∈ C, (21d)

za = 0, a ∈ A>
pq , (p, q) ∈ C, with fa 6= f̂a,

(21e)

where πpq and v are the Lagrange multipliers for the constraints (17b) and (17c), respectively.

Replacing the vector ProjδF (δf̂) with the (unique) vector z which solves this system, we obtain from
(20) the LCP constrained quadratic program to

minimize
z,δf̂

(α1,τ )Tz + (α2,τ )Tδf̂ + δf̂TBτ

f̂
δf̂ , (22a)

subject to (21), (22b)
∑

a∈A

δf̂pq − δf̂ = 0. (22c)

5.3.2 The case of [P-H]

One main difference between the computations of descent directions for the two problems [P-F ] and [P-
H ], is that in the latter the computations can be made to separate into computations for each commodity,
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by choosing the matrix Bτ to have a corresponding further block-diagonal structure with respect to C.
If this choice has been made, then the problem in δĥ separates into |C| problems of the form

minimize
δĥpq

(α1,τ
pq )TProjδHpq

(δĥpq) + (α2,τ
pq )Tδĥpq + δĥT

pqB
τ
pqδĥpq , (23)

where αi,τ
pq are constant vectors in <|Rpq|, i = 1, 2. In order to analyze this problem further, we develop

the optimality conditions for the projection problem (18). The projection operation is characterized by
a vector zpq satisfying the conditions

∑

r∈Rpq

zpqr = 0, (24a)

zpqr − δĥpqr + λpq = 0, r ∈ Rpq with hτ
pqr > 0, (24b)

0 ≤ zpqr − δĥpqr + λpq ⊥ zpqr ≥ 0, r ∈ R0
pq , (24c)

zpqr = 0, r ∈ R>
pq with hτ

pqr 6= ĥτ
pqr, (24d)

where λpq denotes the Lagrange multiplier for (18b). Replacing the vector ProjδHpq
(δĥpq) with the

(unique) vector zpq which solves this system, we obtain from (23) the LCP constrained quadratic program
to

minimize
zpq ,δĥpq

(α1,τ
pq )Tzpq + (α2,τ

pq )Tδĥpq + δĥT
pqB

τ
pqδĥpq , (25a)

subject to (24). (25b)

As (22), this is a nonconvex problem, but it is still possible to solve it efficiently given the realization
of the algorithm. The reason why this problem is difficult lies in the presence of the complementarity
constraints (24c). The number of such constraints is equal to the number of routes in the OD pair (p, q)
for which the flow in hτ

pq is degenerate, that is, belong to the set R0
pq . (This also tells us that when the

projected flow is differentiable, that is, when the variables associated with the set R0
pq essentially can

be removed, then the descent direction is found through the solution of a system of nonlinear equations.
The same is the case with the sets A0

pq for the problem [P-F ].) First, we note that in the course of
the algorithm, not all the routes in Rpq will be known. We will be using a technique which has proved
to be successful when solving traffic equilibrium problems (see, e.g., [LaP92, Pat94]), wherein profitable
routes in Rpq (that is, those for which h∗pqr > 0 can be expected to hold) are generated algorithmically,
through the solution of shortest route problems given temporarily fixed link costs. By also occasionally
dropping previously generated routes that have received a zero flow during several consecutive iterations,
the number of known routes which will give rise to the complementarity conditions (24c) will therefore
be expected to be very low. Nevertheless, when such routes are present, we propose to deal with the
situation when solving the problem (25) through a complete enumeration of the cases where the values
of the corresponding variables zpqr are zero or not. (The approach of enumerating the complementarity
conditions in the LCP system was proposed in [PHR91].) Each of these restrictions of the problem (25)
is a strictly convex, linearly constrained quadratic program.

In the event that Bτ does not separate over commodities, the corresponding problem in z will be
stated over the entire set of known routes and over all the restrictions (24), but will still be a quite
manageable problem to solve, since the constraints are separable over the commodities.

We note, finally, that numerical tolerances may need to be introduced in the systems (21) and (24) to
determine when a route is considered to be used [(24b)] and when two scalars are considered to be equal
[(21e) and (24b)–(24d)].

6 The algorithm and its convergence

6.1 Descent properties

Before stating the algorithm, we establish a technical lemma which motivates the use of the search
direction finding problem (19), as well as the step length rule proposed. We state it, as well as the
complete algorithm, for the case of the equilibrium problem being [VIP-F ], but remark that the derivation
for the case of [VIP-H ] is analogous.
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Lemma 7 (descent property). Let (ρ, f̂) be feasible in [P-F ]. Let the matrix B be symmetric and positive

definite. Then, the problem (19) has a globally optimal solution with a nonpositive optimal value. This

value is moreover zero if and only if (δρ, δf̂) = (0, 0) is the only global solution, which in turn is true if

and only if (ρ, f̂) is stationary in [P-F ].

If (δρ, δf̂) is nonzero, then for any σ ∈ (0, 1) there exists a scalar ¯̀> 0 such that for every ` ∈ [0, ¯̀],

Φ(ρ+ `δρ, f̂ + `δf̂) − Φ(ρ, f̂) ≤ −
σ

2
`(δρ, δf̂)TB(δρ, δf̂) (26)

holds.

Proof. As has been established previously, the function Φ is locally Lipschitz continuous on P × <|A|.
So, for all (δρ, δf̂) with ρ+ δρ ∈ P ,

|Φ′(ρ, f̂ ; δρ, δf̂)| ≤MΦ‖(δρ, δf̂)‖ (27)

holds (cf. [LPR96, Proposition 4.2.2.b]), where MΦ > 0 is the modulus of Lipschitz continuity at (ρ, f̂).
Further, since B is positive definite, there exists an m > 0 such that

Φ′(ρ, f̂ ; δρ, δf̂) +
1

2
(δρ, δf̂)TB(δρ, δf̂) ≥ −MΦ‖(δρ, δf̂)‖ +

m

2
‖(δρ, δf̂)‖2.

Hence, if ‖(δρ, δf̂)‖ tends to infinity, then so does the objective of (19), which thus is weakly coercive.
The feasible set of (19) being closed as well as nonempty, the problem therefore has a globally optimal
solution. Since the objective value is zero at zero, it must further have a nonpositive optimal value.

Assume next that (δρ, δf̂) is nonzero. Then,

Φ′(ρ, f̂ ; δρ, δf̂) < −
1

2
(δρ, δf̂)TB(δρ, δf̂). (28)

Suppose that a positive ¯̀ such that (26) is satisfied does not exist. Then there must be a sequence
<++ ⊃ {`s} → 0 such that for each s,

Φ(ρ+ `sδρ, f̂ + `sδf̂) − Φ(ρ, f̂) > −
σ

2
`s(δρ, δf̂)TB(δρ, δf̂).

Dividing the inequality by `s and letting s→ ∞ then yields that

Φ′(ρ, f̂ ; δρ, δf̂) ≥ −
σ

2
(δρ, δf̂)TB(δρ, δf̂).

But this contradicts (28), as σ < 1.

It remains to establish that (δρ, δf̂) = (0, 0) is equivalent to (ρ, f̂) being stationary. Assume first that

(δρ, δf̂) = (0, 0). Then, for all (δρ̄, δf̄) and λ > 0 with ρ+ λδρ̄ ∈ P ,

0 ≤ Φ′(ρ, f̂ ;λδρ̄, λδf̄) + λ2(δρ̄, δf̄)TB(δρ̄, δf̄).

Dividing the inequality by λ and letting it tend to zero then establishes that (ρ, f̂) indeed is stationary.

Conversely, if (ρ, f̂) 6= (0, 0), then the inequality (28) shows that Φ′(ρ, f̂ ; δρ, δf̂) < 0, which contradicts
stationarity.

6.2 The algorithm

We are now ready to state the algorithm; it is given in Table 1.
We remark that the Armijo line search is only one among a large variety of step length rules that may

be employed in the scheme of Table 1. For example, the algorithm of [PHR91] employs a nonmonotone

line search, first analyzed in [GLL91], whose mechanism allows for unit steps to often be taken, in order
to speed up convergence.
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Table 1: A descent algorithm

0. (Initialization): Choose an initial point (ρ0, f̂0) ∈ P ×<|A|, let γ, σ ∈ (0, 1) be given, and let τ := 0.

1. (Search direction generation): Let Bτ be a positive definite, symmetric matrix. Let (δρτ , δf̂τ ) be a

solution to (19). If the optimal value of (19) is zero, then terminate with (ρτ , f̂τ ) being a stationary
point in [P-F ]. Otherwise, continue.

2. (Armijo line search): Let iτ be the smallest nonnegative integer i such that

Φ(ρτ + γiδρτ , f̂τ + γiδf̂τ ) − Φ(ρτ , f̂τ ) ≤ −
σ

2
γi(δρτ , δf̂τ )TBτ (δρτ , δf̂τ ). (29)

The step length is `τ = γiτ . Let (ρτ+1, f̂τ+1) := (ρτ , f̂τ ) + `τ (δρτ , δf̂τ ).

3. (Termination criterion and iteration): If (ρτ , f̂τ ) is acceptable → Stop. Otherwise, go to Step 1
with τ := τ + 1.

6.3 Convergence conditions

When establishing the convergence of the algorithm, we must introduce first of all an assumption on the
choice of the matrices Bτ such that they are bounded and uniformly positive definite:

∃m,M > 0 : m‖d‖2 ≤ dTBτd ≤M‖d‖2, d ∈ <p+|A|. (30)

The property of weak coercivity of ϕ which was introduced in Corollary 6 ensures that the sequence
{(ρτ , f̂τ )} is bounded. We note however that the often used condition that for (ρ0, f̂0) ∈ P ×<|A|,

the set { (ρ, f̂) ∈ P ×<|A| | Φ(ρ, f̂) ≤ Φ(ρ0, f̂0) } is bounded, (31)

is implied by weak coercivity, and is enough to guarantee both the existence of a globally optimal solution
to the problem [P-F ] and the boundedness of the sequence {(ρτ , f̂τ )}.

Finally, when using the analysis of Pang et al. [PHR91], we need to assume that the function Φ is

differentiable at the limit point. This is a restrictive assumption in general, and we will now explain how
we will try to enforce it through our realization of the algorithm.

6.3.1 The case of [P-F ]

We first observe that a nondifferentiability of Φ at a limit point (ρ∞, f̂∞) would be caused by a nondif-

ferentiability of the projection operation ProjF at f̂∞. Although ProjF is, as remarked before, piecewise
linear, it may have kinks where the active constraints change. The condition that Φ is differentiable at
(ρ∞, f̂∞) is equivalent to the condition that the variables δfapq associated with the set A0 would be
zero in the characterization (21) for any choice of perturbations in (ρ, β), and therefore also zero in the
solution to the direction-finding problem (22). This condition is satisfied in particular if

f∞ is strictly complementary with respect to the cost f∞ − f̂∞. (32)

Although it is a restrictive assumption, given f∞, the condition (32) can be checked, by solving an
entropy maximization problem over the vectors fpq; cf. [Aka97, Pat01].

6.3.2 The case of [P-H]

In the case of the problem [P-H ], differentiability of Φ at a limit point (ρ∞, ĥ∞) is equivalent to the
condition that the variables associated with the set R0

pq essentially can be removed, as the corresponding
values δhpqr in the sensitivity problem (24) would be zero for any choice of (δρ, δβ), and therefore also
in the optimal solution to (25). This condition is satisfied in particular if

h∞ is strictly complementary with respect to the cost h∞ − ĥ∞. (33)

In this case, then, the concern thus is which routes r in the sets Rpq , (p, q) ∈ C, will have a positive flow

at h∞ := ProjH(ĥ∞), and whether we will be able to identify them finitely. We propose to deal with the
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situation as follows. As remarked before, not all routes will ever be known. Instead, we will solve shortest
route problems at regular intervals with link costs based on the current variable values, and include the
shortest routes in the set of variables. This way, only subsets R̂τ

pq ⊂ Rpq of the routes will be known at
any given iteration τ . In the course of the algorithm, some of these routes will also receive a zero flow.
Such routes will be identified and removed from the corresponding sets R̂τ

pq . (There is neither a guarantee
that a generated route will always retain a positive flow, nor is it guaranteed that a discarded route will
not be re-generated.) If we keep only routes in the subsets R̂τ

pq having positive flow, then we will actually

be visiting differentiable points of the corresponding restrictions of the problem [P-F ] to the subsets R̂τ
pq .

For these restrictions, our algorithm will act as a scaled gradient projection algorithm. Interestingly,
it is known that the active constraints at the limit point of a projection algorithm used to minimize a
differentiable function over a polyhedral set will be identified after a finite number of iterations (e.g., the
surveys in [Pat98, Ber99]). The following assumption that we make is therefore not so far-fetched: we
assume that the route generation and deletion process is such that after a finite number of iterations, the
subsets R̂τ

pq stay constant and no route in these subsets has a zero flow at h∞. (This way, we guarantee
to obtain a stationary point to the restriction of the original problem [P-H ] to the sets of routes that are
retained in the limit.) In other words,

∃τ̄ : R̂τ
pq = R̂pq ⊂ Rpq , τ ≥ τ̄ , and h∞pqr > 0, r ∈ R̂pq , (p, q) ∈ C. (34)

6.4 Convergence theorem

We now state and prove the main result of this paper.

Theorem 8 (convergence of the algorithm). Consider the problem [P-F ]. Suppose that the assumptions

(30) and (31) hold. Let {(ρτ , f̂τ )} be the sequence of iterates produced by the algorithm of Table 1.

Then, the sequence {(ρτ , f̂τ )} is bounded. Let (ρ∞, f̂∞) denote any of its accumulation points. If f̂∞

satisfies (32), then (ρ∞, f̂∞) is a stationary point for the problem [P-F ]. Further, if the sequence {`τ} of

step lengths is bounded away from zero, then each limit point of the sequence {(ρτ , f̂τ)} is stationary in

[P-F ] even without the assumption (32).

Proof. The sequence {(ρτ , f̂τ )} satisfies

Φ(ρτ+1, f̂τ+1) ≤ Φ(ρτ , f̂τ ) −
σ

2
`τ (δρτ , δf̂τ )TBτ (δρτ , δf̂τ ) < Φ(ρτ , f̂τ ),

so the sequence {Φ(ρτ , f̂τ )} is strictly decreasing. By the assumption (31), Φ is lower bounded on P×<|A|,

whence {Φ(ρτ , f̂τ )} converges. Then, by the above inequality, also {`τ (δρτ , δf̂τ )TBτ (δρτ , δf̂τ )} → 0

holds. That the sequence {(ρτ , f̂τ )} is bounded also follows from the assumption (31).

Let {(δρτ , δf̂τ )} be the sequence of solutions to (19) generated by the algorithm. We next establish
that this sequence is bounded. By the assumption (30), for each τ we have that

|Φ′(ρτ , f̂τ ; δρτ , δf̂τ )| ≥
1

2
(δρτ , δf̂τ )TBτ (δρτ , δf̂τ ) ≥

m

2
‖(δρτ , δf̂τ )‖2.

Moreover, |Φ′(ρτ , f̂τ ; δρτ , δf̂τ )| ≤ MΦ‖(δρτ , δf̂τ )‖ holds by (27), so ‖(δρτ , δf̂τ )‖ ≤ 2MΦ

m
. This implies

that both the sequences {(δρτ , δf̂τ )} and {Φ′(ρτ , f̂τ ; δρτ , δf̂τ )} are bounded.

We next turn to a subsequence T for which we assume that {ρτ , f̂τ}τ∈T → (ρ∞, f̂∞), {δρτ , δf̂τ}τ∈T →

(δρ∞, δf̂∞), and {Bτ}τ∈T → B∞. By the assumption (30), B∞ is symmetric and positive definite. We

may further assume that {Φ′(ρτ , f̂τ ; δρτ , δf̂τ )}τ∈T has a limit.
Suppose now that the sequence {`τ} of step lengths does not tend to zero, that is, lim infτ→∞ `τ > 0.

It then immediately follows that {(δρτ , δf̂τ )TBτ (δρτ , δf̂τ )} → 0, whence (δρ∞, δf̂∞) = (0, 0) must hold

by the positive definiteness of B∞. Now, since (δρτ , δf̂τ ) is optimal in (19),

Φ′(ρτ , f̂τ ; δρτ , δf̂τ ) +
1

2
(δρτ , δf̂τ )TBτ (δρτ , δf̂τ ) ≤ Φ′(ρτ , f̂τ ; δρ, δf̂) +

1

2
(δρ, δf̂)TBτ (δρ, δf̂)

holds for all (δρ, δf̂) for which ρτ + δρ ∈ P . Taking limits on both sides of the inequality, we first note

that {(δρτ , δf̂τ )}τ∈T → (0, 0), so the left-hand side tends to zero. Further,

lim sup
τ∈T

Φ′(ρτ , f̂τ ; δρ, δf̂) ≤ Φ′(ρ∞, f̂∞; δρ, δf̂),
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so we find that

0 ≤ Φ′(ρ∞, f̂∞; δρ, δf̂) +
1

2
(δρ, δf̂)TB∞(δρ, δf̂)

holds for all (δρ, δf̂) for which ρτ + δρ ∈ P . As in the proof of Lemma 7, we may conclude that (ρ∞, f̂∞)
is stationary.

Assume now instead that lim infτ→∞ `τ = 0. Then it must be that

Φ(ρτ + (`τ/γ)δρ
τ , f̂τ + (`τ/γ)δf̂

τ) − Φ(ρτ , f̂τ ) > −
σ

2
(`τ/γ)(δρ

τ , δf̂τ )TBτ (δρτ , δf̂τ )

holds for all sufficiently large τ . Dividing the inequality by `τ/γ and taking the limit on both sides in T
yields

Φ′(ρ∞, f̂∞; δρ∞, δf̂∞) ≥ −
σ

2
(δρ∞, δf̂∞)TB∞(δρ∞, δf̂∞). (35)

On the other hand, from (28) follows that

lim
τ∈T

Φ′(ρτ , f̂τ ; δρτ , δf̂τ ) ≤ −
1

2
(δρ∞, δf̂∞)TB∞(δρ∞, δf̂∞). (36)

By the assumption (32), Φ is differentiable at (ρ∞, f̂∞). Together with the fact that σ < 1 holds, the

combination of the inequalities (35) and (36) implies that (δρ∞, δf̂∞) = (0, 0) must hold. We conclude

that also under this circumstance, (ρ∞, f̂∞) is stationary in [P-F ].

For the case of the problem [P-H ], the only difference in the analysis is that the two assumptions (30)
and (31) need to be translated into route flow space, and (32) need to be replaced by (33). Further, if

we replace the assumption (33) with (34), then ĥ∞ will be of a dimension corresponding to the number
of routes kept after iteration τ̄ , and it will then be stationary for the restriction of the problem [P-H ] to
that corresponding subset of routes.

6.5 Comparison with previous work

Some comments on the convergence result are in order. Most sensitivity based heuristics for solving bilevel
optimization problems in transportation planning (e.g., [Fri+90]) assume that the implicit function [in
our case, (ρ, β) 7→ ϕ(ρ, β, f(ρ, β))] is differentiable everywhere. In contrast, the method of Pang et al.
[PHR91] applied to the minimization of this function assumes its differentiability only at the limit point.
The assumptions that we make in our convergence result (a strictly complementary limit point) is slightly
stronger than necessary, but checking for differentiability is not trivial. (Further characterizations that
may be computationally viable to check are given in [Pat01].) Note also that our objective function
is Φ, which does not involve the lower-level equilibrium problem, and ultimately does not require, in
contrast to the other developments mentioned above, that the travel cost function is strictly or strongly
monotone. Further, also in the implicit approach one uses LCP constrained quadratic programs to search
for improving directions (see, e.g., [PHR91, LPR96, OKZ98]).

The main differences between the two approaches seem therefore to be (1) that the present one does
not require the numerical calculation of Wardrop equilibria in each iteration, and (2) that the strict
(or, strong) monotonicity requirements have been eliminated. These improvements have, seemingly,
something more than a theoretical value, since they show that numerical approaches can be devised for a
larger class of bilevel problems in traffic management and control, and the calculations can, also seemingly,
be made simpler at the same time. The price to be paid for these improvements is the introduction of
the differentiability assumptions (32) and (33) for the projection operation at the limit point, which we
however hope to be able to relax.

7 Extensions and further research

We discuss in brief two extensions of the traffic equilibrium models [VIP-F ] and [VIP-H ] in the context
of the traffic management models [MPEC-F ] and [MPEC-H ].
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7.1 Elastic demands

Consider an extension of the model [VIP-H ], in which the demand is not fixed, but given by a function of
the cheapest-route costs. Specifically, we assume that the demands are given by functions gpq : <|C| 7→ <+

that are nonnegative, upper bounded and continuous on <|C| for each (p, q) ∈ C.
The elastic demand extension of [VIP-H ] then is

−[c̄(h) − Γπ,ΓTh− g(π)] ∈ N
<

|R|

+

(h) ×N
<

|C|

+

(π). [EVIP-H ]

Under the additional assumption that −g strictly monotone on <|C|, −g is then also maximal ([RoW98,
Example 12.7]), and the problem can further be written as

[−c̄(h), g−1(d)] ∈ NHd
(h, d), [EVIP-Hd]

where
Hd :=

{
(h, d) ∈ <|R|+|C|

∣∣∣∃h ∈ <
|R|
+ with ΓTh = d

}
.

For overviews of these models, see Nagurney [Nag93] and Patriksson [Pat94].
The corresponding extension of [MPEC-H ] becomes

[MPEC-Hd] minimize ϕ(ρ, β, h, d) (37a)

subject to ρ ∈ P, (37b)

[−c(ρ, h) − β, g−1(d)] ∈ NHd
(h, d). (37c)

The analogous Minty parameterization that leads to [P-F ] here leads to the problem to

[P-Hd] minimize Φ(ρ, ĥ, d̂) := ϕ(ρ,Ψ(ρ, ĥ, d̂),Υ(ĥ, d̂)), (38a)

subject to ρ ∈ P, (38b)

ĥ ∈ <|R|, (38c)

d̂ ∈ <|C|, (38d)

where

Ψ(ρ, ĥ, d̂) := ProjhHd
(ĥ, d̂) − ĥ− c

(
ρ,ProjhHd

(ĥ, d̂)
)
, (38e)

Υ(ĥ, d̂)) := d̂− g−1
(
ProjdHd

(ĥ, d̂)
)
, (38f)

and (ProjhHd
,ProjdHd

) = ProjHd
is the representation of the projection operator in the two components

h and d. We remark that this problem has properties similar to [P-H ], and the algorithm given extends
readily to [P-Hd].

7.2 Queueing models

The presence of signal controls in the network are sometimes modelled by means of capacity constraints.
In such a circumstance, we would introduce in the equilibrium model a set of side constraints of the form

sκ(h) ≤ 0, κ ∈ K, (39)

where K is a finite index set (for example formed by subsets of N , A, C, and R), and sκ : <
|R|
+ 7→ <,

κ ∈ K, is continuously differentiable on <
|R|
+ . The flows that satisfy (39) form a closed set in <|R|, which

we denote by G.
Note that the constraints are given in terms of route flows without any loss of generality, because a

constraint on the total link flows, for example, can be written as sκ(Λh) ≤ 0.

Example 9 (capacity constraints and signal control). The most immediate example of a set of flow
restrictions is that of upper bounds on some links’ flows. In the framework of (39), such constraints are
described by letting K := A, and

sa(fa) := fa − ua, a ∈ A, (40)
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where A ⊆ A and ua ≥ 0 is the upper bound on the flow on link a. In the context of traffic signals, the
constant ua may be regarded as the upper bound on the traffic that can pass link a during the green-time
period. See Miller et al. [MPT75], Smith and Van Vuren [SmV93], Ferrari [Fer97], and Larsson and
Patriksson [LaP94, LaP95, LaP99].

When viewing the traffic management problem as a hierarchical problem, in the example discussed
above, the side constraints are part of the equilibrium problem and are therefore lower-level constraints.
The equilibrium problem [VIP-H ], for example, is then extended to include the additional side constraints
(39), creating the inclusion

−c̄(h) ∈ NH∩G(h). [SCVIP-H ]

The corresponding changes in [P-H ] and in the algorithm lie only in the additional constraints’ appearance
in the projection formulae, where H is everywhere to be replaced by H ∩G. (A similar effect is obtained
if pure link flow side constraints are added to the model [VIP-F ].) A main additional complication that
this extension causes is a more complex construction of descent directions, as the set G influences the
form that the projection Projδ(F∩G)(δf̂) [respectively, Projδ(H∩G)(δĥ)] takes. Given that the form of G
allows descent directions still to be calculated (for example, the formula (15) also applies to the set F ∩G
as long as G is polyhedral), the algorithm would work as it now stands, and the only issue remaining
to be made on its convergence would be on the differentiability of the operator ProjF∩G (respectively,
ProjH∩G) at the limit point, which again would rely on the form of G.

Side constraints of the form (39) can however also be imposed upon the travellers by means of some
decentralized control measure, such as a tax. In such a case, the side constraints would not be part
of the equilibrium problem but instead be a set of constraints on the equilibrium flows (perhaps also
as joint constraints with the control variables), and as such would be placed as upper-level constraints.
The presence of lower-level variables in upper-level constraints could however in general complicate the
problem immensely, since the feasible set becomes much more complex (see, e.g., [LPR96]). Therefore, in
the MPEC models [MPEC-F ] and [MPEC-H ], such side constraints would be assumed to be represented
as smooth penalties in the upper-level objective function ϕ.

7.3 Further research

Interesting further research topics fall into several categories, some of which go far beyond the present
application. Most urgent is perhaps the (already mentioned) reduction of the assumption of differentia-
bility of the projection operator at the limit point of the sequence of iterates produced by the algorithm.
The problem [P-F ] constructed by the use of the Minty parameterization can of course be solved by
other algorithms, some of which may very well produce stationary points to the problem [MPEC-F ]
under milder conditions. For example, bundle algorithms can be devised along the lines described in
[ScZ92, Kiw96, OKZ98, Mäk+99] for the minimization of locally Lipschitzian and upper semidifferen-
tiable functions—the latter condition of which, for a locally Lipschitzian function ω : <p 7→ <, requires
in addition that for any x, d ∈ <p and sequences {gt} and {`t} with gt ∈ ∂ω(x + `td) and {`t} ↓ 0, that
lim supt→∞ (gt)Td ≥ lim inft→∞ [ω(x+ `td)− ω(x)]/`t, cf. [Bih84]—based on the generation of arbitrary
subgradients of the function Φ (see [OuZ95, DeV97, OKZ98] for their computation). Bundle algorithms
can certainly be expected to be viable for the present problem, although upper semidifferentiability does
not hold everywhere; in any case, global upper semidifferentiability is, perhaps arguably, milder than
differentiability at the limit point. We note that the subgradient formula given in [Pat01] amounts to
solving a sequence of affine traffic equilibrium models, thus avoiding at least partly the combinatorial
nature of the present algorithm.

From a wider perspective, the Minty parameterization is likely to be beneficial also for the solution
of other MPEC problems, where the type of parameterization utilized in the problem [MPEC-F ] makes
sense, as well as for special cases of MPEC, such as mathematical programs with complementarity con-
straints (MPCC, see, e.g., [ScS00]). Another interesting technical question surrounding the utilization of
the Minty parameterization concerns the associated optimality conditions of first and second order, which
may have interesting properties and consequences in their own right for the equivalent MPEC problem.
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[OKZ98] J. Outrata, M. Kočvara and J. Zowe, Nonsmooth Approach to Optimization Problems with

Equilibrium Constraints, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.

[OuZ95] J. Outrata and J. Zowe, “A numerical approach to optimization problems with variational inequal-
ity constraints,” Mathematical Programming, 68 (1995), pp. 105–130.

[PHR91] J.-S. Pang, S.-P. Han and N. Rangaraj, “Minimization of locally Lipschitz functions,“ SIAM

Journal on Optimization, 1 (1991), pp. 57–82.

[PaQ93] J.-S. Pang and L. Qi, “Nonsmooth equations: Motivations and algorithms,” SIAM Journal on

Optimization, 3 (1993), pp. 443–465.

[PaR96] J.-S. Pang and D. Ralph, “Piecewise smoothness, local invertibility, and parametric analysis of
normal maps,” Mathematics of Operations Research, 21 (1996), pp. 401–426.

[Pat94] M. Patriksson, The Traffic Assignment Problem—Models and Methods, Topics in Transportation,
VSP BV, Utrecht, The Netherlands, 1994.

21



[Pat98] M. Patriksson, Nonlinear Programming and Variational Inequalities: A Unified Approach, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1998.

[Pat01] M. Patriksson, “Sensitivity analysis of fixed demand traffic equilibria,” Transportation Science (sub-
mitted).

[PaR01] M. Patriksson and R.T. Rockafellar, “Sensitivity analysis of variational inequalities over aggre-
gated polyhedra, with application to traffic equilibria,” Transportation Science (submitted).

[Qi93] L. Qi, “Convergence analysis of some algorithms for solving nonsmooth equations,” Mathematics of

Operations Research, 18 (1993), pp. 227–244.

[QiS93] L. Qi and J. Sun, “A nonsmooth version of Newton’s method,” Mathematical Programming, 58
(1993), pp. 353–368.

[QiM89] Y. Qiu and T.L. Magnanti, “Sensitivity analysis for variational inequalities defined on polyhedral
sets,” Mathematics of Operations Research, 14 (1989), pp. 410–432.

[Rob80] S.M. Robinson, “Strongly regular generalized equations,” Mathematics of Operations Research, 5
(1980), pp. 43–62.

[Rob85] S. M. Robinson, “Implicit B-differentiability in generalized equations,” Technical Summary Report
No. 2854, Mathematics Research Center, University of Wisconsin at Madison, Madison, WI, 1985.

[Rob92] S.M. Robinson, “Normal maps induced by linear transformations,” Mathematics of Operations Re-

search, 17 (1992), pp. 691–714.

[RoW98] R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Grundlehren der mathematischen Wis-
senschaften, Vol. 317, Springer-Verlag, Berlin, 1998.

[ScS00] H. Scheel and S. Scholtes, “Mathematical programs with complementarity constraints: Station-
arity, optimality and sensitivity,” Mathematics of Operations Research, 25 (2000), pp. 1–22.

[ScZ92] H. Schramm and J. Zowe, “A version of the bundle idea for minimizing a nonsmooth function:
Conceptual idea, convergence analysis, numerical results,” SIAM Journal on Optimization, 2 (1992),
pp. 121–152.

[SmV93] M.J. Smith and T. Van Vuren, “Traffic equilibrium with responsive traffic control,” Transportation

Science, 27 (1993), pp. 118–132.

[ToF88] R. L. Tobin and T. L. Friesz, “Sensitivity analysis for equilibrium network flow,” Transportation

Science, 22 (1988), pp. 242–250.

[ToW96] Ph. Toint and L. Wynter, “Asymmetric multiclass traffic assignment: A coherent formulation,”
In: J.-B. Lesort (ed.), Transportation and Traffic Theory, Proceedings of the 13th International
Symposium on Transportation and Traffic Theory, Lyon, France, 24–26 July, 1996, Pergamon Press,
Oxford, UK, 1996, pp. 237–260.

[YaL96] H. Yang and W.H.K. Lam, “Optimal road tolls under conditions of queueing and congestion,”
Transportation Research, 30A (1996), pp. 319–332.

[Yen95] N. D. Yen, “Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral
constraint,” Mathematics of Operations Research, 20 (1995), pp. 695–708.

[Zha94] R. Zhang, “Problems of hierarchical optimization in finite dimension,” SIAM Journal on Optimiza-

tion, 4 (1994), pp. 521–536.

22


