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Abstract

Column generation is an increasingly popular basic tool for the solution of large-scale
mathematical programming problems. As problems being solved grow bigger, column gener-
ation may however become less efficient in its present form, where columns typically are not
optimizing, and finding an optimal solution instead entails finding an optimal convex com-
bination of a huge number of them. We present a class of column generation algorithms in
which the columns defining the restricted master problem may be chosen to be optimizing in
the limit, thereby reducing the total number of columns needed. This first paper is devoted
to the convergence properties of the algorithm class, and includes global (asymptotic) con-
vergence results for differentiable minimization, finite convergence results with respect to the
optimal face and the optimal solution, and extensions of these results to variational inequal-
ity problems. An illustration of its possibilities is made on a nonlinear network flow model,
contrasting its convergence characteristics to that of the restricted simplicial decomposition
(RSD) algorithm.

Key words: Column generation, simplicial decomposition, inner approximation, sim-
plices, column dropping, optimal face, non-degeneracy, pseudo-convex minimization, weak
sharpness, finite convergence, pseudo-monotone+ mapping, variational inequalities.

1 Introduction

1.1 Origin and use

Column generation (CG for short) is a classic and increasingly popular means to attack large-
scale problems in mathematical programming. A column generation algorithm can, roughly,
be said to proceed according to the following two steps, used iteratively in succession: (1) A
relaxation of the original problem is constructed, based on current estimates of the optimal
solution. Solving this problem provides a vector (i.e., the column), typically also a bound on
the optimal value of the original problem, and the answer to an optimality test, indicating if
the column identified will be beneficial to introduce into the solution, or if the process should
be stopped, with the current solution being optimal. (2) A restricted master problem (RMP)
is constructed, in which previously generated columns together with the new column are con-
vex combined such that the resulting vector is feasible in the original problem and a measure
of optimality is improved. The resulting solution is used to define a new column generation
subproblem.
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Depending on the problem type being addressed, the choice of relaxation, the resulting def-
inition of the column, and the column generation and restricted master problems can be quite
different.

In linear programming (LP), a subset of the linear constraints are Lagrangian relaxed with
current dual multiplier estimates. The LP subproblem generates, as a column candidate, an
extreme point in the polyhedron defined by the non-relaxed constraints; this step is reminiscent
of the pricing-out step in the simplex method. The RMP optimally combines the extreme points
known such that the relaxed constraints are satisfied, and the dual variables for those constraints
are used to construct the next CG subproblem. For minimization problems, termination follows
(like in the simplex method) when the reduced cost of the new column fails to be negative. This
algorithm originates in [DaW60]; see also [Las70].

In linear integer programming (IP), column generation is most often based on Lagrangian
relaxation, as the above described Dantzig–Wolfe decomposition algorithm. The subproblem
is an integer programming problem while the RMP is formulated as a linear program; this is
necessary, since column generation is here driven by Lagrange multipliers. This algorithm leads
to the solution of a convexified version of the original IP, where the set defined by the non-
relaxed constraints are replaced by its convex hull, the extreme points of which are identified in
the CG problem. For a detailed description of the principles behind IP column generation, see
Wolsey [Wol98]. In order to completely solve the original problem, column generation must be
combined with an optimizing IP algorithm such as branch-and-bound (that is, branch-and-price
algorithms, see [Bar+98, Wol98]).

In nonlinear programming (NLP), relaxation can act as linearization of nonlinear parts of
the problem, as well as on the constraints as above. Nonlinear Dantzig–Wolfe decomposition
([Las70]) for convex programs extends the LP algorithm by letting the Lagrangian relaxed
subproblem be nonlinear while the RMP still is an LP. In simplicial decomposition (SD), the
relaxation is instead a linearization of the objective function. (Nonlinear constraints would be
approximated by piece-wise linear functions.) The column generation problem therefore is an LP,
while the objective function is retained in the RMP. The origin of SD is found in [Hol74, vHo77]
for the linearly constrained case with theoretical contributions also in [HLV85, HLV87], and
[HiP90, VeH93] for nonlinearly constrained problems. In SD, column generation is not based on
pricing, or indeed on any dual information, but instead on the descent properties of the direction
towards an extreme point of the feasible set; it is therefore more natural to associate SD with
multidimensional extensions of primal descent algorithms in NLP. We however remark that SD
does include classes of pricing-based column generation methods: as established in [LMP94],
when applying SD to a primal–dual, saddle point, reformulation of an LP, the algorithm reduces
to the Dantzig–Wolfe algorithm for that LP!

1.2 Common points among problem areas

Despite the diversity of the problem types, the column generation algorithms mentioned have
some interesting points in common in both theory and practice.

The RMPs constructed in the algorithms are based on Carathéodory’s Theorem (e.g., [Roc70,
Thm. 17.1]), which states that a point x ∈ ℜn in the convex hull of any subset X of ℜn can be
represented as a convex combination of at most as many elements of X as its dimension, dimX
(which is defined as the dimension of its affine hull) plus one. As such, a CG algorithm induces
a reformulation of the original problem in terms of an inner representation of the feasible set.
This reformulation is stated in terms of convexity weight variables, which in general will be
many more than in the original formulation. (For example, in both the Dantzig–Wolfe and SD
algorithms for linearly constrained problems, there is one variable for each extreme point and
direction, a number which grows exponentially with the number of variables and constraints in
the original problem.)
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For many applications, this problem transformation is of clear advantage. To this contributes
that the inner representation of X is much simpler than its original, outer, representation, as
it is the Cartesian product of a simplex and the non-negative orthant. Another, and perhaps
even more important, fact is that an increase in dimension improves the formulation. For IP,
there is a clear link between the use of many variables in a formulation and the strength of
lower bounds from LP and Lagrangian relaxations (cf. [Wol98]). For structured LPs, it has
been established that choosing a relaxation that leads to a further decomposition into smaller-
dimensional problems, and ultimately to much larger equivalent reformulations, is of a clear
computational advantage; see, for example, [JLF93]. For certain structured NLP problems, the
conclusion has been similar: in the multi-commodity problem known as the traffic equilibrium
model, for example, disaggregated versions of the restricted simplicial decomposition (RSD)
algorithm ([LaP92, JTPR94]) are more efficient than in its aggregated form ([HLV87]).

A potential disadvantage with the current use of column generation is, however, that the
column generation problems do not generate near-optimal solutions. In the Dantzig–Wolfe and
SD algorithms, for example, the columns are extreme points, in the first case of a set a large
portion of which are infeasible in the original problem, and in the second case none of the
extreme points are optimal in general. The RMP is of course present as a remedy for this non-
coordinability ([Las70]). What it means in terms of convergence is that in some circumstances,
the number of columns needed in order to span an optimal solution is very high, and the
number of main iterations must necessarily be at least as high. The efficient solution of a
problem therefore demands that (a) the CG subproblem is rather easy to solve while keeping
enough of the original problem’s properties, and (b) the RMP can be solved efficiently even
with a rather large number of variables. While the latter is usually true for LP and IP, it is not
necessarily so for NLP. On the other hand, while the first may not be so easily accommodated
in IP models, for LP and NLP models this is at least possible in principle through the use of
penalties, regularizations, etc.

At least for mathematical programs over convex sets, we can describe an optimal solution
by using much fewer columns. This is done by choosing them in the relative interior; this is
achieved especially if the column generation problem is actually optimizing, an idea which we
propose in this paper. Such ideas have been studied to a limited extent earlier for LP ([KiN91])
and NLP models ([LPR97, Pat98b]). The former methodology is Dantzig–Wolfe decomposition
with subproblems solved with interior-point methods, while the latter is an extension of line-
search based descent algorithms for NLP to multidimensional searches, in which the subproblems
are strictly convex programs. The advantage of this scheme for NLP is that, in short, convex
combining 100 extreme points is done by instead convex combining only ten points, each of
which has been combined by ten extreme points. Since the column generation subproblem is
more complex, whether there really is a computational advantage depends very much on the
problem being solved, as evidenced in the computational tests in [LPR97]. Our proposal is
more general than each of the two mentioned. There are also related attempts to improve
decomposition algorithms by the use of non-extremal cutting planes, see, e.g., [GHV92].

In the following, we present the problem under study, and a general form of column generation
algorithm.

2 A column generation method

We consider the following constrained differentiable optimization problem:

minimize
x∈X

f(x), [CDP(f,X)]

where X ⊆ ℜn is nonempty and convex, and f : X 7→ ℜn is continuously differentiable on X.
Its set of global minimizers is denoted SOL(f,X). Its first-order optimality conditions are then
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given by the variational inequality

−∇f(x∗) ∈ NX(x∗), [VIP(∇f,X)]

where

NX(x) :=

{
{ z ∈ ℜn | zT(y − x) ≤ 0, ∀y ∈ X }, x ∈ X,

∅, x /∈ X
(1)

denotes the normal cone to X at x ∈ ℜn. Its solution set is denoted SOL(∇f,X). If f is
pseudo-convex on X then SOL(f,X) = SOL(∇f,X) holds.

2.1 The algorithm

We begin by stating and establishing the convergence of the general algorithm. The algorithm
is described by means of (possibly point–to–set) algorithmic mappings which will be assumed
to fulfill conditions similar to those utilized in the convergence analysis in [Zan69]. Consider the
following conditions.

Assumption 2.1 (Closed descent algorithm). Let X̂ ⊆ X be any non-empty and convex set, and

A : X̂ 7→ 2X̂ denote a point–to–set mapping on X̂ . The mapping A then satisfies the following
three conditions:

(a) (Closedness). The mapping A is closed on X̂, that is, for every x ∈ X̂,

{xt} → x
yt ∈ A(xt), {yt} → y

}
=⇒ y ∈ A(x).

(b) (Fixed point at solution). x ∈ SOL(∇f, X̂) ⇐⇒ x ∈ A(x).

(c) (Descent property at non-solution). Let x ∈ X̂ \ SOL(∇f, X̂). Then,

(1) y ∈ A(x) =⇒ ∇f(x)T(y − x) < 0.

(2) y ∈ A(x) =⇒ f(y) < f(x).

In the column generation algorithm, the column generation problem is characterized by an
iterative procedure, denoted by Ak

c and belonging to a finite collection Kc. It is presumed to
be of the form of A above, operating on X̂ := X. Descent is reached in either of two ways,
depending on whether the assumption (c)(1) or (c)(2) is in force. The assumption (c)(1) is
associated with a procedure that provides a descent direction, and which is hence presumed
to be applied once only from x. The assumption (c)(2) is associated with an algorithm that
operates as a descent algorithm on the original problem. In order to rule out the uninteresting
case that the original problem is solved by means of only using the column generation problem
an infinite number of times starting from a given iterate x ∈ X, we presume that the number of
iterations performed from x is finite.

Similarly, the restricted master problem is assumed to be solved by the use of an iterative
procedure, denoted Ak

r and belonging to a finite collection Kr. It is also presumed to be of the
form of A above, but where (c)(2) is always in force, and it operates on X̂ ⊂ X being equal
to the current inner approximation of X. Also this algorithm will be presumed to be applied
a finite number of times; we can still solve any given RMP exactly in this way, by making the
proper choice of the procedure Ak

r .
In Table 1, we summarize the different steps of the algorithm.
When establishing the convergence of this algorithm, we have made the choice to presume

that X is bounded. We can easily find examples of algorithms in the framework which converge
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Table 1: The conceptual algorithm

0. (Initialization): Choose an initial point x0 ∈ X, and let t := 0.

1. (Column generation problem): Choose an algorithm Akt
c , kt ∈ Kc. Apply it a finite number

of iterations on CDP(f,X), starting from xt; if it is of the form of the Assumption 2.1(c)(2),
then do it once only. Let the resulting point be yt.

2. (Termination criterion): If xt ∈ SOL(∇f,X) → Stop. Otherwise, continue.

3. (Set augmentation): Let Xt+1 ⊂ X be a non-empty, compact and convex set containing
[xt, yt].

4. (Restricted master problem): Choose an algorithm Akt
r , kt ∈ Kr, of the form of the

Assumption 2.1(c)(2). Apply it at least one iteration of the algorithm on CDP(f,Xt+1),
starting from xt. Let the resulting point be xt+1.

5. (Update): Let t := t+ 1. Go to Step 1.

regardless of any boundedness assumptions (such as some regularization and proximal point
algorithms), or with milder forms of boundedness conditions (such as the Frank–Wolfe and RSD
algorithms). A good compromise has been difficult to find, however, as the algorithms and
their convergence conditions are so different. What we have opted to do is instead to provide
a discussion on the possibilities to strengthen the result in certain interesting cases; as the
convergence proof reveals, the crucial point is to establish that the two sequences {xt} and {yt}
are constructed such that they are bounded, so how this condition is ensured in different cases
is the main point of the discussion.

2.2 The basic convergence result

The following global convergence result extends the one in [LMP94] for a general class of column
generation methods, in that it allows for a more general definition of the restriction and a greater
flexibility in the selection of algorithms in the steps 1. and 4. Its proof utilizes parts of the one
in [LMP94] together with those in [Pat93b, Pat98a, Pat98b] for truncated descent algorithms
with closed set-valued mappings.

Theorem 2.2 (Global convergence). Let Assumption 2.1 hold, and assume that X is bounded.
Then, the sequence {xt} of iterates converges to SOL(∇f,X) in the sense that

{
dSOL(∇f,X)(x

t)
}

:=

{
minimum

x∈SOL(∇f,X)
‖xt − x‖2

}
→ 0.

Proof. If convergence is finite, then the last iterate is clearly a member of SOL(∇f,X). We
assume henceforth that the sequence {xt} is infinite.

By construction, the sequence {f(xt)} descends; thus, {xt} ⊂ LX
f (x0), and is therefore

bounded, since X is. Further, the sequence {Xt} consists of non-empty, compact, and con-
vex subsets of X, and is therefore also bounded. Thus, it has at least one accumulation set,
X̃ ⊆ X (in terms of set convergence; see [SaW79] and [RoW98, Chapter 4]), which is also non-
empty (since Xt ⊇ [xt−1, yt−1] for all t, and [RoW98, Thm. 4.18]), compact (since each set Xt

is closed and {Xt} is bounded, and [RoW98, Prop. 4.4]), and convex (since Xt is convex for all
t, and [RoW98, Prop. 4.15]). The remainder of the proof concerns iterates in the subsequence
defining the accumulation set X̃, which (for simplicity of notation) will however not be stated
explicitly.
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Since the number of iterations is infinite and the sets Kc and Kr are finite, there will be at
least one pair of elements in these sets, say (kc, kr), that appears an infinite number of times in
the subsequence defining the set X̃ and in the same iterations as well. We henceforth consider
this further subsequence.

Since the sequence {xt} belongs to the compact set LX
f (x0), it has a non-empty and bounded

set of accumulation points, say X ⊆ LX
f (x0), which is closed (e.g., [Rud76, Thm. 3.7]). Since f is

continuous, we may find a convergent infinite subsequence, say {xt}t∈T , where T ⊆ {0, 1, 2, . . . },
with limit point xT ∈ arg max

x∈X
f(x). Further, xT ∈ X̃ (e.g., [AuF90, Prop. 1.1.2]).

Denote by zt−1 ∈ Xt, t ∈ T , the first iterate of the algorithm Akr

r applied to the restricted
problem CDP(f,Xt), starting from xt−1 ∈ Xt. Since each iteration of this algorithm gives
descent with respect to f , unless a stationary point to the RMP, CDP(f,Xt) is at hand, it follows
that, for all t ∈ T , f(xt) ≤ f(zt−1) < f(xt−1). Let xT −1 ∈ X be the limit point of a convergent
infinite subsequence of the sequence {xt−1}t∈T and let zT −1 ∈ X̃ be an accumulation point of
the corresponding subsequence of the sequence {zt−1}t∈T . Taking the limit corresponding to
this accumulation point, the continuity of f yields that f(xT ) ≤ f(zT −1) ≤ f(xT −1).

Since xT −1 ∈ X, the definition of xT implies that f(xT ) ≥ f(xT −1), and we conclude that
f(xT ) = f(zT −1) = f(xT −1). The latter equality together with the closedness and descent
properties of the iteration mapping of the algorithm Akr

r at non-stationary solutions gives that
xT −1 ∈ SOL(∇f, X̃). Then, from the relation f(xT ) = f(xT −1) and the definition of xT , we
obtain that for all x ∈ X̃ , f(x) ≥ f(xT ), and that for all x ∈ X, f(x) = f(xT ). Hence,
X ⊆ SOL(∇f, X̃).

Now, let ε ≥ 0 be such that there is an infinite number of iterates xt−1 with dSOL(∇f,X)(x
t−1) ≥

ε. This infinite subsequence of iterates has some accumulation point, say x̃, which is then the
limit point of some infinite convergent sequence {xt−1}

t∈T̃
, where T̃ ⊆ {0, 1, 2, . . . }. From the

above we then know that x̃ ∈ SOL(∇f, X̃).
The sequence {yt} ⊆ X, and is therefore bounded.
We first assume that the algorithm Akc

c is of type (c)(1). Let ỹ be an arbitrary accumulation
point of the subsequence {yt−1}

t∈T̃
. Since yt−1 ∈ Xt for all t ∈ T̃ , ỹ ∈ X̃ holds (e.g., [AuF90,

Prop. 1.1.2]). Since x̃ ∈ SOL(∇f, X̃), we then have that ∇f(x̃)T(ỹ − x̃) ≥ 0 holds. But if x̃ /∈
SOL(∇f,X) holds, then we obtain from the closedness and descent properties of the algorithm
Akc

c that ∇f(x̃)T(ỹ − x̃) < 0 holds, which yields a contradiction. Hence, x̃ ∈ SOL (∇f,X).
We next assume that the algorithm Akc

c is of type (c)(2). Since the sequence {yt−1}
t∈T̃

⊆ X,

it has a non-empty, bounded and closed set of accumulation points, say Ỹ . We define herein a

convergent infinite subsequence with limit point yT̃ −1 ∈ arg max
y∈Ỹ

f(y).

For all t ∈ T̃ , let vt−1 ∈ X denote the point obtained by performing one iteration with
the algorithm Akc

c on the problem CDP(f,X), starting from xt−1. Since each iteration of the
algorithm Akc

c gives descent with respect to f , unless the current iterate is in SOL(∇f,X),
it follows that, for all t ∈ T̃ , f(yt−1) ≤ f(vt−1) < f(xt−1) < f(yt−2), where the latter strict
inequality stems from the descent properties of the algorithm applied to the previous RMP.
Taking the limit corresponding to the above defined subsequence, the continuity of f yields

that f(yT̃ −1) ≤ f(x̃) ≤ f(vT̃ −1) ≤ f(yT̃ −2), where yT̃ −2 denotes an accumulation point of the
sequence {yt−2}

t∈T̃
.

Since yT̃ −2 ∈ Ỹ , the definition of yT̃ −1 implies that f(yT̃ −1) ≥ f(yT̃ −2), and we conclude

that f(yT̃ −1) = f(vT̃ −1) = f(x̃) = f(yT̃ −2). The second equality together with the closedness
and descent properties of the iteration mapping of the algorithm Akc

c at non-stationary solutions
gives that x̃ ∈ SOL(∇f,X). [Moreover, Ỹ ⊆ SOL(∇f,X).]

Hence, ε = 0.
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The algorithmic mapping describing the algorithm identified by extracting the choices kc and
kr from the collections Kc and Kr, and which defines the remaining iterates, is clearly of the form
C(x) := { y ∈ X̂ | f(y) ≤ f(x) }, x ∈ X̂ , for any non-empty, compact and convex set X̂ ⊆ X.
We may therefore invoke the Spacer Step Theorem (e.g., [Lue84, p. 231]), which guarantees that
the result holds for the whole sequence, thanks to the properties of the mappings given by the
choices kc and kr established above. This concludes the proof.

We note that although the algorithm, the above theorem and its proof concern stationarity,
a version of the algorithm which uses only Assumption 2.1(c)(2) is valid also for other forms
of “optimality”; simply replace “stationary” with “optimal” in the algorithm and the theorem.
This observation also helps in tying together the algorithm with the convergence theorems A–
D in Zangwill [Zan69, Pages 91, 128, 241, and 244]. Theorem A, as all the other theorems,
presumes nothing about what the “solution” is, and presumes that the algorithm yields descent
in each step outside the solution set with respect to a continuous merit function for the problem,
and generates a bounded sequence. The other theorems relax some of these conditions slightly,
and among other techniques, the spacer steps used in the above proof are introduced. Our need
for a special proof stems from two potential complications: the RMP is solved over a set which
may vary rapidly between successive iterations, and in the column generation phase we allow
for two different solution principles.

2.3 Instances of the algorithm

These algorithms are analyzed mainly for the case where X is polyhedral.

Frank–Wolfe The vector yt is taken as any solution to the linearized problem

minimize
y∈X

∇f(x)Ty; (2)

if, however, ∇f(xt)Td < 0 for some d in the recession cone of X, we let yt be defined such that
dt = yt − xt is a descent direction of unit length in the recession cone (such as the one obtained
in the simplex method when unboundedness is detected). The boundedness of {xt} and {yt}
follows from an assumption that the lower level set LX

f (x0) := X ∩ {x ∈ ℜn | f(x) ≤ f(x0) } is

bounded. We have that Xt := [xt, yt]; the RMP thus is a simple line search problem. Several
line search algorithms can be placed in the framework, including the exact line search mapping.

Simplicial decomposition The column generation problem is identical to that of the Frank–
Wolfe algorithm. In the classic version, Xt+1 := conv (Xt∪{yt}), if no column dropping is used,
or one first drops every column in Xt with zero weight in xt, if column dropping according to
the rule in [vHo77] is used. In both cases, clearly Xt+1 is a non-empty, compact and convex
subset of X, for which further Xt+1 ⊃ Xt holds for all t in the first case. [With reference to the
above convergence proof, if the sequence of restrictions is expanding, it is guaranteed to have a
unique set limit (e.g., [SaW79])].

In the RSD version ([HLV87]), we let Xt+1 be given by the convex hull of {xt} and a finite
number (at most r ∈ Z+) of the previously generated points ys, s = 1, 2, . . . , t, which always
includes yt. (If r = 1 then the Frank–Wolfe algorithm is obtained.) More on RSD follows below.

The exact solution of the RMP can be viewed as a mapping of the form Akt
r , which satisfies

the conditions of Assumption 2.1. In [HLV87], a truncated algorithm—the exact solution of the
quadratic approximation of the RMP—is proposed and analyzed. Also this mapping is closed,
has the fixed-point property, and provides descent under the conditions stated in that paper.

Later, we will establish that certain properties of SD are inherited by the general algorithm.
For future reference, we therefore provide a few more details on the SD algorithm.
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By the Representation Theorem (e.g., [Las70, BSS93]), a vector x ∈ ℜn belongs to a polyhe-
dral set X if and only if it can be represented as a convex combination of the extreme points
(pi, i ∈ P) plus a non-negative linear combination of the extreme directions (dj , j ∈ D), that is,
for some vectors λ and µ,

x =
∑

i∈P

λipi +
∑

j∈D

µjdj, (3)

∑

i∈P

λi = 1, (4)

λi, µj ≥ 0, i ∈ P, j ∈ D. (5)

The result can be refined through Carathéodory’s Theorem, such that only dimX+1 points are
needed to describe an arbitrary feasible solution.

The classic form of the SD method was first described in [vHo77]. Given known subsets P̂
and D̂ of P and D, respectively, f is minimized over the inner approximation of X which is
defined when these subsets replace P and D in (3), in terms of the variables λ̂i, i ∈ P̂ and µ̂j ,

j ∈ D̂. Notice that we use the notation λ̂ and µ̂ to distinguish the vectors in the RMP from
the (longer) vectors λ and µ in the complete master problem which is equivalent to CDP(f,X)
and is defined by the system (3). Further denoting by Λ̂ the set of vectors (λ̂, µ̂) satisfying the
restriction of the system (4)–(5) to the known subsets P̂ and D̂ and utilizing (3) to substitute
x for (λ̂, µ̂) [we write x = x(λ̂, µ̂)], the RMP may then be formulated as

minimize
(λ̂,µ̂)∈Λ̂

f(x(λ̂, µ̂)), [RMP(f, Λ̂)]

Alternately, a profitable extreme point or direction of X is generated through the solution of
the problem (2). If the solution x to this problem lies in the current inner approximation, then
it is stationary in CDP(f,X). Otherwise, P̂ or D̂ is augmented by the new extreme point, and
so on.

For problems where X is a bounded polyhedron, an improvement of SD, referred to as
restricted simplicial decomposition (RSD), was devised by Hearn et al. [HLV85, HLV87]. The
basis is the observation that an optimal solution x∗ can be represented by an often much smaller
number of extreme points than dimX + 1, namely dimF ∗ + 1, where F ∗ is the optimal face of
X, that is, the face of X of the smallest dimension which contains x∗. [In the context of convex
minimization, this set may be described by

F ∗ := { y ∈ X | ∇f(x∗)T(y − x∗) = 0 },

a set which is spanned by the extreme points of X that solve the linear approximation (2) to
CDP(f,X) defined at any optimal solution.] They devise a modification in which the number of
extreme points retained is kept below a positive integer, r; when this number of extreme points
has been reached, any new extreme point generated replaces the column in P̂ that received the
least weight in the solution to the RMP. In order to ensure the convergence of the algorithm,
the optimal solution x to the RMP must also be retained as an individual column (however not
counted among the r columns).

The value of r is crucial to the performance of the algorithm. If r ≥ dimF ∗ + 1, then the
number of RMP is finite, and the local rate of convergence is governed by the local convergence
rate of the method chosen for the solution of the RMP; thus, a super-linear or quadratic conver-
gence rate may be attained if a (projected) Newton method is used ([HLV87]). If r < dimF ∗+1,
then the algorithm is only asymptotically convergent, and the rate of convergence is the same
as that of the Frank–Wolfe algorithm, that is, sub-linear.

The RSD algorithm has been successfully applied to large-scale, structured non-linear opti-
mization problems, in particular mathematical programming models of non-linear network flow
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problems, where the column generation subproblem reduces to efficiently solvable linear net-
work flow problems (e.g., [HLV87, LaP92]). Experience with the RSD method has shown that
it makes rapid progress initially, especially when relatively large values of r are used and when
second-order methods are used for the solution of the RMP, but that it slows down close to an
optimal solution. It is also relatively less efficient for larger values of dimF ∗, since the number
and size of the RMP solved within the method become larger.

The explanation for this behaviour is to be found in the construction of a linear column
generation subproblem: the quality of the resulting search directions is known to deteriorate
rapidly. (As the sequence {xt} tends to a stationary point, the sequence {∇f(xt)Tdt} of di-
rectional derivatives of the search directions dt := yt − xt tends to zero whereas {dt} does not;
thus, the search directions rapidly tend to become nearly orthogonal to the gradient of f .) Sim-
ilarly, the quality of the columns generated in this fashion will also deteriorate in terms of their
improvement in the objective value. It is a natural conclusion that better approximations of f
can be exploited in the column generation phase of SD methods; then, the columns generated
would be of better quality, thus leading to larger improvements in the inner approximations of
the feasible set.

Truncated algorithms for CDP Convergent (closed and descent-based) iterative algorithms
for CDP can be supplied with accelerating multidimensional searches, by placing them as column
generation problems of the form of (c)(2) in Assumption 2.1. The algorithm then acts as a trun-
cated algorithm for CDP composed with (perhaps more exact) solutions of smaller-dimensional
and simply constrained optimization problems.

In this case, it is natural that the algorithm for the RMP starts at yt, not at xt as is stated
in the description of the algorithm in Table 1, since f(yt) < f(xt). This can be accommodated
in our framework as follows: redefine

Akt
r := Akt

r ◦ Akt
c ◦ . . . ◦ Akt

c ,

which maps the argument xt into yt through yt = Akt
c ◦ . . . ◦Akt

c (xt), and then applies the RMP
algorithm.

Two example instances are briefly mentioned. (1) Truncated Frank–Wolfe. Consider a line
search method based on, e.g., Newton’s method. Since the subproblem may be computationally
expensive, a few iterations of the Frank–Wolfe algorithm on the quadratic subproblem may
yield a sufficiently accurate direction given the time consumed. This has been proposed in
[DeT88], and in combination with other line search methods than Newton’s in [Mig94]. An
application in the current framework is to use a few steps of the Frank–Wolfe algorithm on the
original problem to generate a column. (2) Truncated coordinate search. Line search-based
modifications of the Hooke and Jeeves [HoJ61] method (e.g., [BSS93, Section 8.5]) combine,
in one iteration, a coordinate-wise search through each of the variables with an exploratory
search along the vector between the last iterate and the result of the coordinate search. An
acceleration of this methodology is to store the result of one, or possibly several, iterations of
the coordinate search algorithm as a column in the proposed scheme. Convergence to stationary
points is ensured if, in addition to the assumptions given so far, the objective function f has a
unique minimum along each coordinate.

Nonlinear simplicial decomposition (NSD) The algorithm was proposed in [LPR97], and
was motivated largely by making observations about the convergence of the SD and RSD al-
gorithms. The algorithm is a multidimensional search extension of a large class of line search
methods, which has been analyzed in slightly different forms by several researchers, notably
Tseng [Tse91], Migdalas [Mig94], and in most generality by Patriksson [Pat98b]. The moti-
vations for the algorithm are that by generating columns based on better approximations of
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the objective function, the sensitivity of the method to the dimension of the optimal face will
be reduced, fewer columns will be needed to describe an optimal solution, resulting in fewer
iterations, and enabling a smaller value of the parameter r to be chosen. Further, more efficient
methods can be applied to each RMP, since they are smaller. We discuss this algorithm in some
detail below, because a number of the finite convergence results will be stated in this framework.

The NSD method is obtained from the RSD method by replacing the linear column generation
subproblem with the more general problem to

minimize
y∈X

∇f(x)Ty + ϕ(y, x),
[CDP(ϕ(·, x),∇f,X, x)]

where ϕ : X × X 7→ ℜ is a continuous function of the form ϕ(y, x), convex and continuously
differentiable with respect to y for all x ∈ X, and with the properties that ϕ(x, x) = 0 and
∇yϕ(x, x) = 0n for all x ∈ X. Among the possible choices for ϕ we mention the following,
where xt denotes an iteration point at iteration t, diag denotes the diagonal part of a matrix
and where γ > 0:

ϕ(y, xt) Subproblem

0 Frank–Wolfe
(1/2)(y − xt)T∇2f(xt)(y − xt) Newton

(1/2)(y − xt)T[diag∇2f(xt)](y − xt) Diag. Newton
(γ/2)‖y − xt‖2 := (γ/2)(y − xt)T(y − xt) Projection

Under names such as partial linearization, regularized Frank–Wolfe and cost approximation,
line search methods based on this subproblem, and also generalizations thereof, have been ana-
lyzed in [Tse91, Pat93a, Pat93b, Mig94, ZhM95, Pat98a, Pat98b].

Besides providing improvements over the RSD algorithm, NSD may also improve upon its line
search algorithm origin; for highly non-linear problems, line search methods often become inef-
fective, due to very short steps being taken in the line searches. Several alternative schemes have
been developed to cope with this deficiency, such as non-monotone and curve-linear searches,
and trust region approaches. The framework of NSD may be another interesting alternative
worthy of study.

While the solution to (2) is an extreme point of X, a solution ŷt to CDP(ϕ(·, x),∇f,X, x)
may be in the (relative) interior of X; in order to augment the inner approximation, Xt ⊂ X, as
much as possible, the NSD method does not store ŷt but its extension on the (relative) boundary
of X, that is,

yt := xt + ℓt(ŷ
t − xt), where ℓt := max{ ℓ | xt + ℓ(ŷt − xt) ∈ X }. (6)

Even though the finite convergence property will be lost in general (because non-extremal
points will be generated, see also Example 4.17), one may expect a more rapid convergence of
the NSD method than the RSD method in terms of the number of iterations needed to reach a
given solution accuracy. In numerical experiments performed on large-scale non-linear network
flow problems in [LPR97], it was particularly observed that the NSD method is relatively much
less sensitive to the value of dimF ∗ than is RSD, which permits the use of a much smaller value
of r in the NSD method. Further applications of NSD have been reported in transportation
planning ([GaM97a, GaM97b, LuP98]), where Evans’ [Eva76] algorithm has been supplied with
a multidimensional search.

In the next section, we study realizations of the construction of the inner approximation of
the feasible set, and establish conditions under which this set is a simplex. We then provide
conditions on the problem and on the realization of the algorithm such that the active constraints
at a solution (Section 4.2) or even an optimal solution itself (Section 4.3), will be attained in
a finite number of iterations. The latter results are also extended to variational inequality
problems in Section 4.4.
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3 Properties of the RMP

As has been remarked upon in Section 2, the inner approximations of the set X employed in SD
methods are polyhedral sets whose extreme points are extreme points of X. In RSD, the inner
approximation is slightly redefined such that whenever a column dropping has been performed,
the previous solution to the RMP is also retained as a column.

One may consider more general rules for constructing the inner approximation; cf., for exam-
ple, the condition on Xt+1 in Step 3 in the description of the conceptual algorithm in Table 1. In
order to establish properties similar to those for SD methods, it is necessary to introduce further
conditions on the updating of the sets Xt. In this section, we establish rules for introducing and
dropping columns so as to maintain the simplicial property of the sets Xt.

3.1 Set augmentation

When determining the updating of the inner approximation from one iteration to the next, we
consider two phases.

First, given the solution xt to the current RMP, we may drop columns from the active set,
for example based on their barycentric coordinates (weights) in describing xt. If we employ a
restriction strategy corresponding to that of Hearn et al. [HLV85, HLV87] based on a maximum
number of columns stored, we may also drop columns that have more than an insignificant
weight, while then also introducing the vector xt as an individual column.

Second, a main difference between the simplicial decomposition method, as proposed by
von Hohenbalken and successors, and the method of this paper, is that the columns are not
necessarily extreme points of X. We however do assume that the columns introduced belong to
the (relative) boundary of X. This corresponds to utilizing, if necessary, the rule (6).

In the following, we use Pt
s to denote the set of columns generated in Step 1 of the CG

algorithm, and retained at iteration t; further, Pt
x is either an empty set or it contains one

column which corresponds to the result of Step 4 in the previous iteration.
Table 2 summarizes the various rules considered in the introduction of new and deletion

of old columns; they are realizations of Step 3 in the conceptual algorithm of Table 1. (The
corresponding initializations necessary are also included.)

The column dropping rule 3.1.a is applied in the original work on SD ([Hol74, vHo77]), as
well as in the later developments in [HLV85, HLV87, LPR97]. The rule 3.1.b is to be used when
the RMP is only solved inexactly.

Definition 3.1 (ε-stationarity). The vector x ∈ X is an ε-stationary solution to CDP(f,X) if

∇f(x)T(y − x) ≥ −ε, y ∈ X, (8)

holds.

Proposition 3.2 Let x̄t be an ε-stationary solution to the RMP at iteration t with x̄t =∑m
i βipi, where

∑m
i βi = 1, βi ≥ 0, pi ∈ Pt for all i ∈ {1, . . . ,m}, and m =

∣∣Pt
∣∣. Then for any

j ∈ {1, . . . ,m},

∇f(x̄t)T(pj − x̄t) ≥ εt1 > 0 =⇒ βj ≤
ε

ε+ εt1
. (9)

Proof. Let z = x̄t +
βj

(1−βj)
(x̄t − pj) =

∑m
i6=j

βi

(1−βj)
pi. The element z belongs to Xt because it

is a convex combination of points of Pt ⊂ Xt and Xt is a convex set.
Using the property of ε-stationarity of x̄t over Xt,

−ε ≤ ∇f(x̄t)T(z − x̄t) = −
βj

(1 − βj)
∇f(x̄t)T(pj − x̄t)

11



Table 2: The set augmentation phase

0. (Initialization): Choose an initial point x0 ∈ X, let t := 0, P0
s = ∅, P0

x = {x0}, P0 =
P0

s ∪P0
x and X0 = conv (P0). Further, let r be a positive integer, and let ℜ++ ⊃ {εt1} → 0.

3.1 (Column dropping rules): Let xt =
∑m

i=1 βipi, where m =
∣∣Pt

∣∣ and pi ∈ Pt.

3.1.a (Exact solution of RMP). Discard all elements pi with weight βi = 0.

3.1.b (Truncated solution of RMP). Discard all elements pi satisfying

∇f(xt)T(pi − xt) ≥ εt1 > 0. (7)

3.2 (Extension to the relative boundary of X): Let ŷt be the vector generated, and let yt be
defined by (6).

3.3 (Set augmentation rules):

3.3.a (Simplicial decomposition scheme). Pt+1 = Pt ∪ {yt}. Set Xt+1 = conv(Pt+1).

3.3.b (Restricted simplicial decomposition scheme). If
∣∣Pt

s

∣∣ < r, then set Pt+1
s = Pt

s ∪ {yt},
and Pt+1

x = Pt
x; otherwise, replace the element of Pt

s with minimal weight in
the expression of xt with yt to obtain Pt+1

s , and let Pt+1
x = {xt}. Finally, set

Pt+1 = Pt+1
s ∪ Pt+1

x and Xt+1 = conv (Pt+1).

holds. Further, by hypothesis, we obtain that −
βj

(1−βj)
∇f(x̄t)T(pj− x̄

t) ≤ −
βj

(1−βj)
εt1. Combining

these inequalities then yields the desired result.

Remark 3.3 (Equivalence of two column dropping rules). This result implies that if the RMP is
solved exactly (i.e., ε = 0 holds), then βj = 0 in (9), whence the two rules coincide. (See also
[HLV85, Lemma 1] for a similar result in the context of the RSD method.) In general, however,
the rule 3.1.a implies a more aggressive column dropping than does rule 3.1.b.

3.2 Inner approximations are simplices

From here on, we further presume that f is pseudo-convex on X.
According to [HLV85, Theorem 3], the inner approximations Xt = conv (Pt) utilized in the

SD and RSD algorithms are simplices, under the hypothesis that the RMP are solved exactly. We
now establish, based on similar arguments, that this property also holds in the method proposed,
even without an assumption that X is polyhedral. We then need the following definition and
properties of a simplex, taken from Rockafellar [Roc70].

Definition 3.4 (Simplex). Let {z0, z1, . . . , zm} be m + 1 distinct points in ℜn with m ≤ n
where the vectors z1 − z0, z2 − z0, . . . , zm − z0 are linearly independent. Then, the set C =
conv (z0, z1, . . . , zm), the convex hull of {z0, z1, . . . , zm}, is an m-simplex in ℜn. In addition,
since C is always contained in a manifold of dimension m, C is said to have dimension m, or
dim (C) = m.

Proposition 3.5 (Properties of simplices).

(a) If x is an element of an m-simplex, C, then x can be uniquely expressed as a convex
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combination of points, z0, z1, . . . , zm, defining C, i.e.,

x =
m∑

i=0

βizi,
m∑

i=0

βi = 1, βi ≥ 0, i = 0, 1, . . . ,m,

and β0, β1, . . . , βm are unique.

(b) If x is an element of an m-simplex, C, and the convexity weight, βi, for some i = 0, 1, . . . ,m
is positive in the (unique) expression of x as a convex combination of z0, z1, . . . , zm, then
the set conv (z0, z1, . . . , zi−1, x, zi+1, . . . , zm) is an m-simplex.

(c) If conv (z0, z1, . . . , zm) is an m-simplex, then conv (z0, z1, . . . , zi−1, zi+1, . . . , zm), for some
i = 0, 1, . . . ,m, is an (m− 1)-simplex.

The main result of this section follows.

Theorem 3.6 (The inner approximation is a simplex). Assume that the RMP are solved exactly.
Then, the set Xt is a simplex for all t.

Proof. We show by induction that Xt is a simplex at the start of Step 3.3. It follows that Xt

is a simplex in every step of the algorithm.
When t = 0, Xt = {x0}; therefore, X0 is a 0-simplex. Assume now that Xt is a simplex for

t ≥ 0. The elements with zero weight have been discarded at the beginning of Step 3.3; therefore,
the remaining elements in Pt must have positive weight. By the induction hypothesis and
Proposition 3.5.c the points not eliminated define a simplex. Assume without loss of generality
that at the beginning of Step 3.3, Pt = {p0, p1, . . . , pm}, and that, by assumption, Pt defines an
m-simplex. We denote the convex hull of this set by X̄t.

The element xt is expressed as

xt =
m∑

i=0

βipi, with βi > 0 and pi ∈ Pt.

It follows that xt ∈ rint (X̄t). We will prove that if xt is not an optimal solution to [CDP(f,X)]
then conv (X̄t∪{yt}) is a simplex, where yt is the column added in iteration t+1. First, however,
we note that xt is also an optimal solution to the problem of minimizing f over aff (X̄t) ∩X,
where aff (X̄t) is the affine hull of X̄t, since no constraint of the form βi ≥ 0 is binding, so

∇f(xt)T(y − xt) ≥ 0, y ∈ aff (X̄t) ∩X, (10)

which we proceed to establish.
Let y be an arbitrary element of aff (X̄t) ∩ X. If y ∈ X̄t ⊂ Xt then the point y satisfies

the inequality in (10) because xt solves the RMP over Xt. Otherwise, y ∈ aff (X̄t) − X̄t.
Using the fact that xt is in the relative interior of X̄t, there exists a unique element, z, in
the set [xt, y] ∩ rfro (X̄t), where rfro(X̄t) is the relative boundary of X̄t. This point satisfies
y = xt +λ(z−xt) for some λ > 1. By the optimality of xt over Xt and the fact that z ∈ Xt, we
obtain that ∇f(xt)T(z−xt) ≥ 0, whence it follows that ∇f(xt)T(y−xt) = λ[∇f(xt)T(z−xt)] ≥ 0.
This completes the proof of (10).

If xt solves [CDP(f,X)] then the algorithm terminates without generating Xt+1. Otherwise,
by Assumption 2.1.c and the use of the rule (6), it follows that the column yt generated in
Step 3.2 satisfies ∇f(xt)T(yt − xt) < 0. This relation, together with the optimality of xt over
aff (X̄t) ∩X, implies that yt /∈ aff (X̄t). As X̄t is an m-simplex by the induction hypothesis,
conv (X̄t ∪ {yt}) is therefore an (m+ 1)-simplex.

In the case that m =
∣∣Pt

s

∣∣ < r holds, that set is produced by Step 3.3.a and Step 3.3.b.
The only other case to consider is the use of Step 3.3.b in the case when m =

∣∣Pt
s

∣∣ = r
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holds. We will then assume without loss of generality that Pt
s = {p0, . . . , pm−1}, and let

Pt
x = {x′}. By assumption, Pt defines an m-simplex. In this case Xt+1 = conv (Pt+1) where

Pt+1 = {p0, . . . , pi−1, pi+1, . . . , pm−1, x
t, yt}, for some i. This set defines an m-simplex be-

cause conv (p0, p1, . . . , pm−1, x
′, yt) is an (m + 1)-simplex by the above, by Proposition 3.5.b

(p0, p1, . . . , pm−1, x
t, yt) is an (m + 1)-simplex, and conv (p0, . . . , pi−1, pi+1, . . . , pm−1, x

t, yt) =:
Xt+1 is an m-simplex by Proposition 3.5.c. Thus, in either case, conv (Pt+1) is a simplex. This
completes the proof.

4 Finiteness convergence properties of the column generation

algorithm

This section offers some insight into the finite convergence properties of the column generation
algorithm proposed. The investigation is divided in two parts. First, we establish conditions on
the problem and on the algorithm so that the optimal face will be attained in a finite number
of iterations. When X is polyhedral, this result implies the finite identification of the active
constraints at the limit point. Second, we study the stronger property of finitely attaining an
optimal solution, under the condition of weak sharpness of the set SOL(f,X). We finally extend
these results to variational inequality problems.

4.1 Facial geometry and non-degeneracy

We begin with some elementary properties of faces of convex sets.

Definition 4.1 (Face). Let X be a convex set in ℜn. A convex set F is a face of X if the
endpoints of any closed line segment in X whose relative interior intersects F are contained in
F . Thus, if x and y are in X and λx+ (1−λ)y lies in F for some 0 < λ < 1, then x and y must
also belong to F .

The following two results appear in [Roc70, Theorems 18.1–2].

Theorem 4.2 Let F be a face of the convex set X. If Ω is a convex subset of X so that rintΩ
meets F , then Ω ⊂ F .

A corollary to this result is that if the relative interiors of two faces F1 and F2 have a
non-empty intersection then they are equal. The following result complements the above by
establishing that each point in a convex set belongs to the relative interior of a unique face.

Theorem 4.3 The collection of all relative interiors of faces of the convex set X is a partition
of X.

We will use the notation F (x) to denote the unique face F of X for which x ∈ rintF . Note
that this is the minimal face containing the point x. We will subsequently characterize these
minimal faces.

Definition 4.4 (The k-tangent cone KX(x)). A vector v is said to be k-tangent to the set X at
the point x in X if for some ε > 0, x+ tv ∈ X holds for all t ∈ (−ε, ε). The set of all k-tangent
vectors v at x is a cone, which we denote by KX(x).

For any cone C, let linC denote the lineality of C, the largest subspace contained in C, that
is, linC = C ∩ (−C).
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Lemma 4.5 (Characterization of F (x)). Let x ∈ X. It holds that F (x) = (x+ linKX(x)) ∩X.

Proof. It is obvious that (x + linKX(x)) ∩ X is a face of X satisfying x ∈ rint ((x +
linKX(x)) ∩X) ∩ rintF (x). Using Theorem 4.3 these faces are identical.

Recall next the definition (1) of the normal cone NX(x) to the set X at x. We note that
if F is a face of X, then the normal cone is independent of x ∈ rintF , whence we may write
NX(F ). The tangent cone to X at x, TX(x), is the polar cone of NX(x). The face of X exposed
by the vector d ∈ ℜn (the exposed face) is the set

EX(d) = arg max
y∈X

dTy.

For general convex sets, x ∈ EX(d) holds if and only if d ∈ NX(x) (e.g., [BuM94]), whereas
for polyhedral sets, the exposed face is independent of the choice of d ∈ rintNX(x). Further,
every face of a polyhedral set is exposed by some vector d. These results however fail to hold
for general convex sets. In the analysis of identification properties of the CG algorithm, we will
focus on faces of X which enjoy stronger properties than faces in general.

Definition 4.6 (Quasi-polyhedral face). A face F of X is quasi-polyhedral if

affF = x+ linTX(x), x ∈ rintF. (11)

The relative interior of a quasi-polyhedral face is equivalent to an open facet, as defined in
[Dun87]. Every face of a polyhedral set X is quasi-polyhedral, but this is not true for a general
convex set, as the example in [BuM88] shows. Further, a quasi-polyhedral face need not to be
a polyhedral set, and vice versa. Quasi-polyhedral faces are however exposed by any vector in
rintNX(F ), and have several other properties in common with faces of polyhedral sets. See
[BuM88, BuM94] for further properties of quasi-polyhedral faces.

We now turn to study the optimal face of X. The following definition extends the classic one
for problems with unique solutions (e.g., [Wol70]).

Definition 4.7 (Optimal face). The optimal face of [CDP(f,X)] is

F ∗ =
⋂

x∗∈SOL(f,X)

Fx∗ ,

where Fx∗ = { y ∈ X | ∇f(x∗)T(y − x∗) = 0 }.

The set F ∗ is a face because it is the intersection of a collection of faces. It is elementary
to show that whenever f is pseudo-convex, F ∗ ⊃ SOL(f,X) holds. Further note that for any
stationary point x∗, the face Fx∗ is the exposed face EX(−∇f(x∗)).

In the case where f is convex, we recall that the value of ∇f is constant on SOL(f,X), by a
result of Burke and Ferris [BuF91]. Therefore, in this case, F ∗ = Fx∗ = EX(−∇f(x∗)) for any
x∗ ∈ SOL(f,X), simplifying the above definition.

Under the following regularity condition on an optimal solution, the finite identification of
the optimal face has been demonstrated for several algorithms (e.g., [Dun87, BuM88, Pat98b]):

Definition 4.8 (Non-degenerate solution). An optimal solution x∗ to [CDP(f,X)] is non-
degenerate if

−∇f(x∗) ∈ rintNX(x∗) (12)

holds.
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We note that this regularity condition does not depend on the representation of the set X.
When X is described explicitly with constraints, then the condition is weaker than strict comple-
mentarity ([BuM88]). Before establishing the finite identification result for the CG algorithm,
we introduce two other regularity conditions that have been used in the literature, and relate
them to each other.

Definition 4.9 (Conditions of regularity). (1) (Geometric stability, [MaD89]). An optimal solu-
tion x∗ is geometrically stable if

∇f(x∗)T(x− x∗) = 0 =⇒ x ∈ F ∗. (13)

(2) (Geometric regularity, [DuM89]). The optimal face F ∗ is geometrically regular if

SOL(f,X) ⊂ rintF ∗, (14)

and the set SOL(f,X) is non-degenerate in the sense of Definition 4.8.

A sufficient condition for geometric stability is the convexity of f on X, as remarked above.
The notions of geometric stability and regularity are equivalent when X is a bounded polyhe-

dral set (see [DuM89, Corollary 2.4]). The following result extends this characterization to the
case of general convex sets under a non-degeneracy assumption. (The constraint qualification
(CQ) of Guignard [Gui69] utilized in the result implies that NX(x) is a polyhedral cone for every
x, and is satisfied automatically for polyhedral sets X.)

Theorem 4.10 (Relations among conditions of regularity). Assume that Guignard’s CQ holds.
Further, assume that SOL(f,X) is a set of non-degenerate optimal solutions. Consider the
following three statements.

(a) F ∗ is geometrically regular.

(b) F ∗ is a quasi-polyhedral face, and F ∗ = F (x∗) holds for all x∗ ∈ SOL(f,X).

(c) Every x∗ ∈ SOL(f,X) is geometrically stable.

It then holds that (a) =⇒ (b) =⇒ (c).

Proof. [(a) =⇒ (b)]. The following relationship holds: x∗ ∈ (rintF ∗) ∩ (rintF (x∗)) for all
x∗ ∈ SOL(f,X) . By Theorem 4.3, F ∗ = F (x∗) holds for all x∗ ∈ SOL(f,X) .

We now prove that F ∗ is a quasi-polyhedral face. As x∗ ∈ rintF ∗, we demonstrate that F ∗ =
(x∗ + lin (TX(x∗))∩X. We begin by showing that F ∗ ⊂ (x∗ + lin (TX(x∗))∩X. Using Lemma
4.5, we obtain that F ∗ = (x∗ +KX(x∗)) ∩ X. Moreover, KX(x∗) ⊂ TX(x∗) and linKX(x) =
KX(x), which establishes the inclusion. Conversely, let x∗ + v ∈ (x∗ + lin (TX(x∗)) ∩ X. Using
Lemma 2.7 in [BuM88], it follows that v ∈ N⊥

X (x∗), where ⊥ denotes the orthogonal complement.
On the other hand, N⊥

X (x∗) = N⊥
X (z) holds for all z ∈ rintF ∗ (see [BuM88, Theorem 2.3]).

This implies that v ∈ N⊥
X (y∗) for every y∗ ∈ SOL(f,X) . As −∇f(y∗) ∈ NX(y∗), ∇f(y∗)Tv = 0

holds for every y∗ ∈ SOL(f,X) . This relationship establishes that ∇f(y∗)T(x∗ + v − y∗) =
∇f(y∗)Tv + ∇f(y∗)T(x∗ − y∗) = 0, and x∗ + v ∈ Fy∗ for all y∗ ∈ SOL(f,X) . By the definition
of F ∗, we obtain that x∗ + v ∈ F ∗.

[(b) =⇒ (c)]. Let x∗ ∈ SOL(f,X) . We prove that if ∇f(x∗)T(z − x∗) = 0, for z ∈ X,
then z ∈ F ∗. As NX(x∗) is a polyhedral cone and −∇f(x∗) ∈ NX(x∗), a set of vectors and
scalars exists so that −∇f(x∗) =

∑
λivi, where λi ≥ 0. The point x∗ is non-degenerate;

using Lemma 3.2 of [BuM88] these coefficients must therefore be positive. The relationship
0 = −∇f(x∗)T(z − x∗) =

∑
λiv

T
i (z − x∗) implies that vT

i (z − x∗) = 0 for all i, and hence
that (z − x∗) ∈ N⊥

X (x∗). Using Lemma 2.7 of [BuM88], N⊥
X (x∗) = linTX(x∗). By hypothesis,
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F ∗ = (x∗ + lin (TX(x∗)) ∩ X and z = x∗ + (z − x∗) ∈ (x∗ + lin (TX(x∗)) ∩ X = F ∗. This
completes the proof.

The result can not be strengthened to an equivalence among all three: (c) =⇒ (a) may fail
for non-polyhedral sets.

4.2 Finite identification of the optimal face

The identification results to follow will be established under the following assumption on the
construction and solution of the sequence of RMP:

Assumption 4.11 (Conditions on the RMP). Either one of the following conditions hold.

(1) r ≥ dimF ∗ + 1, and the RMP are solved exactly.

(2) r = ∞, and the RMP are solved such that xt is εt-optimal with {εt} ↓ 0.

Theorem 4.12 (Identification results). Let {xt} and {ŷt} be the sequence of iterates and
columns generated by the algorithm, and assume that {xt} converges to x∗ ∈ SOL(f,X).

(a) Assume further that the RMP are solved exactly. If a positive integer τ1 exists such that
xt ∈ rintF ∗ for every t ≥ τ1, then there exists a positive integer τ2 such that

ŷt ∈ F ∗, t ≥ τ2.

(b) Let Assumption 4.11 hold, and assume that F ∗ is geometrically regular. If a positive
integer τ1 exists such that ŷt ∈ F ∗ for every t ≥ τ1, then there exists a positive integer τ2
such that

xt ∈ rintF ∗, t ≥ τ2.

Proof. (a) Let t ≥ τ1, so that xt ∈ rintF ∗. First we show that the column yt+1 generated by
the rule (6) belongs to the optimal face F ∗. Since in each iteration the RMP is solved exactly,
xt+1 ∈ Xt+1 − Xt holds, and hence xt+1 = λyt+1 + (1 − λ)z, where z ∈ Xt and 0 < λ ≤ 1.
If λ = 1 then the result follows trivially. Otherwise, using the fact that F ∗ is a face, and that
xt+1 ∈ (z, yt+1) ∩ rintF ∗, we have that [z, yt+1] ⊂ F ∗, and hence yt+1 belongs to the optimal
face. Now we show that also ŷt+1 belongs to F ∗. Using that xt+1 ∈ rintF ∗ ⊂ F ∗, it follows
that [xt+1, yt+1] ⊂ F ∗. Since ŷt+1 ∈ [xt+1, yt+1] holds, the result follows.

(b) Let t ≥ τ1, so that ŷt ∈ F ∗. If ŷt ∈ rintF ∗, then since F ∗ is a face of X, also yt belongs
to F ∗. Otherwise, ŷt ∈ rfroF ∗, whence the rule (6) produces yt = ŷt ∈ F ∗. This guarantees
that {yt}t≥τ1 ⊂ F ∗.

We next prove that if there exists an element z that is never discarded from the set Pt for
t ≥ τ , then z is in the optimal face. This is obviously possible if and only if z does not satisfy
the column dropping rule in any iteration t ≥ τ . Let t ≥ τ , and let the solution to the RMP at
iteration t be expressed by

xt+1 = βt
zz +

nt∑

i=1

βt
ipi, 0 < βt

z, 0 ≤ βt
i , i = 1, . . . , nt and βt

z +
nt∑

i=1

βt
i = 1, pi ∈ Pt.

If the RMP is solved inexactly, then the fact that z does not satisfy the column dropping rule
implies that ∇f(xt+1)T(z − xt+1) < εt+1

1 . Using the continuity of ∇f(x), and taking the limit
of the inequality, we obtain that

∇f(x∗)T(z − x∗) = lim
t→∞

∇f(xt+1)T(z − xt+1) ≤ lim
t→∞

εt1 = 0.

17



By the optimality of x∗, we obtain that ∇f(x∗)T(z − x∗) ≥ 0, which implies that ∇f(x∗)T(z −
x∗) = 0. If however the RMP is solved exactly, then ∇f(xt+1)T(z−xt+1) = 0 must hold, because
otherwise it would have to be positive by the optimality of xt+1, which in turn would imply by
Proposition 3.2 that βt

z = 0; this however contradicts our assumption that βt
z > 0. In the limit

of the above equality, then,

∇f(x∗)T(z − x∗) = lim
t→∞

∇f(xt+1)T(z − xt+1) = 0.

Since x∗ is geometrically stable, in either case we have established that z ∈ F ∗.
This also proves that any element of the set ∪t>τP

t which is not in the optimal face must
be eliminated in some iteration. We first consider the case where r = ∞ holds. By the above,
yt ∈ F ∗ for t ≥ τ1. Hence, by the construction of the inner approximation, there exists an
integer τ2 such that Pt ⊂ F ∗, for t ≥ τ2. We therefore obtain that xt ∈ Xt = conv(Pt) ⊂ F ∗,
t ≥ τ2. The fact that the weights are positive then implies that actually xt ∈ rintF ∗.

In the case where r < ∞, it may be that there are iterations t in which an element xt is
introduced into Pt. We however establish that this is impossible when r ≥ dimF ∗ + 1 and the
RMP are solved exactly. The conclusion is then the same as for the case when r = ∞.

Using the previous result, Pt
s ⊂ F ∗ for all t ≥ τ2. This implies that dim (conv (Pt

s)) ≤ dimF ∗.
For future reference, let dim (conv (Pt

s)) = m. As the RMP are solved exactly, Xt is a simplex
by Theorem 3.6 for any t ≥ 0, so conv (Pt

s) is an m-simplex by Proposition 3.5.c. Consider the
column yt generated for some iteration t ≥ τ2. Since we assume that xt /∈ SOL(f,X), according
to the proof of Theorem 3.6, conv (Pt

s ∪ {yt}) is then an (m+ 1)-simplex; further, since t ≥ τ2,
Pt

s ∪ {yt} ⊂ F ∗ holds. It then follows that

|Pt
s| = dim (conv (Pt

s)) + 1 = dim (conv (Pt
s ∪ {yt})) ≤ dimF ∗ ≤ r − 1,

which implies that |Pt
s| < r. This, in turn, implies that Pt+1

x = Pt
x holds for all t ≥ τ2 (cf. Step

3.3.b). This completes the proof.

When X is defined by constraints of the form gi(x) ≤ 0, i = 1, . . . ,m, and each function gi is
strictly convex, then the optimal face is a singleton. The result (b) then states that convergence
is actually finite if the columns finitely lie in the optimal face.

We finally state a sufficient condition for ŷt ∈ F ∗ to hold for every t ≥ τ1. To this end, we
introduce the following concept.

Definition 4.13 (Projected gradient). Let x ∈ X. The projected gradient at x is

∇Xf(x) := arg min
ν∈TX(x)

‖∇f(x) + ν‖. (15)

Hence, the projected gradient at x equals PTX (x)[−∇f(x)], where PS [·] is the Euclidean
projection mapping onto a convex set S. Note that by their definitions, −∇f(x) ∈ NX(x) holds
if and only if PTX(x)[−∇f(x)] = 0n. The following result shows that algorithms that force the
projected gradient to zero characterizes those that identify the optimal face in a finite number
of iterations. (In the application to polyhedral sets, we assume that the linear constraints all
are inequalities, and let I(x) and λ∗i denote the subset of the constraints that are active at x
and their Lagrange multipliers, respectively.)

Theorem 4.14 (Identification characterization, [BuM88, BuM94]). Assume that {zt} ⊂ X con-
verges to x∗ ∈ SOL(f,X).
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(a) Assume further that X is a polyhedral set. Then, there exists an integer τ such that

{∇Xf(zt)} → 0n

⇐⇒

zt ∈ EX [−∇f(x∗)], t ≥ τ

⇐⇒

I(zt) = { i ∈ I(x∗) | λ∗i > 0 }, t ≥ τ.

(b) Assume that x∗ is non-degenerate. Further, assume that x∗ ∈ rintF ∗ holds, where the
face F ∗ of X is quasi-polyhedral. Then, there exists an integer τ such that

{∇Xf(zt)} → 0n

⇐⇒

zt ∈ rintF ∗, t ≥ τ.

Assume further that X is polyhedral. Then, to the above equivalence can be added the
following:

I(zt) = I(x∗), t ≥ τ.

The immediate application of this result to our algorithm follows.

Theorem 4.15 (Finite identification of the optimal face). Assume that Guignard’s CQ holds.
Further, assume that SOL(f,X) is a set of non-degenerate solutions. Let Assumption 4.11
hold, and further assume that F ∗ is geometrically regular. If the sequence {ŷt} is such that
{∇Xf(ŷt)} → 0n holds, then there exists a positive integer τ such that xt ∈ rintF ∗ holds for
every t ≥ τ .

Proof. The result follows immediately by applying Theorems 4.10, 4.12.b and 4.14.b.

Algorithms which force the projected gradient to zero include the gradient projection and
sequential quadratic programming algorithms ([BuM88]). Patriksson [Pat98b, Theorem 7.11
and Instance 7.19] establishes the more general result that the corresponding sequence generated
from the use of the subproblem CDP(ϕ(·, x),∇f,X, x) defined in Section 2, forces the projected
gradient to zero, under the additional assumption that ϕ(·, x) is strictly convex:

Theorem 4.16 (Finite identification of the optimal face). Consider an arbitrary sequence {zt} ⊂
X. Let {yt} be the corresponding sequence of solutions to the problem CDP(ϕ(·, zt),∇f,X, zt).
Then,

{yt − zt} → 0n =⇒ {∇Xf(yt)} → 0n.

In particular, if the sequence {zt} converges to an optimal solution to CDP(f,X) and ϕ(·, z) is
strictly convex for every z ∈ X, then {yt − zt} → 0n holds.

The immediate application of this result is of course to the NSD algorithm, which hence can
be established to finitely attain the optimal face.
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4.3 Finite identification of an optimal solution

The finite convergence property of the SD and RSD algorithms are based on the finiteness of
the number of candidate columns that need to be generated in order to span the optimal face,
by the finiteness of the number of extreme points of a polyhedron. This property is in general
lost in the CG algorithm, due to the nonlinear character of the feasible set and/or the column
generation problem. An example illustrates this fact.

Example 4.17 (Asymptotic convergence of the CG algorithm). Consider the following instance
of CDP(f,X):

minimize f(x1, x2) :=

(
x1 −

1

2

)2

+ x2,

subject to −2x1 − x2 ≤ −1,

2x1 − x2 ≤ 1,

x2 ≤ 1.

Let the columns be constructed as follows. For a given feasible x, yT = (−1/2+
√

1 + f(x)/2,−2+
2
√

1 + f(x)/2), the result of which is used in the construction of the inner approximation. For
any feasible x 6= x∗ = (1

2 , 0)
T, f(y) = 1

2f(x) < f(x) holds. Clearly, then, the conditions for
the asymptotic convergence of the algorithm towards the unique solution x∗ are satisfied. If,
for some restriction Xt of the feasible set X, x∗ ∈ Xt holds, then x∗ is an extreme point of Xt

because x∗ is an extreme point of X and Xt ⊂ X. We assume that the rule used in the set
augmentation is 3.3.a. It then follows that x∗ ∈ Xt if and only if yt = x∗. We will establish by
induction that x∗ /∈ Xt for any t, whence convergence must be asymptotic. For t = 0, assume
that X0 = {x0} 6= {x∗}. We assume that x∗ /∈ Xt for some t ≥ 0. Using that the RMP is
solved exactly, so xt+1 6= x∗, it follows that f(xt+1) > 0, and further that f(yt+1) > 0 holds.
But this implies that yt+1 6= x∗, and using the previous argument x∗ /∈ Xt+1. This completes
the argument.

In order to establish the finite convergence of the CG algorithm we impose a property on
the optimal solution set SOL(f,X) which is stronger than non-degeneracy and the regularity
conditions given in Theorem 4.10. As we shall see, it will imply that the number of columns
needed to span the optimal face is finite—in fact, the optimal face equals the optimal solution
set—whence the result of Theorem 4.15 implies that convergence is finite.

The regularity condition we will employ is the following.

Definition 4.18 (Weak sharp minimum, [Pol87]). The set SOL(f,X) is a set of weak sharp
minima if for some α > 0,

f(x) − f
(
PSOL(f,X)(x)

)
≥ α‖x− PSOL(f,X)(x)‖, x ∈ X. (16)

Polyak [Pol87] established that the gradient projection algorithm is finitely convergent under
the weak sharp property. Burke and Ferris [BuF93] extended this result to characterize the
algorithms for convex programs which finitely attain an optimal solution, while also extending
the characterization in Theorem 4.14.b of those algorithms which finitely attain the optimal
face:

Theorem 4.19 (Finite convergence characterization, [BuF93, Theorem 4.7]). Assume that f is
convex and that SOL(f,X) is a set of weak sharp minima for CDP(f,X). Assume that {zt} ⊂ X
converges to SOL(f,X). Then, there exists an integer τ such that

{∇Xf(zt)} → 0n

⇐⇒

zt ∈ SOL(f,X), t ≥ τ.
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We utilize this theorem as follows.

Theorem 4.20 (Finite identification of an optimal solution). Assume that f is convex and that
SOL(f,X) is a set of weak sharp minima for CDP(f,X).

(a) [The NSD algorithm]. Suppose that the sequence {xt} is the generated by the NSD
algorithm, and that it converges to an optimal solution to CDP(f,X). Suppose further that
ϕ(·, z) is strictly convex for every z ∈ X. Then, there exists an integer τ such that xt ∈
SOL(f,X), for all t ≥ τ .

(b) [The general algorithm]. Suppose that SOL(f,X) is a regular face. Let Assumption 4.11
hold. If the sequence {ŷt} is such that {∇Xf(ŷt)} → 0n holds, then there exists a positive
integer τ such that xt ∈ rintSOL(f,X) holds for every t ≥ τ .

Proof. (a) Combine Theorems 4.16 and 4.19.
(b) By the convexity of f , Theorem 4.1 of [BuF93] shows that the optimal face F ∗ equals the

optimal solution set SOL(f,X), which furthermore is the face exposed by the vector −∇f(x∗)
for any x∗ ∈ SOL(f,X). By assumption, SOL(f,X) is a geometrically regular face.

By hypothesis, {∇Xf(ŷt)} → 0n holds. Under the weak sharpness and regularity assump-
tions, Theorem 4.19 then establishes that there exists an integer τ1 such that ŷt ∈ SOL(f,X)
for every t ≥ τ1.

Theorem 4.12.b then implies the existence of an integer τ2 such that xt ∈ rint (SOL(f,X))
for all t ≥ τ2.

4.4 Finiteness properties extended to variational inequalities

4.4.1 Introduction

Consider the variational inequality problem of finding x∗ ∈ X such that

M(x∗)T(x− x∗) ≥ 0, x ∈ X. [VIP(M,X)]

where M : X 7→ ℜn is continuous on X. Whenever M = ∇f , VIP(M,X) constitutes the first-
order optimality conditions of CDP(f,X). General properties of variational inequalities are, for
example, found in [HaP90].

We establish in this final section that the finiteness properties of the CG algorithm are pre-
served when considering this more general problem. It is a nontrivial problem to establish even
asymptotic convergence for classic descent algorithms when extended to VIP; counterexamples
exist for the convergence of an extension of the Frank–Wolfe algorithm to VIP (e.g., [Ham84]),
so a straightforward extension of RSD is not a convergent algorithm! (Without column drop-
ping, SD does converge for VIP; there is also a convergence result in [LaH84] for a special RSD
algorithm in which however no column dropping can be performed after a finite number of iter-
ations.) So before moving on to establishing finite convergence, we first need to establish that
there are instances of the general algorithm that have asymptotic convergence. To this end, we
will cite results from [Pat98b, Sections 6.2.1, 9.4.1, 9.4.2] on what effectively is an extension of
the NSD algorithm to VIP.

Assume that M is strongly monotone, in C1 and Lipschitz continuous on X. Further, let the
function ϕ (cf. Section 2.3 on the NSD algorithm) further be strictly convex in y for each fixed
x ∈ X and in C1 on X ×X. Let α > 0. We define the merit function

ψα(x) := maximum
y∈X

{M(x)T(x− y) − (1/α)ϕ(y, x) }. (17)
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The function ψα : X 7→ ℜn clearly is a merit function for VIP(M,X), since SOL(M,X) =
arg minx∈X ψα(x), and, further, ψα(x) = 0 on SOL(M,X). It is furthermore in C1 on X,
by the strict convexity assumption on ϕ(·, x). Further, we define θ(x, α) := −(1/α)[ϕ(y, x) +
∇xϕ(y, x)T(y − x)], where y is the vector that defines the value of ψα(x) [that is, which solves
CDP((1/α)ϕ(·, x),M,X, x)].

The algorithm of Table 3 is a special case of that in [Pat98b, Section 6.2.1].

Table 3: A descent CG algorithm for VIP

0. (Initialization): Choose an initial point x0 ∈ X, let α0 > 0, ∆α > 0, and γ ∈ (0, 1). Set
t := 0.

1. (Column generation): Find a vector yt that solves CDP(ϕ(·, xt),M,X, xt).

2. (Termination criterion): If xt solves CDP(ϕ(·, xt),M,X, xt) → Stop [xt ∈ SOL(M,X)].
Otherwise, continue.

3. (Restricted master problem or null step): If ψαt(x
t) ≤ θ(xt, αt)/(1 − γ), then let αt+1 :=

αt + ∆α and xt+1 := xt; otherwise, let αt+1 := αt, and let xt+1 be an arbitrary point in
any closed and convex subset of X that contains the line segment [xt, yt], and which also
satisfies ψαt(x

t+1) ≤ ψαt(z
t) for some zt+1 := xt + ℓtd

t satisfying the Armijo Rule.

4. (Termination criterion): If xt is acceptable → Stop. Otherwise, go to Step 1 with t := t+1.

For this algorithm, we have the following result, combining [Pat98b, Theorem 6.15, Corol-
lary 6.17, and Theorem 9.17]:

Theorem 4.21 (Asymptotic convergence of a CG algorithm for VIP). In the algorithm of Table 3,
there exists a finite integer τ such that αt = ᾱ > 0 for all t ≥ τ . Therefore, after a finite number
of iterations, the algorithm is a closed descent algorithm for VIP(M,X), to whose unique solution
the sequence {xt} converges, and {ψαt(x

t)} → 0.

This result establishes that a large class of closed CG algorithms, among which is the
class of NSD algorithms, based on the monotonic decrease of a merit function for the vari-
ational inequality has asymptotic convergence. As an example instance, choosing ϕ(y, x) :=
(1/2)(y − x)TQ(y − x) for some symmetric and positive definite matrix Q ∈ ℜn×n reduces the
above algorithm to a general multidimensional version of Fukushima’s [Fuk92] gap minimization
algorithm. Corollary 4.45 of [Pat98b] establishes an upper bound on ᾱ to be ‖Q‖/(2mM ), where
mM is the modulus of strong monotonicity of M .

In order to establish the conclusions of the two main finiteness results, Theorems 4.15 and
4.20, also for applications to VIP, we will follow their proofs and discuss what needs to be
changed or specialized. In our analysis, every definition of Section 3 and 4 which includes ∇f is
generalized to VIP by replacing it with the mapping M . (Definition 4.18 will below be extended
to this more general case by first considering an equivalent restatement.)

4.4.2 Finite identification of the optimal face

We first seek to reach the conclusion of Theorem 4.15. To this end, note first that every condition
of the theorem is either kept as is or extended through the identification mentioned above. (The
condition {∇Xf(ŷt)} → 0n is replaced by {PTX(ŷt)[−M(ŷt)]} → 0n.)

Turning to the analysis of the proof of Theorem 4.15, Theorem 4.10 is immediately extended
to the present situation. Second, noting that Proposition 3.2 also extends immediately, we
can trace the proof of Theorem 4.12.b until we reach the stage where Theorem 3.6 is invoked.
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Stopping to analyze this result in detail, we note first that if we specialize the result to the
algorithm class defined in Table 3 (except of course for the crude column dropping rule present
there, and the crude solution of the RMP to be replaced by the extension of Assumption 4.11
to VIP), then for each t, unless a solution to VIP(M,X) is at hand, M(xt)T(yt − xt) < 0 must
hold, since the merit function then is strictly positive and the assumptions on ϕ imply that
ϕ(yt, xt) ≥ 0. Tracing the proof of Theorem 3.6, we see that with ∇f replaced by M , (10) is
established. Further, the above, together with (10), ensures that yt /∈ aff (X̄t), as desired. With
this simple change, we can now reach the conclusion that the inner approximations are simplices
also in the context of VIP(M,X). The remaining result to be studied, Theorem 4.14.b, was
already in Patriksson [Pat98b, Corollary 7.10] established to immediately extend to the case of
the VIP. This concludes the analysis of Theorem 4.15 in this more general setting.

We summarize the above development: the finite identification of the optimal face is ensured
under the identical conditions for the cases of CDP and VIP, as long as the CG algorithm is based
on NSD. We also note that for this particular result, no convexity (respectively, monotonicity)
assumption on f (respectively, M) is necessary.

4.4.3 Finite identification of an optimal solution

In order to reach the conclusion of Theorem 4.20 in the setting of VIP(M,X), we begin by
extending the concept of weak sharpness of the set SOL(f,X). Patriksson [Pat98b, Section
7.1.4] used an equivalent definition of weak sharpness stated in [BuF93] for the case of a convex
function f , and used its extension to the VIP as a definition of weak sharpness of the set
SOL(M,X), as follows: for any x∗ ∈ SOL(M,X),

−M(x∗) ∈ int
⋂

x∈SOL(M,X)

[TX(x) ∩NSOL(M,X)(x)]
◦. (18)

Later, Marcotte and Zhu [MaZ98] used this definition to establish an extension of Theorem 4.19.
Before turning to this result, we first, however, introduce a further assumption on the mapping
M . Recall that Theorem 4.19 relies heavily on the invariance of ∇f on SOL(f,X) in the convex
case. In order to extend the theorem to the case of VIP, Marcotte and Zhu [MaZ98, Theorem
4.3] establish that M is invariant on SOL(M,X), as desired, when M is pseudo-monotone+ on
X, that is, when M is pseudo-monotone on X and

F (y)T(x− y) ≥ 0
F (x)T(x− y) = 0

}
=⇒ F (x) = F (y), x, y ∈ X.

We next state an extension of Theorem 4.19.

Theorem 4.22 (Finite convergence characterization, [MaZ98, Theorem 5.2]). Assume that M is
pseudo-monotone+ and that SOL(M,X) is a set of weak sharp solutions to VIP(M,X). Assume
that {zt} ⊂ X converges to SOL(M,X). Then, there exists an integer τ such that

{PTX (zt)[−M(zt)]} → 0n

⇐⇒

zt ∈ SOL(M,X), t ≥ τ.

We are now ready to extend Theorem 4.20. The new conditions having been stated already,
we turn to the proof. First, we replace [BuF93, Theorem 4.1] with [MaZ98, Theorem 4.3].
Next, we replace Theorem 4.19 with Theorem 4.22, concluding that the columns generated are
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optimal after a finite number of steps. Further, Theorem 4.16 was extended to VIP in [Pat98b,
Corollary 7.12]. Finally, Theorem 4.12.b has been declared valid for the case of the VIP already
above. This concludes the analysis of the theorem, which we hence have shown is valid also for
the case of VIP, again, when the algorithm is based on NSD.

We note finally that Theorem 4.20 was established under a convexity assumption on f ,
whereas M was here assumed to be pseudo-monotone+. When M = ∇f , the latter is actually
a milder assumption (take f(x) := −x2 − x and X := [0, 1]). It follows that we can replace
convexity by pseudo-convexity+ in Theorem 4.20. (Consequently, Theorem 4.19 can be thus
extended also.)

5 A numerical example

We illustrate the performance of the new class of algorithms with the study of a medium-scale
example. (The forthcoming paper [GMP02] addresses a more ambitious computational study.)

The problem considered is a single-commodity nonlinear network flow problem with separable
link costs. In order to assess the efficiency and convergence properties of the new class of
algorithms, instances of it were coded, and compared with simplicial decomposition. We coded
the following algorithms:

SD Simplicial decomposition;

FW Frank–Wolfe;

N An instance of NSD (cf. Section 2.3) in which the new column is defined by the subproblem
of Newton’s method, the quadratic programming problem being solved inexactly by using
3 iterations of the Frank–Wolfe algorithm;

P An instance of NSD in which the new column is defined by the subproblem of the Goldstein–
Levitin–Polyak gradient projection algorithm ([Gol64, LeP66]), the quadratic program-
ming problem being solved inexactly by using 5 iterations of the Frank–Wolfe algorithm;

SD/SD An instance of the new algorithm in which 7 iterations of simplicial decomposition on
the original problem is used to define the new column;

SD/FW An instance of the new algorithm in which 10 iterations of the Frank–Wolfe algorithm
on the original problem is used to define the new column.

In all these cases, a prolongation according to (6) is performed from the respective subproblem
solution to define the column stored. Further, each restricted master problem is solved using 5
iterations of the projected Newton method ([Ber82]).

The nonlinear single-commodity network flow problem (NSNFP) is defined by a directed
graph (N ,A) with n nodes and m links. For each node i ∈ N a scalar si is given, where si is the
source or sink flow (imbalance) at node i, and for each link (i, j) ∈ A a convex and continuously
differentiable function fij : ℜ+ 7→ ℜ is given, as well as a flow xij, which is furthermore subject to
an upper bound uij > 0. The nonlinear single-commodity network flow problem with separable
link cost functions is

minimize
x

f(x) :=
∑

(i,j)∈A

fij(xij),

subject to
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = si, i ∈ N , [NSNFP]

0 ≤ xij ≤ uij , (i, j) ∈ A.

The test network is shown in Figure 1. It consists of 22 nodes and 120 links. The link
cost functions are fij(xij) := xij lnxij for all (i, j) ∈ A. The parameters si are sO := 100,
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sD := −100, and si := 0 for all i ∈ {1, . . . , 20}. The link capacities are uij := ∞, that is,
the example is a uncapacitated problem. The feasible region then is a polyhedron defined by
100 extreme points. The optimal solution is in the relative interior of the polyhedron and the
optimal value of the problem is f(x∗) = 200 ln(10). This value is used to calculate the relative
error of the result provided by the algorithms.
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Figure 1: A traffic network.

The algorithms were coded in the Fortran Visual Workbench Programming language, and
executed on a PC with 384 Megabytes of RAM and a 400 MHz clock processor. The NSNFP
was solved with predefined tolerances, measured by the relative errors 10−1, 10−2, 10−3, 10−4,
and 10−5; the relative error is defined by (f(x) − f(x∗))/f(x∗) for any given feasible flow x.

Table 4: Computational results

Accuracy SD FW N P SD/SD SD/FW

10−1
CPU
Iter.
Columns

5.66
64
64

0.61
69
1

5.87
63
63

0.39
16
14

0.66
10
10

0.44
9
9

10−2
CPU
Iter.
Columns

17.80
98
98

0.88
102

1

17.63
96
96

0.66
22
20

1.04
15
15

0.49
11
11

10−3
CPU
Iter.
Columns

20.38
103
100

1.54
168

1

20.21
101
98

0.88
26
24

1.10
16
16

0.60
13
13

10−4
CPU
Iter.
Columns

23.01
108
100

4.67
486

1

20.70
102
98

1.76
38
36

1.43
20
20

0.88
17
17

10−5
CPU
Iter.
Columns

25.65
113
100

37.13
4221

1

21.75
104
100

3.41
51
49

2.69
32
32

1.43
25
25

The computational results are shown in Table 4. For each tolerance used, the first row gives
the CPU time in seconds, the second one the number of main iterations (or, restricted master
problems), and the last row gives the number of columns stored in the last RMP. To compute
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the total number of extreme points generated during the execution of an algorithm (a number
which is equal to the number of linear subproblems solved in the Frank–Wolfe algorithm, which
are shortest path calculations), one multiplies the number of iterations by the number of extreme
points generated in each iteration. For example, if in SD/SD 32 main iterations have been used,
and in each of them 7 extreme points are generated, then the total number of columns generated
will be 224.

The conclusion is that the algorithms SD/FW and SD/SD are much more efficient than SD
for solving this problem instance. The new algorithms solve a lower number of restricted master
problems, using a smaller number of variables. SD solves 113 RMPs, and the last ones have a
size of 100 variables. In these last iterations, the RMPs coincide with the original problem, in
contrast to SD/FW, which uses only 25 RMPs, with a maximum size of 25 columns in defining
a solution with a similar quality.

The number of extreme points generated in each algorithm depends on the accuracy required.
For example, the SD and the SD/SD algorithms, for the accuracies of 10−1, 10−2, and 10−3,
generate almost the same number of extreme points: 64/90, 98/105 and 103/102, respectively,
so the computational cost in the subproblem phases is roughly the same. The SD/FW algorithm
uses somewhat more extreme points (250), but the greater computational cost in the column
generation problem is compensated by a large reduction in the computational cost in the RMP.

In relation with the NSD algorithms N and P, the improvement can be explained by the
fact that the Frank-Wolfe algorithm is applied directly on the original problem and not on a
quadratic approximation. The behaviour of the algorithm N during the first iterations is due to
the ill-conditioning of the Hessian matrix.
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