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Abstra
tThe paper provides two 
ontributions. First, we present new 
onvergen
e results for 
onditional"-subgradient algorithms for general 
onvex programs. The results obtained here extend the
lassi
al ones by Polyak [Pol67, Pol69, Pol87℄ as well as the re
ent ones in [CoL93, LPS96,AIS98℄ to a broader framework. Se
ondly, we establish the appli
ation of this te
hnique tosolve non-stri
tly 
onvex{
on
ave saddle point problems, su
h as primal-dual formulations oflinear programs. Contrary to several previous solution algorithms for su
h problems, a saddle-point is generated by a very simple s
heme in whi
h one 
omponent is 
onstru
ted by meansof a 
onditional "-subgradient algorithm, while the other is 
onstru
ted by means of a weightedaverage of the (inexa
t) subproblem solutions generated within the subgradient method. The
onvergen
e result extends those of [Sho85, ShC96, LPS99℄ for Lagrangian saddle-point problemsin linear and 
onvex programming, and of [PeP97℄ for a linear{quadrati
 saddle-point problemarising in topology optimization in 
onta
t me
hani
s.Key words: Convex programming, nonlinear programming, game theory, large-s
ale opti-mization



1 Introdu
tionConsider the 
onvex{
on
ave saddle-point problem to �nd(x�; y�) 2 X � Y : L(x�; y) � L(x�; y�) � L(x; y�); 8(x; y) 2 X � Y: [SP℄We assume that X � <n and Y � <m are non-empty, 
onvex and 
ompa
t sets, and L :X�Y 7! < is 
onvex{
on
ave and �nite (hen
e 
ontinuous) on X�Y , that is, 
onvex (
on
ave)in x (y) on X (Y ) for every �xed value of y 2 Y (x 2 X). We note that in what is to follow, the
ompa
tness assumption on X � Y 
an be repla
ed by some 
oer
ivity assumption on L withrespe
t to X � Y (e.g., Hiriart-Urruty and Lemar�e
hal [HiL93, p. 334℄).Under the above assumptions on the problem [SP℄, there exists a saddle-point, (x�; y�), of Lon X � Y , the set of whi
h is a Cartesian produ
t whi
h we will denote by X� � Y �. Further,for any 
hoi
e of (x�; y�) 2 X� � Y �,v� = L(x�; y�) = minimumx2X maximumy2Y L(x; y) = maximumy2Y minimumx2X L(x; y):(These results are 
olle
ted, for example, in [HiL93, Se
tion VII.4℄.)The algorithm to be presented in the next se
tion atta
ks the problem by means of solvingthe following equivalent 
onvex problem:minimizex2X f(x); [P℄wheref(x) := maximumy2Y L(x; y); x 2 X: (1)We shall denote the set of solutions to the problem (1) by Y (x). An "-optimal solution, ~y, tothe problem (1) is 
hara
terized by the relationL(x; ~y) � f(x)� "; (2)for some ~y 2 Y and " � 0.Example 1 (
onvex programming). An interesting appli
ation of [SP℄ is to 
onvex programming,where L(x; y) := h(x) + yTg(x), 
orresponding to the Lagrangian of the problem tominimizex2X\G h(x); [CP℄where h : <n 7! < is a 
onvex fun
tion, the 
onvex set G is des
ribed by means of 
onvexinequalities,G := fx 2 <n j gi(x) � 0; i = 1; : : : ;m g;where gi : <n 7! < is 
onvex for ea
h i, and Y = <m+ . For this problem, we assume that X isbounded, and the Slater 
onstraint quali�
ation that the set fx 2 X j g(x) < 0 g is nonempty(see Bazaraa et al. [BSS93, Theorem 6.2.4℄). Under this CQ, the set Y � is 
ompa
t. Assuming wemay somehow restri
t the set Y to be a 
onvex and 
ompa
t set in
luding Y �, we thereby ful�llall the 
onditions on the problem [SP℄. The problem [P℄ 
orresponds to the (
onvex) Lagrangiandual problem to maximizey2<m+ �(y), where �(y) := minimumx2X L(x; y).1



For solving the problem [P℄, we utilize 
onditional "-subgradient optimization, whi
h extendstraditional subgradient optimization, as analyzed, for example, in Shor [Sho85℄, to possiblyinexa
t 
al
ulations of subgradients and to generating sear
h dire
tions whi
h take the feasibleset X into a

ount. (The latter extension of traditional subgradient optimization was analyzedin depth �rst in [LPS96℄.) Thus, we generate a point in X�. In order to generate a point inY �, we propose to build the sequen
e of weighted averages of the (possibly inexa
t) solutionsto (1), generated while sear
hing for a point in X�. We establish that this sequen
e 
onvergesto the set Y �, provided that the step lengths utilized in the pro
ess of �nding a point in X� bythe subgradient algorithm, and the weights used in 
onstru
ting a point in Y �, are both 
hosenappropriately.Some words on notation. The notation k � k denotes the Eu
lidean norm; for a nonempty,
losed, and 
onvex set S � <n, the normal 
one to S isNS(x) := (f z 2 <n j zT(y � x) � 0; 8y 2 S g; x 2 S;;; x =2 S;the indi
ator fun
tion to S is S(x) := (0; x 2 S;+1; x =2 S:We have that the subdi�erential operator of  S , � S , equals NS. Further,proj (x; S) := argminy2S ky � xkdenotes the (Eu
lidean) proje
tion of the ve
tor x onto the set S; we further introdu
edist (x; S) := miny2S ky � xkto denote the Eu
lidean distan
e from the point x to its proje
tion proj (x; S) onto S. Finally,we introdu
e, for any � � 0,X� := fx 2 X j f(x) � f� + � g;that is, the lower level set of f 
orresponding to �-optimal solutions to the problem [P℄. (So,X0 = X�.)The subje
t of the next se
tion is the 
onvergen
e of 
onditional "-subgradient optimizationalgorithms. Se
tion 3 presents the overall algorithm and establishes its 
onvergen
e to a saddle-point.2 Convergen
e of 
onditional "-subgradient optimizationOur �rst result establishes a simple relationship between "-optimal solutions to (1) given x 2 Xand "-subgradients of f at x. We �rst note that 
"(x) is an "-subgradient of f at x [that is,
"(x) is an element of the "-subdi�erential, �"f(x), of f at x℄ for some " � 0 if and only iff(z) � f(x) + 
"(x)T(z � x)� "; z 2 <n; (3)the de�nition of a subgradient [that is, an element of the subdi�erential℄ follows by setting " = 0.Proposition 2 ("-optimal solutions provide "-subgradients). Suppose that, given x 2 X, ~y is an"-optimal solution to (1). Then, any subgradient ~
(x) of L(�; ~y) at x is an "-subgradient to f atx. 2



Proof. Fix any x 2 X and " � 0. For an arbitrary z 2 X then follows thatf(z) � L(z; ~y) � f(x) + [L(z; ~y)�L(x; ~y)� "℄ � f(x) + ~
(x)T(z � x)� ";whi
h yields that ~
(x) 2 �"f(x), the �rst inequality 
oming from the de�nition of the value f(z),the se
ond inequality following from the "-optimality of ~y in (1), and the right-most inequalityfollowing from the 
onvexity of L(�; ~y).Example 1 (
ontinued). For the spe
ial 
ase of the problem [CP℄, the above result states that an"-optimal solution to the Lagrangian subproblem provides an "-subgradient of the Lagrangiandual fun
tion �. This property was des
ribed independently by Larsson et al. [LPS99℄ andBertsekas [Ber99, p. 615℄, but is most probably folklore, and a mu
h older result.Given the iteration point xt at iteration t, let 
"t(xt) be an "t-subgradient of f at xt 2 X.Let 
X"t (xt) be a 
onditional "t-subgradient of f at xt 2 X, that is, 
X"t (xt) = 
"t(xt) + �(xt)for some �(xt) 2 NX(xt). (This is equivalent to repla
ing z 2 <n with z 2 X in (3) or, inother words, 
X"t (xt) is an element of the "t-subdi�erential of the fun
tion f +  X at xt; see[DeS78, LPS96℄.) We will in the following analyze the 
onvergen
e of 
onditional "-subgradientalgorithms for the solution of [P℄ using the divergent series step length rule,�t > 0; 8t; limt!1�t = 0; and 1Xt=0 �t =1; (4)in 
ases also under the additional requirement that1Xt=0 �2t <1; (5)and under di�erent s
alings of the sear
h dire
tions.In the analysis that follows, it is assumed that the sequen
es are in�nite. In the 
ase that
X"t (xt) = 0 for some t, xt is "t-optimal in [P℄, and the pro
edure may be terminated (or theiteration 
onsidered void and the value of "t de
reased).For the sake of rea
hing a maximal generality, the analysis in this se
tion for the problem[P℄ will ignore that its origin is the saddle-point problem dis
ussed in the previous se
tion,and hen
e assume temporarily that f : <n 7! < is a general 
onvex fun
tion, and drop theassumption that the nonempty, 
losed and 
onvex set X is ne
essarily bounded. Although wewill study the problem only under the assumption that there exist optimal solutions to [P℄, wenote that the algorithms des
ribed below are optimizing in the sense that lim inft!1 f(xt) =f� := infx2X f(x) holds even if X� is empty.2.1 Divergent series step lengths, uns
aled dire
tionWe begin by 
onsidering uns
aled dire
tions.The 
onditional "-subgradient optimization method is given byxt+ 12 := xt � �t
X"t (xt); xt+1 := proj�xt+ 12 ;X� ; t = 0; 1; : : : : (6)We note that the requirements of the algorithm are (a) that we have at hand a 
onvergentalgorithm for solving the problem (1), (b) a pro
edure for generating subgradients of L(�; yt"t),where yt"t is an "t-optimal solution to the problem (1) given xt, and (
) that proje
tions onto Xare easily performed. In the 
ase of the problem [CP℄ solved via its Lagrangian dual, the lattertwo requirements are of 
ourse trivial to ful�ll.Our main 
onvergen
e result for the method (6), (4) establishes 
onvergen
e to the optimalset X�. 3



Theorem 3 (
onvergen
e to the optimal set using divergent series step lengths). Let fxtg begenerated by the method (6), (4) applied to [P℄. If X� is bounded, <+ 3 f"tg ! 0, and thesequen
e f
X"t (xt)g is bounded, then ff(xt)g ! f� and fdist (xt;X�)g ! 0.Proof. Let Æ > 0 and BÆ = fx 2 <n j kxk � Æ g. Sin
e f is 
onvex, X is nonempty, 
losedand 
onvex, and X� is bounded, it follows (from Ro
kafellar [Ro
70, Theorem 27.2℄, applied tothe lower semi
ontinuous, proper and 
onvex fun
tion f +  X) that there exist � = �(Æ) > 0and � = �(Æ) > 0 su
h that the lower level set X�(1+�) � X� +BÆ=2. Moreover, sin
e f
X"t (xt)gis bounded and f�tg ! 0, there exists an N(Æ) su
h that �tk
X"t (xt)k2 � �, "t � ��, and�tk
X"t (xt)k � Æ=2 for all t � N(Æ).The sequel of the proof is based on indu
tion and is organized as follows. In the �rst part,we show that there exists a �nite t(Æ) � N(Æ) su
h that xt(Æ) 2 X� + BÆ. In the se
ond part,we establish that if xt belongs to X� +BÆ for some t � N(Æ) then so does xt+1; this is done byshowing that dist (xt+1;X�) < dist (xt;X�), or xt 2 X� so that xt+1 2 X� + BÆ sin
e the steptaken is not longer than Æ=2.Let x� 2 X� be arbitrary. In every iteration t we then have


x� � xt+1


2 = 


x� � proj �xt � �t
X"t (xt);X�


2 � 


x� � xt + �t
X"t (xt)


2= 


x� � xt


2 + �t �2
X"t (xt)T �x� � xt�+ �t 



X"t (xt)


2� ; (7)where the inequality follows from the proje
tion property. Now, suppose that2
X"s (xs)T (x� � xs) + �s 



X"s(xs)


2 < �� (8)for all s � N(Æ). Then, using (7) repeatedly, we obtain that for any t � N(Æ),


x� � xt+1


2 < 


x� � xN(Æ)


2 � � tXs=N(Æ)�s;and from (4) it follows that the right-hand side of this inequality tends to minus in�nity ast!1, whi
h 
learly is impossible. Therefore,2
X"t (xt)T �x� � xt�+ �t 



X"t (xt)


2 � �� (9)holds for at least one t � N(Æ), say t = t(Æ). From the de�nition of N(Æ), it follows that
X"t(Æ)(xt(Æ))T (x� � xt(Æ)) � ��. By 
onvexity we have that f(x�) � f(xt(Æ)) � 
X"t(Æ)(xt(Æ))T (x� �xt(Æ)) � "t(Æ), sin
e x�; xt(Æ) 2 X. Hen
e, f(xt(Æ)) � f� + � + "t(Æ), that is, xt(Æ) 2 X�+"t(Æ) �X�(1+�) � X� +BÆ=2 � X� +BÆ.Now, suppose that xt 2 X� + BÆ for some t � N(Æ). If (8) holds, then, using (7), we havethat kx� � xt+1k < kx� � xtk for any x� 2 X�. Hen
e,dist (xt+1;X�) � 


proj (xt;X�)� xt+1


 < 


proj (xt;X�)� xt


 = dist (xt;X�) � Æ:Thus, xt+1 2 X� + BÆ. Otherwise, (9) must hold and, using the same arguments as above, weobtain that f(xt) � f� + �+ "t � f� + �(1 + �), i.e., xt 2 X�(1+�) � X� +BÆ=2. As


xt+1 � xt


 = 


proj �xt � �t
X"t (xt);X�� xt


 � 


xt � �t
X"t (xt)� xt


 = �t 



X"t (xt)


 � Æ2whenever t � N(Æ), it follows that xt+1 2 X� +BÆ=2 +BÆ=2 = X� +BÆ.By indu
tion with respe
t to t � t(Æ), it follows that xt 2 X� + BÆ for all t � t(Æ). Sin
ethis holds for arbitrarily small values of Æ > 0 and f is 
ontinuous, the theorem follows.4



Remark 4 (on the 
onvergen
e 
onditions). From the proof, the requirement that f
X"t (xt)g isbounded 
an be repla
ed by the weaker requirement that f�tk
X"t (xt)k2g ! 0 holds. Further, ifX is bounded, and not just the set X�, then the sequen
e f
"t(xt)g is bounded automati
ally,while the sequen
e f�(xt)g may always be 
onstru
ted so that it is bounded. For more detailson the possible 
hoi
es of this sequen
e, we refer to [LPS96℄.Remark 5 (relations). With "t = 0, Theorem 3 redu
es to a result by Larsson et al. [LPS96℄.Further letting �t = 0n redu
es the algorithm to traditional subgradient optimization, and theresult to one by Ermol'ev [Erm66, Se
tion 9℄.2.2 Divergent series step lengths, s
aled dire
tionThe s
aled 
onditional "-subgradient optimization method is given byxt+ 12 := xt � �t 
X"t (xt)k
X"t (xt)k ; xt+1 = proj �xt+ 12 ;X� ; t = 0; 1; : : : ; (10)given some rule for 
hoosing f�tg.This s
aling of the sear
h dire
tion allows us to remove the 
ondition that the sequen
ef
X"t (xt)g is bounded.Theorem 6 (
onvergen
e to the optimal set using divergent series step lengths). Let fxtg begenerated by the method (10), (4) applied to [P℄. If X� is bounded and <+ 3 f"tg ! 0, thenff(xt)g ! f� and fdist (xt;X�)g ! 0.Proof. The proof te
hnique is similar to that of Theorem 3. We de�ne �t := 



X"t (xt)


. Thede�nition of N(Æ) is here altered to mean that for all t � N(Æ), �t � �, "t � �� and �t � Æ=2.The inequality (7) is here repla
ed by


x� � xt+1


2 � 


x� � xt


2 + �t � 2�t
X"t (xt)T �x� � xt�+ �t� ;and, 
onsequently, (8) by2�t
X"s(xs)T (x� � xs) + �s < ��:We 
on
lude as in the previous proof that2�t
X"t (xt)T �x� � xt�+ �t � ��holds for at least one t � N(Æ), say t = t(Æ), whi
h implies that 
X"t(Æ)(xt(Æ))T (x��xt(Æ)) � ���t(Æ),and, by 
onvexity, that f(xt(Æ)) � f� + ��t(Æ) + "t(Æ), that is, xt(Æ) 2 X��t(Æ)+"t(Æ) � X�(�t(Æ)+�) �X� +BÆ=2 � X� +BÆ.The rest of the proof follows as in the proof of Theorem 3, noting that


xt+1 � xt


 = 




proj  xt � �t 
X"t (xt)�t ;X!� xt




 � 




xt � �t 
X"t (xt)�t � xt




 = �t � Æ2 ; t � t(Æ):The result follows.Remark 7 (relations). With �t = 0n, the result redu
es essentially to one by Polyak [Pol67℄,[Pol87, pp. 144{145℄ (the �rst one also assumes that "t = 0, while the se
ond one also assumesthat X = <n). Convergen
e is there established only for the sequen
e ff(xt)g). In [Alb83,SoZ98℄, 
onvergen
e results are established for a subgradient algorithm (still assuming that�t = 0n holds), where the sear
h dire
tion is given by �(
(xt) + rt), where frtg � <n is asequen
e of error ve
tors whi
h tends to zero ([Alb83℄) or stays bounded ([SoZ98℄).5



2.3 Quadrati
ally 
onvergent step lengths, non-s
aled dire
tionWe now introdu
e the additional requirement that (5) holds. As 
an be seen from the proofof the below theorem, this step length 
ondition implies the boundedness of the sequen
e ofiterates, when
e that boundedness 
ondition, present in Theorem 3, here 
an be removed.Theorem 8 (
onvergen
e to an optimal solution using divergent series step lengths). Let fxtg begenerated by the method (6), (4), (5) applied to [P℄. If <+ 3 f"tg ! 0, the sequen
e f
X"t (xt)gis bounded, and if P1s=0 �s"s <1, then fxtg 
onverges to an element of X�.Proof. Let x� 2 X�. De�ne �t := 



X"t (xt)


. In every iteration t we have that


x� � xt+1


2 = 


x� � proj �xt � �t
X"t (xt);X��


2 � 


x� � xt + �t
X"t (xt)


2= 


x� � xt


2 + �t �2
X"t (xt)T �x� � xt�+ �t�2t� ; (11)where the inequality follows from the proje
tion property. Repeated appli
ation of (11) yieldsthat 


x� � xt


2 � 


x� � x0


2 + 2 t�1Xs=0�s
X"s(xs)T (x� � xs) + t�1Xs=0�2s�2s: (12)Sin
e x� 2 X� and 
X"s (xs) 2 �X"sf(xs) for all s � 0 we obtain thatf(xs) � f� � f(xs) + 
X"s (xs)T (x� � xs)� "s; s � 0; (13)and hen
e that 
X"s(xs)T (x��xs) � "s for all s � 0. We de�ne 
 := suptf�tg, p :=P1t=0 �2t , andd := P1s=0 �s"s. From (12) we then 
on
lude that kx� � xtk2 < kx� � x0k2 + p
2 + 2d for anyt � 1, and thus that the sequen
e fxtg is bounded.Assume now that there is no subsequen
e fxtig of fxtg with f
X"ti (xti)T (x� � xti)g ! 0.Then there must exist an � > 0 with 
X"s (xs)T (x� � xs) � �� for all suÆ
iently large valuesof s. From (12) and the 
onditions on the step lengths it follows that fkx� � xtkg ! �1,whi
h 
learly is impossible. The sequen
e fxtg must therefore 
ontain a subsequen
e fxtig su
hthat f
X"ti (xti)T (x� � xti)g ! 0. From (13) and the assumption that f"tg ! 0 it follows thatff(xti)g ! f�. The boundedness of fxtg implies the existen
e of an a

umulation point of fxtig,say x1. From the 
ontinuity of f follows that x1 2 X�.To show that x1 is the only a

umulation point of fxtg, let Æ > 0 and let M(Æ) be su
h thatkx1 � xM(Æ)k2 � Æ=3, P1s=M(Æ) �2s � Æ=(3
2), and P1s=M(Æ) �s"s � Æ=6. Consider any t > M(Æ).Analogously to the derivation of (12), and using (13), we then obtain that


x1 � xt


2 � 


x1 � xM(Æ)


2 + t�1Xs=M(Æ)�2s�2s + 2 t�1Xs=M(Æ)�s"s < Æ3 + Æ3
2 
2 + 2Æ6 = Æ:Sin
e this holds for arbitrarily small values of Æ > 0, the theorem follows.Remark 9 (relations). With �t = 0n and X = <n, the result redu
es to one in Correa andLemar�e
hal [CoL93℄. With "t = 0 the result redu
es to one obtained in Larsson et al. [LPS96℄.Under the assumption that X = <n, Polyak [Pol87, Se
tion 5.5℄ establishes the 
onvergen
e ofinexa
t subgradient algorithms where the sear
h dire
tion is �(
(xt) + rt), and where the errorsequen
e frtg tends to zero, stays bounded or is some random sequen
e of ve
tors with boundedvarian
e. 6



2.4 Quadrati
ally 
onvergent step lengths, s
aled dire
tionWhen introdu
ing a s
aling of the step dire
tion in the 
ase of "-subgradients and the use of thequadrati
ally 
onvergent step length rule (5), not only do we need to introdu
e the 
onditionthat P1s=0 �s"s < 1 holds (as in Se
tion 2.3), but we also need to ensure that the length ofthe step dire
tion does not tend to zero too qui
kly. Hen
e, the norm of the dire
tion ve
toris proje
ted onto the half-line f ` j ` � 1 g. We further note that the s
aling again allows us toremove the 
ondition that f
X"t (xt)g is bounded.The s
aled 
onditional "-subgradient optimization method is given byxt+ 12 := xt � �t 
X"t (xt)maxf1; k
X"t (xt)kg ; xt+1 = proj �xt+ 12 ;X� ; t = 0; 1; : : : : (14)Theorem 10 (
onvergen
e to an optimal solution using divergent series step lengths). Let fxtgbe generated by the method (14), (4), (5) applied to [P℄. If <+ 3 f"tg ! 0 and P1s=0 �s"s <1,then fxtg 
onverges to an element of X�.Proof. The proof follows the same line of arguments as that of Theorem 8. Let �t := k
X"t (xt)kand �t := maxf1; �tg. Let x� 2 X�. Analogously to the proof of Theorem 8, we obtain for everyt that


x� � xt+1


2 � 


x� � xt


2 + �t�t  2
X"t (xt)T �x� � xt�+ �t�2t�t ! :Used repeatedly, we obtain


x� � xt


2 � 


x� � x0


2 + 2 t�1Xs=0 �s�s 
X"s(xs)T (x� � xs) + t�1Xs=0 �2s�2s�2s : (15)From (13) and (15) we then obtain thatkx� � xtk2 � kx� � x0k2 + 2 t�1Xs=0 �s"s�s + t�1Xs=0 �2s�2s�2s � kx� � x0k2 + 2 t�1Xs=0�s"s + t�1Xs=0�2s;so the sequen
e fxtg is bounded, from the assumptions on the step lengths.That every a

umulation point of fxtg is optimal then follows as in the proof of Theorem 8,using (15) in pla
e of (12), and noting that �t=�t � 1 for all t.To show that x1 is the only limit point of fxtg, let Æ > 0 and let M(Æ) be su
h thatkx1 � xM(Æ)k2 � Æ=3, P1s=M(Æ) �2s � Æ=3, and P1s=M(Æ) �s"s � Æ=6. Consider any t > M(Æ).Analogously to the derivation of (15), and using (13) and again noting that �t=�t � 1 for all t,we then obtain that


x1 � xt


2 � 


x1 � xM(Æ)


2 + t�1Xs=M(Æ) �2s�2s�2s + 2 t�1Xs=M(Æ) �s"s�s < Æ3 + Æ3 + 2Æ6 = Æ:Sin
e this holds for arbitrarily small values of Æ > 0, this 
ompletes the proof.Remark 11 (relations). With "t = 0 the result redu
es to one in Larsson et al. [LPS96℄. With�t = 0n the result redu
es to ones previously rea
hed by Polyak [Pol67℄,1 and Alber et al. [AIS98℄(where the 
ondition thatP1s=0 �s"s <1 holds is repla
ed by the 
ondition that "t � ��t, � > 0for all t).Having presented some generally useful results on the 
onvergen
e of 
onditional "-subgradientalgorithms in 
onstrained, 
onvex optimization, we now turn to the solution of the saddle-pointproblem [SP℄ whi
h will use a subset of the results obtained in this se
tion.1Polyak [Pol69℄ established that this algorithm 
annot be linearly 
onvergent, and pro
eeded to introdu
e thestep length rule that bears his name. 7



3 Ergodi
 
onvergen
e to the set of saddle-pointsIn order to solve the saddle-point problem [SP℄ it is in general not enough to �nd any solution tothe maximization problem over y with x �xed to a value x� 2 X�, as dis
ussed, for example, inHiriart-Urruty and Lemar�e
hal [HiL93, Remark VII.4.2.6℄, unless L is stri
tly 
on
ave in y. (The
orresponding result in the 
ase of the 
onvex program [CP℄ is known as the non-
oordinabilityphenomenon; see, e.g., [Las70℄.) We will establish that an ergodi
 (that is, averaged) sequen
eof the inexa
t solutions yt"t to the problem (1), generated from the sequen
e xt in the abovesubgradient algorithm, tends to Y �. Before moving on to state and establish this result, we willhowever dis
uss some related algorithms.Under an assumption that L is stri
tly 
onvex{
on
ave, it is known that f , de�ned in (1), is
ontinuously di�erentiable, with rf(x) = rxL(x; y) from Danskin's Theorem [Dan67℄, y beingthe unique solution to (1) given x. In order to produ
e a saddle-point in this situation, it isenough to �nd the minimizer of f over X, and apply (1) to get the 
orresponding 
omponenty of the saddle-point. Algorithms of this type in
lude the des
ent algorithm of Demyanovand Malozemov [DeM74, p. 230℄ and the gradient proje
tion algorithm of Zhu and Ro
kafellar[ZhR93℄. The former referen
e also suggests adding a stri
tly 
onvex{
on
ave quadrati
 term inthe absen
e of stri
t 
onvex{
on
avity, in e�e
t thus produ
ing a proximal point-like algorithm.Kallio and Rusz
zy�nski [KaR94℄ (see also [HeL89, KaR99, Ouo00℄) propose a gradient proje
tionalgorithm de�ned by the partial gradients of the fun
tion L evaluated at perturbed points. (We,however, do not assume L to be di�erentiable.) Kiwiel [Kiw95℄ solves the saddle-point problemthrough the use of a bundle method for the problem [P℄, and establishes that a 
onvergent
omponent in y is generated automati
ally in the sear
h-dire
tion �nding quadrati
 programmingproblems. As for the spe
ial 
ase of the 
onvex program [CP℄, one 
an also envisage applying
olumn generation and/or 
utting plane approa
hes, where 
oordinability is indu
ed throughthe solution of restri
ted master problems; see [LPS99℄ for more detailed dis
ussions.The inspiration for the algorithm proposed here is however mu
h more simple approa
hesto the solution of the problem [CP℄ through the use of Lagrangian dualization, subgradientoptimization, and the 
onstru
tion of an optimal primal solution as simple or weighted averagesof the Lagrangian subproblem solutions. Thus, a saddle-point is generated without solving anyauxiliary problems. The origin is Shor's [Sho85, pp. 116{118℄ work on linear programming,followed by [LaL97, ShC96, BaA00℄ (still in the 
ontext of linear programming, and the latterreferen
e la
king a 
onvergen
e proof), [LLP97℄ for a spe
ial large-s
ale 
onvex programmingproblem arising in transportation planning, and [LPS99℄ for the general 
onvex program [CP℄.The �rst 
onvergen
e result of this type for saddle-point problems not arising from a Lagrangianwas given by Petersson and Patriksson [PeP97℄, who studied a spe
ial su
h large-s
ale problemarising in 
onta
t me
hani
s.In the above algorithms, it is assumed that the 
omputations of the subproblems are per-formed exa
tly. We extend the s
ope of these algorithm not only to the more general 
onvex{
on
ave saddle-point problems, but also to possibly inexa
t solutions of the subproblems. Inthe 
ontext of the problem [CP℄ and subgradient methods, it has previously been shown in[Ber99, ZLW99, ZhL02℄ that 
onvergen
e to the solution to [P℄ 
an be a
hieved through thesolution of inexa
t subproblem solutions, but primal 
onvergen
e results that 
an be extra
tedfrom this development have not been studied previously.The interest in inexa
t 
omputations is perhaps the most pronoun
ed in the solution of 
om-binatorial optimization problems through Lagrangian dualization. (This area is also one whereLagrangian dualization is quite popular.) Although 
ombinatorial optimization problems arenot 
onvex problems in general, and there may not exist a saddle point to su
h a Lagrangian,there does however exist a saddle point for the 
onvexi�ed problem asso
iated with the 
om-binatorial problem and its Lagrangian formulation, and the maximum value of the Lagrangiandual fun
tion is the optimal value of the 
onvexi�ed problem. (Some of this theory is outlined8



by Wolsey [Wol98, Se
tion 10.2℄.) If the relaxation does not satisfy the integrality property (sothat the Lagrangean subproblem 
annot be redu
ed to a linear program), then the Lagrangiansubproblem will be a (potentially) 
omputationally diÆ
ult 
ombinatorial problem, and the useof inexa
t methods su
h as heuristi
s to solve them will therefore be of 
omputational advantage;then, also, the resulting solution will provide an "-subgradient of the Lagrangian dual fun
tion.The s
ope is also extended to in
lude the possible use of 
onditional subgradients. Althoughsu
h an algorithm 
an, in prin
iple, be in
orporated into a standard subgradient algorithm forthe extended obje
tive fun
tion f +  X , this fun
tion is not �nite everywhere, and moreover,it has been found in the numeri
al investigations performed in [LPS96℄ that adding a normal
one element to the sear
h dire
tion 
an substantially enhan
e 
onvergen
e in pra
ti
e for somediÆ
ult problems.
3.1 Preliminaries
The optimality 
onditions for x� in [P℄ is given by

��f(x�) \NX(x�) 6= ; (16)
(e.g., [Ro
81, Proposition 5A and Equation (5.5)℄). The non-
oordinability phenomenon dis-
ussed above, whi
h is inherent in every non-stri
tly 
onvex{
on
ave saddle-point problem, 
anbe equivalently des
ribed as the failure of the entire set ��f(x�) to be in
luded in NX(x�),something whi
h obviously does hold whenever f is di�erentiable at x�. We will establish the
onvergen
e of an averaged (or, ergodi
) sequen
e of subproblem solutions by means of estab-lishing that an averaged sequen
e of the "t-subgradients 
"t(xt) a

umulates at subgradientswhi
h verify optimality in a

ordan
e with (16). The representative algorithm whi
h we have
hosen among those in the previous se
tion is that validated in Theorem 8.The properties of ergodi
 sequen
es of elements generated in a subgradient s
heme have pre-viously been analyzed in [LPS98℄. We extend some of their analysis to the use of "-subgradients.9



Let At := t�1Xs=0�s; (17)byt := A�1t t�1Xs=0�sys"s ; (18)gt := A�1t t�1Xs=0�s
"s(xs); (19)nt
 := A�1t t�1Xs=0�s�s; (20)ntp := A�1t t�1Xs=0(xs+ 12 � xs+1); (21)nt := nt
 + ntp; (22)'t := A�1t t�1Xs=0�sf(xs); (23)ft(x) := A�1t t�1Xs=0�s hf(xs) + (
"s(xs))T(x� xs)� "si ; x 2 X; (24)Æt(x) := f(x)� ft(x); x 2 X; (25)%t(x) := A�1t t�1Xs=0 ��s(�s)T(xs � x) + �xs+ 12 � xs+1�T (xs+1 � x)� ; x 2 X: (26)Here, At is the a

umulated step length up to iteration t, byt the weighted average of the inexa
tsolutions to (1), gt the weighted average of the "s-subgradients of f , and nt
 and ntp ergodi
normal elements and proje
tion steps, respe
tively. We note that fbytg � Y , and this sequen
eis therefore bounded, by the boundedness assumption on Y . Continuing, 't � v� 
learly holds.The aÆne fun
tion ft is derived as a surrogate of the 
onvexity inequality, and therefore Æt(x) � 0on X. Further, sin
e �s 2 NX(xs) and xs+ 12 � xs+1 2 NX(xs+1), %t(x) � 0 on X, and thusde�nes a valid inequality for X.We will establish that any a

umulation point, by1, of the sequen
e fbytg together with thesolution x1 obtained from the subgradient s
heme forms a saddle-point of L.Lemma 12 (Y (�) is a 
losed map). Let the sequen
e fxtg � X, f"tg � <+, the map Y"(�) : X 7!2Y be given by the de�nitionY"(x) := f y 2 Y j L(x; y) � f(x)� " g; x 2 X;and the sequen
e fyt"tg be given by the in
lusion yt"t 2 Y"t(xt). If the sequen
es fxtg ! x andf"tg ! 0, then fdist (yt"t ; Y (x))g ! 0. If, in addition, Y (x) = fyg, then fyt"tg ! y.Proof. By the de�nition of Y"t(xt), L(xt; yt"t) � f(xt) � "t holds for all t. It follows fromthe 
ontinuity of the fun
tions L and f , the 
ompa
tness of X and the 
onstru
tion of the se-quen
e f"tg that y 2 Y (x) holds for any a

umulation point y of the sequen
e fyt"tg. The resultfdist (yt"t ; Y (x))g ! 0 then follows from the boundedness of the sequen
e fyt"tg. The se
ondresult is then immediate. 10



3.2 Main resultsWe next utilize this result to establish that the sequen
e fbytg a

umulates in the set Y (x1),establishing the left-most inequality in [SP℄.Theorem 13 (L(x1; by1) � L(x1; y) for all y 2 Y ). fdist (byt; Y (x1))g ! 0.Proof. Fix any � > 0. By Theorem 8 and Lemma 12, for any large enough � ,dist (ys"s ; Y (x1)) � �=2; s � �:By the 
onvexity of the fun
tion dist (�; Y (x1)) (e.g., [Ro
70, Theorem 4.3℄), we have thatdist (byt; Y (x1)) � A�1t t�1Xs=0�sdist (ys"s ; Y (x1)); s � �:Sin
e fAtg ! 1 and � is �xed, A�1t Pt�1s=� �sdist (ys"s ; Y (x1)) � (1�A�1t A� )�=2 holds for everyt > � . Hen
e, dist (byt; Y (x1)) � � holds for all t > � that are large enough, and the desiredresult follows.The next result, whi
h is a dire
t 
onsequen
e of the de�nition (19) and the inequalitykxs+ 12 � xs+1k � �sk
X"s (xs)k, is the �rst step towards a 
onvergen
e result for the ergodi
sequen
e fgtg.Lemma 14 The sequen
es fgtg and fntg are bounded.The following lemma 
on
erns the 
onvergen
e properties of some of our ergodi
 sequen
es.Lemma 15 fÆt(x1)g ! 0, f%t(x1)g ! 0, and f'tg ! v�. Further, fÆt(xt)g ! 0 andf%t(xt)g ! 0.Proof. By Theorem 8, fxtg ! x1. From the iteration formula (6) it follows thatkxt+1 � x1k2 � kxt � x1k2 + �2t k
X"t (xt)k2� 2��t �
X"t (xt)�T �xt � x1�+ �xt+ 12 � xt+1�T �xt+1 � x1�� :Repeated appli
ation of this inequality and utilizing the de�nitions (23), (25), and (26) resultin kx0 � x1k2 + t�1Xs=0�2sk
X"s (xs)k2 � 2At  Æt(x1) + %t(x1) + 't � v� �A�1t t�1Xs=0�s"s! � 0:Sin
e Æt(x1) � 0, %t(x1) � 0, 't � f�, and At > 0, the immediate result is that0 � Æt(x1) + %t(x1) + 't � f� � 12At  


x0 � x1


2 + t�1Xs=0 ��2s 



X"s (xs)


2 + �s"s�! :Let t!1 and invoke the 
onditions of Theorem 8.For the latter result, we note that the de�nitions (19), (24) and (25) yield0 � Æt(xt) = Æt(x1) + f(xt)� f(x1)� (gt)T(xt � x1); t = 1; 2; : : : :From the de�nitions (19) and (26) follow that0 � %t(xt) = %t(x1)� (nt)T(xt � x1); t = 1; 2; : : : :Theorem 8, Lemma 14, the 
ontinuity of f , and the �rst part of this Lemma yield that the right-hand sides of both the above equations tend to zero as t approa
hes in�nity. The result follows.We will also utilize the following lemma in our 
ontinued analysis, when proving optimalityful�llment of the sequen
e fgtg in the limit. 11



Lemma 16 fgt + ntg ! 0.Proof. By the de�nition (19) and the iteration formula (6),gt + nt = A�1t t�1Xs=0(xs � xs+ 12 + xs+ 12 � xs+1) = A�1t (x0 � xt):Theorem 8 yields that fxtg ! x1. The result then follows from the de�nition (17) and the
ondition (4).We are now ready to establish that the ergodi
 sequen
e fgtg of subgradients a

umulatesat subgradients whi
h verify optimality, a

ording to (16). We divide the result into two parts,extending, respe
tively, Theorem 3.7 and Theorem 3.8 in [LPS98℄ to the use of "-subgradients.Proposition 17 (
onvergen
e of fgtg to �f(x1)). fdist (gt; �f(x1))g ! 0.Proof. The de�nitions (19), (24) and (25) imply that gt is a Æt(x)-subgradient of f at anyx 2 X; applying this result to x = xt yieldsf(y) � f(xt) + (gt)T(y � xt)� Æt(xt); y 2 X:By Lemma 14, the sequen
e fgtg is bounded. Let eg be an a

umulation point of fgtg, 
orre-sponding to a 
onvergent subsequen
e T . Then, by Lemma 15, in the limit of T , from the aboveinequality, we obtain that eg 2 �f(x1). The boundedness of �f(x1) then yields the desiredresult.Proposition 18 (
onvergen
e of fgtg to �NX(x1)). fdist (gt;�NX(x1))g ! 0.Proof. From the de�nition (26) it follows that, for all t and any z 2 X, (nt)T(z � x1) =�%t(z) + %t(x1) � %t(x1). By Lemma 14, the sequen
e fntg is bounded. Let en be an a

umu-lation point of the sequen
e fntgt2T for some 
onvergent subsequen
e T . From Lemma 15 it thenfollows that enT (z � x1) � 0 for any z 2 X. By the 
ontinuity of the fun
tion dist(�; NX (x1)),for any � > 0 and all t that are suÆ
iently large, dist(nt; NX(x1)) < �=2; further, by Lemma 16,kgt + ntk < �=2. This yields that dist(gt;�NX(x1)) � dist(�nt;�NX(x1)) + kgt + ntk < �,and the result follows.Theorem 13 established one of the inequalities in the de�nition of [SP℄; the se
ond inequalitynow follows. (Note that the a

umulation point by1 still is arbitrary.)Theorem 19 (L(x; by1) � L(x1; by1) for all x 2 X). fdist (xt;X(by1))g ! 0.Proof. For every x 2 X,L(x; by1)�L(x1; by1) � f(x)�L(x1; by1) = f(x)� f(x1) � egT(x� x1) � 0;where the �rst inequality follows from the de�nition of f(x) and the fa
t that by1 2 Y , theequality from Theorem 13, and the two �nal inequalities from the 
onvexity of f and, respe
-tively, Propositions 17 and 18.We summarize the results of the Theorems 13 and 19 as follows.Theorem 20 ((x1; by1) solves [SP℄). �dist �(xt; byt); fx1g � Y ��	! 0.12



4 Further resear
hAs outlined at the beginning of Se
tion 3, among the possible appli
ation areas of this type ofmethods perhaps the most interesting one is to use them in order to generate an approximatesolution to the 
onvexi�
ation of an integer program. The ergodi
 sequen
e would then beterminated �nitely, for example when the duality gap fails to be redu
ed signi�
antly. Theaveraged solution, or the result of a primal feasibility heuristi
 applied from it, is there afterused as a starting point for (or is embedded within) an algorithm devised to 
lose the duality gap,su
h as a 
utting plane or bran
h and bound algorithm. The use of this te
hnique is well-knownin 
ir
umstan
es when the relaxation has the integrality property, be
ause it is then equivalentto solve the linear relaxation, but it has been tested only to a limited extent for more diÆ
ultLagrangian subproblems. In theory, these subproblems must of 
ourse be solved exa
tly in thelimit a

ording to our 
onvergen
e 
onditions, and this may not be pra
ti
ally feasible. Two ofthe authors of this arti
le are 
urrently investigating the theory and pra
ti
e of using Lagrangiannear-optimal solutions and ergodi
 sequen
es in 
omputations in 
ombinatorial optimization,
ombined with approximate solution methods using 
ore problems and 
olumn generation; 
f.[LaP02℄.The proofs of the results of the previous se
tion relies on the essential element that thesequen
e fxtg 
onverges. Moreover, the analysis at present utilizes rather heavily the 
ondition(5) on the sequen
e of step lengths. It would be of interest for pra
ti
al purposes to be able toavoid this 
ondition, as the possibility to enable the use of the algorithm of Theorem 3 in pla
eof that of Theorem 8 would also imply that the 
ondition that P1s=0 �s"s < 1 holds 
an beremoved, whi
h in turn would allow for the subproblem solutions to be even less exa
t.The possible use of the algorithms of Theorem 6 and 10, where the sear
h dire
tions ares
aled, are left as a topi
 for further resear
h, as are the possibilities to use other 
onvexityweights in the 
onstru
tion of the ergodi
 sequen
e fbytg as well as other step length rules in thesubgradient algorithm.A
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