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AbstratThe paper provides two ontributions. First, we present new onvergene results for onditional"-subgradient algorithms for general onvex programs. The results obtained here extend thelassial ones by Polyak [Pol67, Pol69, Pol87℄ as well as the reent ones in [CoL93, LPS96,AIS98℄ to a broader framework. Seondly, we establish the appliation of this tehnique tosolve non-stritly onvex{onave saddle point problems, suh as primal-dual formulations oflinear programs. Contrary to several previous solution algorithms for suh problems, a saddle-point is generated by a very simple sheme in whih one omponent is onstruted by meansof a onditional "-subgradient algorithm, while the other is onstruted by means of a weightedaverage of the (inexat) subproblem solutions generated within the subgradient method. Theonvergene result extends those of [Sho85, ShC96, LPS99℄ for Lagrangian saddle-point problemsin linear and onvex programming, and of [PeP97℄ for a linear{quadrati saddle-point problemarising in topology optimization in ontat mehanis.Key words: Convex programming, nonlinear programming, game theory, large-sale opti-mization



1 IntrodutionConsider the onvex{onave saddle-point problem to �nd(x�; y�) 2 X � Y : L(x�; y) � L(x�; y�) � L(x; y�); 8(x; y) 2 X � Y: [SP℄We assume that X � <n and Y � <m are non-empty, onvex and ompat sets, and L :X�Y 7! < is onvex{onave and �nite (hene ontinuous) on X�Y , that is, onvex (onave)in x (y) on X (Y ) for every �xed value of y 2 Y (x 2 X). We note that in what is to follow, theompatness assumption on X � Y an be replaed by some oerivity assumption on L withrespet to X � Y (e.g., Hiriart-Urruty and Lemar�ehal [HiL93, p. 334℄).Under the above assumptions on the problem [SP℄, there exists a saddle-point, (x�; y�), of Lon X � Y , the set of whih is a Cartesian produt whih we will denote by X� � Y �. Further,for any hoie of (x�; y�) 2 X� � Y �,v� = L(x�; y�) = minimumx2X maximumy2Y L(x; y) = maximumy2Y minimumx2X L(x; y):(These results are olleted, for example, in [HiL93, Setion VII.4℄.)The algorithm to be presented in the next setion attaks the problem by means of solvingthe following equivalent onvex problem:minimizex2X f(x); [P℄wheref(x) := maximumy2Y L(x; y); x 2 X: (1)We shall denote the set of solutions to the problem (1) by Y (x). An "-optimal solution, ~y, tothe problem (1) is haraterized by the relationL(x; ~y) � f(x)� "; (2)for some ~y 2 Y and " � 0.Example 1 (onvex programming). An interesting appliation of [SP℄ is to onvex programming,where L(x; y) := h(x) + yTg(x), orresponding to the Lagrangian of the problem tominimizex2X\G h(x); [CP℄where h : <n 7! < is a onvex funtion, the onvex set G is desribed by means of onvexinequalities,G := fx 2 <n j gi(x) � 0; i = 1; : : : ;m g;where gi : <n 7! < is onvex for eah i, and Y = <m+ . For this problem, we assume that X isbounded, and the Slater onstraint quali�ation that the set fx 2 X j g(x) < 0 g is nonempty(see Bazaraa et al. [BSS93, Theorem 6.2.4℄). Under this CQ, the set Y � is ompat. Assuming wemay somehow restrit the set Y to be a onvex and ompat set inluding Y �, we thereby ful�llall the onditions on the problem [SP℄. The problem [P℄ orresponds to the (onvex) Lagrangiandual problem to maximizey2<m+ �(y), where �(y) := minimumx2X L(x; y).1



For solving the problem [P℄, we utilize onditional "-subgradient optimization, whih extendstraditional subgradient optimization, as analyzed, for example, in Shor [Sho85℄, to possiblyinexat alulations of subgradients and to generating searh diretions whih take the feasibleset X into aount. (The latter extension of traditional subgradient optimization was analyzedin depth �rst in [LPS96℄.) Thus, we generate a point in X�. In order to generate a point inY �, we propose to build the sequene of weighted averages of the (possibly inexat) solutionsto (1), generated while searhing for a point in X�. We establish that this sequene onvergesto the set Y �, provided that the step lengths utilized in the proess of �nding a point in X� bythe subgradient algorithm, and the weights used in onstruting a point in Y �, are both hosenappropriately.Some words on notation. The notation k � k denotes the Eulidean norm; for a nonempty,losed, and onvex set S � <n, the normal one to S isNS(x) := (f z 2 <n j zT(y � x) � 0; 8y 2 S g; x 2 S;;; x =2 S;the indiator funtion to S is S(x) := (0; x 2 S;+1; x =2 S:We have that the subdi�erential operator of  S , � S , equals NS. Further,proj (x; S) := argminy2S ky � xkdenotes the (Eulidean) projetion of the vetor x onto the set S; we further introduedist (x; S) := miny2S ky � xkto denote the Eulidean distane from the point x to its projetion proj (x; S) onto S. Finally,we introdue, for any � � 0,X� := fx 2 X j f(x) � f� + � g;that is, the lower level set of f orresponding to �-optimal solutions to the problem [P℄. (So,X0 = X�.)The subjet of the next setion is the onvergene of onditional "-subgradient optimizationalgorithms. Setion 3 presents the overall algorithm and establishes its onvergene to a saddle-point.2 Convergene of onditional "-subgradient optimizationOur �rst result establishes a simple relationship between "-optimal solutions to (1) given x 2 Xand "-subgradients of f at x. We �rst note that "(x) is an "-subgradient of f at x [that is,"(x) is an element of the "-subdi�erential, �"f(x), of f at x℄ for some " � 0 if and only iff(z) � f(x) + "(x)T(z � x)� "; z 2 <n; (3)the de�nition of a subgradient [that is, an element of the subdi�erential℄ follows by setting " = 0.Proposition 2 ("-optimal solutions provide "-subgradients). Suppose that, given x 2 X, ~y is an"-optimal solution to (1). Then, any subgradient ~(x) of L(�; ~y) at x is an "-subgradient to f atx. 2



Proof. Fix any x 2 X and " � 0. For an arbitrary z 2 X then follows thatf(z) � L(z; ~y) � f(x) + [L(z; ~y)�L(x; ~y)� "℄ � f(x) + ~(x)T(z � x)� ";whih yields that ~(x) 2 �"f(x), the �rst inequality oming from the de�nition of the value f(z),the seond inequality following from the "-optimality of ~y in (1), and the right-most inequalityfollowing from the onvexity of L(�; ~y).Example 1 (ontinued). For the speial ase of the problem [CP℄, the above result states that an"-optimal solution to the Lagrangian subproblem provides an "-subgradient of the Lagrangiandual funtion �. This property was desribed independently by Larsson et al. [LPS99℄ andBertsekas [Ber99, p. 615℄, but is most probably folklore, and a muh older result.Given the iteration point xt at iteration t, let "t(xt) be an "t-subgradient of f at xt 2 X.Let X"t (xt) be a onditional "t-subgradient of f at xt 2 X, that is, X"t (xt) = "t(xt) + �(xt)for some �(xt) 2 NX(xt). (This is equivalent to replaing z 2 <n with z 2 X in (3) or, inother words, X"t (xt) is an element of the "t-subdi�erential of the funtion f +  X at xt; see[DeS78, LPS96℄.) We will in the following analyze the onvergene of onditional "-subgradientalgorithms for the solution of [P℄ using the divergent series step length rule,�t > 0; 8t; limt!1�t = 0; and 1Xt=0 �t =1; (4)in ases also under the additional requirement that1Xt=0 �2t <1; (5)and under di�erent salings of the searh diretions.In the analysis that follows, it is assumed that the sequenes are in�nite. In the ase thatX"t (xt) = 0 for some t, xt is "t-optimal in [P℄, and the proedure may be terminated (or theiteration onsidered void and the value of "t dereased).For the sake of reahing a maximal generality, the analysis in this setion for the problem[P℄ will ignore that its origin is the saddle-point problem disussed in the previous setion,and hene assume temporarily that f : <n 7! < is a general onvex funtion, and drop theassumption that the nonempty, losed and onvex set X is neessarily bounded. Although wewill study the problem only under the assumption that there exist optimal solutions to [P℄, wenote that the algorithms desribed below are optimizing in the sense that lim inft!1 f(xt) =f� := infx2X f(x) holds even if X� is empty.2.1 Divergent series step lengths, unsaled diretionWe begin by onsidering unsaled diretions.The onditional "-subgradient optimization method is given byxt+ 12 := xt � �tX"t (xt); xt+1 := proj�xt+ 12 ;X� ; t = 0; 1; : : : : (6)We note that the requirements of the algorithm are (a) that we have at hand a onvergentalgorithm for solving the problem (1), (b) a proedure for generating subgradients of L(�; yt"t),where yt"t is an "t-optimal solution to the problem (1) given xt, and () that projetions onto Xare easily performed. In the ase of the problem [CP℄ solved via its Lagrangian dual, the lattertwo requirements are of ourse trivial to ful�ll.Our main onvergene result for the method (6), (4) establishes onvergene to the optimalset X�. 3



Theorem 3 (onvergene to the optimal set using divergent series step lengths). Let fxtg begenerated by the method (6), (4) applied to [P℄. If X� is bounded, <+ 3 f"tg ! 0, and thesequene fX"t (xt)g is bounded, then ff(xt)g ! f� and fdist (xt;X�)g ! 0.Proof. Let Æ > 0 and BÆ = fx 2 <n j kxk � Æ g. Sine f is onvex, X is nonempty, losedand onvex, and X� is bounded, it follows (from Rokafellar [Ro70, Theorem 27.2℄, applied tothe lower semiontinuous, proper and onvex funtion f +  X) that there exist � = �(Æ) > 0and � = �(Æ) > 0 suh that the lower level set X�(1+�) � X� +BÆ=2. Moreover, sine fX"t (xt)gis bounded and f�tg ! 0, there exists an N(Æ) suh that �tkX"t (xt)k2 � �, "t � ��, and�tkX"t (xt)k � Æ=2 for all t � N(Æ).The sequel of the proof is based on indution and is organized as follows. In the �rst part,we show that there exists a �nite t(Æ) � N(Æ) suh that xt(Æ) 2 X� + BÆ. In the seond part,we establish that if xt belongs to X� +BÆ for some t � N(Æ) then so does xt+1; this is done byshowing that dist (xt+1;X�) < dist (xt;X�), or xt 2 X� so that xt+1 2 X� + BÆ sine the steptaken is not longer than Æ=2.Let x� 2 X� be arbitrary. In every iteration t we then havex� � xt+12 = x� � proj �xt � �tX"t (xt);X�2 � x� � xt + �tX"t (xt)2= x� � xt2 + �t �2X"t (xt)T �x� � xt�+ �t X"t (xt)2� ; (7)where the inequality follows from the projetion property. Now, suppose that2X"s (xs)T (x� � xs) + �s X"s(xs)2 < �� (8)for all s � N(Æ). Then, using (7) repeatedly, we obtain that for any t � N(Æ),x� � xt+12 < x� � xN(Æ)2 � � tXs=N(Æ)�s;and from (4) it follows that the right-hand side of this inequality tends to minus in�nity ast!1, whih learly is impossible. Therefore,2X"t (xt)T �x� � xt�+ �t X"t (xt)2 � �� (9)holds for at least one t � N(Æ), say t = t(Æ). From the de�nition of N(Æ), it follows thatX"t(Æ)(xt(Æ))T (x� � xt(Æ)) � ��. By onvexity we have that f(x�) � f(xt(Æ)) � X"t(Æ)(xt(Æ))T (x� �xt(Æ)) � "t(Æ), sine x�; xt(Æ) 2 X. Hene, f(xt(Æ)) � f� + � + "t(Æ), that is, xt(Æ) 2 X�+"t(Æ) �X�(1+�) � X� +BÆ=2 � X� +BÆ.Now, suppose that xt 2 X� + BÆ for some t � N(Æ). If (8) holds, then, using (7), we havethat kx� � xt+1k < kx� � xtk for any x� 2 X�. Hene,dist (xt+1;X�) � proj (xt;X�)� xt+1 < proj (xt;X�)� xt = dist (xt;X�) � Æ:Thus, xt+1 2 X� + BÆ. Otherwise, (9) must hold and, using the same arguments as above, weobtain that f(xt) � f� + �+ "t � f� + �(1 + �), i.e., xt 2 X�(1+�) � X� +BÆ=2. Asxt+1 � xt = proj �xt � �tX"t (xt);X�� xt � xt � �tX"t (xt)� xt = �t X"t (xt) � Æ2whenever t � N(Æ), it follows that xt+1 2 X� +BÆ=2 +BÆ=2 = X� +BÆ.By indution with respet to t � t(Æ), it follows that xt 2 X� + BÆ for all t � t(Æ). Sinethis holds for arbitrarily small values of Æ > 0 and f is ontinuous, the theorem follows.4



Remark 4 (on the onvergene onditions). From the proof, the requirement that fX"t (xt)g isbounded an be replaed by the weaker requirement that f�tkX"t (xt)k2g ! 0 holds. Further, ifX is bounded, and not just the set X�, then the sequene f"t(xt)g is bounded automatially,while the sequene f�(xt)g may always be onstruted so that it is bounded. For more detailson the possible hoies of this sequene, we refer to [LPS96℄.Remark 5 (relations). With "t = 0, Theorem 3 redues to a result by Larsson et al. [LPS96℄.Further letting �t = 0n redues the algorithm to traditional subgradient optimization, and theresult to one by Ermol'ev [Erm66, Setion 9℄.2.2 Divergent series step lengths, saled diretionThe saled onditional "-subgradient optimization method is given byxt+ 12 := xt � �t X"t (xt)kX"t (xt)k ; xt+1 = proj �xt+ 12 ;X� ; t = 0; 1; : : : ; (10)given some rule for hoosing f�tg.This saling of the searh diretion allows us to remove the ondition that the sequenefX"t (xt)g is bounded.Theorem 6 (onvergene to the optimal set using divergent series step lengths). Let fxtg begenerated by the method (10), (4) applied to [P℄. If X� is bounded and <+ 3 f"tg ! 0, thenff(xt)g ! f� and fdist (xt;X�)g ! 0.Proof. The proof tehnique is similar to that of Theorem 3. We de�ne �t := X"t (xt). Thede�nition of N(Æ) is here altered to mean that for all t � N(Æ), �t � �, "t � �� and �t � Æ=2.The inequality (7) is here replaed byx� � xt+12 � x� � xt2 + �t � 2�tX"t (xt)T �x� � xt�+ �t� ;and, onsequently, (8) by2�tX"s(xs)T (x� � xs) + �s < ��:We onlude as in the previous proof that2�tX"t (xt)T �x� � xt�+ �t � ��holds for at least one t � N(Æ), say t = t(Æ), whih implies that X"t(Æ)(xt(Æ))T (x��xt(Æ)) � ���t(Æ),and, by onvexity, that f(xt(Æ)) � f� + ��t(Æ) + "t(Æ), that is, xt(Æ) 2 X��t(Æ)+"t(Æ) � X�(�t(Æ)+�) �X� +BÆ=2 � X� +BÆ.The rest of the proof follows as in the proof of Theorem 3, noting thatxt+1 � xt = proj  xt � �t X"t (xt)�t ;X!� xt � xt � �t X"t (xt)�t � xt = �t � Æ2 ; t � t(Æ):The result follows.Remark 7 (relations). With �t = 0n, the result redues essentially to one by Polyak [Pol67℄,[Pol87, pp. 144{145℄ (the �rst one also assumes that "t = 0, while the seond one also assumesthat X = <n). Convergene is there established only for the sequene ff(xt)g). In [Alb83,SoZ98℄, onvergene results are established for a subgradient algorithm (still assuming that�t = 0n holds), where the searh diretion is given by �((xt) + rt), where frtg � <n is asequene of error vetors whih tends to zero ([Alb83℄) or stays bounded ([SoZ98℄).5



2.3 Quadratially onvergent step lengths, non-saled diretionWe now introdue the additional requirement that (5) holds. As an be seen from the proofof the below theorem, this step length ondition implies the boundedness of the sequene ofiterates, whene that boundedness ondition, present in Theorem 3, here an be removed.Theorem 8 (onvergene to an optimal solution using divergent series step lengths). Let fxtg begenerated by the method (6), (4), (5) applied to [P℄. If <+ 3 f"tg ! 0, the sequene fX"t (xt)gis bounded, and if P1s=0 �s"s <1, then fxtg onverges to an element of X�.Proof. Let x� 2 X�. De�ne �t := X"t (xt). In every iteration t we have thatx� � xt+12 = x� � proj �xt � �tX"t (xt);X��2 � x� � xt + �tX"t (xt)2= x� � xt2 + �t �2X"t (xt)T �x� � xt�+ �t�2t� ; (11)where the inequality follows from the projetion property. Repeated appliation of (11) yieldsthat x� � xt2 � x� � x02 + 2 t�1Xs=0�sX"s(xs)T (x� � xs) + t�1Xs=0�2s�2s: (12)Sine x� 2 X� and X"s (xs) 2 �X"sf(xs) for all s � 0 we obtain thatf(xs) � f� � f(xs) + X"s (xs)T (x� � xs)� "s; s � 0; (13)and hene that X"s(xs)T (x��xs) � "s for all s � 0. We de�ne  := suptf�tg, p :=P1t=0 �2t , andd := P1s=0 �s"s. From (12) we then onlude that kx� � xtk2 < kx� � x0k2 + p2 + 2d for anyt � 1, and thus that the sequene fxtg is bounded.Assume now that there is no subsequene fxtig of fxtg with fX"ti (xti)T (x� � xti)g ! 0.Then there must exist an � > 0 with X"s (xs)T (x� � xs) � �� for all suÆiently large valuesof s. From (12) and the onditions on the step lengths it follows that fkx� � xtkg ! �1,whih learly is impossible. The sequene fxtg must therefore ontain a subsequene fxtig suhthat fX"ti (xti)T (x� � xti)g ! 0. From (13) and the assumption that f"tg ! 0 it follows thatff(xti)g ! f�. The boundedness of fxtg implies the existene of an aumulation point of fxtig,say x1. From the ontinuity of f follows that x1 2 X�.To show that x1 is the only aumulation point of fxtg, let Æ > 0 and let M(Æ) be suh thatkx1 � xM(Æ)k2 � Æ=3, P1s=M(Æ) �2s � Æ=(32), and P1s=M(Æ) �s"s � Æ=6. Consider any t > M(Æ).Analogously to the derivation of (12), and using (13), we then obtain thatx1 � xt2 � x1 � xM(Æ)2 + t�1Xs=M(Æ)�2s�2s + 2 t�1Xs=M(Æ)�s"s < Æ3 + Æ32 2 + 2Æ6 = Æ:Sine this holds for arbitrarily small values of Æ > 0, the theorem follows.Remark 9 (relations). With �t = 0n and X = <n, the result redues to one in Correa andLemar�ehal [CoL93℄. With "t = 0 the result redues to one obtained in Larsson et al. [LPS96℄.Under the assumption that X = <n, Polyak [Pol87, Setion 5.5℄ establishes the onvergene ofinexat subgradient algorithms where the searh diretion is �((xt) + rt), and where the errorsequene frtg tends to zero, stays bounded or is some random sequene of vetors with boundedvariane. 6



2.4 Quadratially onvergent step lengths, saled diretionWhen introduing a saling of the step diretion in the ase of "-subgradients and the use of thequadratially onvergent step length rule (5), not only do we need to introdue the onditionthat P1s=0 �s"s < 1 holds (as in Setion 2.3), but we also need to ensure that the length ofthe step diretion does not tend to zero too quikly. Hene, the norm of the diretion vetoris projeted onto the half-line f ` j ` � 1 g. We further note that the saling again allows us toremove the ondition that fX"t (xt)g is bounded.The saled onditional "-subgradient optimization method is given byxt+ 12 := xt � �t X"t (xt)maxf1; kX"t (xt)kg ; xt+1 = proj �xt+ 12 ;X� ; t = 0; 1; : : : : (14)Theorem 10 (onvergene to an optimal solution using divergent series step lengths). Let fxtgbe generated by the method (14), (4), (5) applied to [P℄. If <+ 3 f"tg ! 0 and P1s=0 �s"s <1,then fxtg onverges to an element of X�.Proof. The proof follows the same line of arguments as that of Theorem 8. Let �t := kX"t (xt)kand �t := maxf1; �tg. Let x� 2 X�. Analogously to the proof of Theorem 8, we obtain for everyt thatx� � xt+12 � x� � xt2 + �t�t  2X"t (xt)T �x� � xt�+ �t�2t�t ! :Used repeatedly, we obtainx� � xt2 � x� � x02 + 2 t�1Xs=0 �s�s X"s(xs)T (x� � xs) + t�1Xs=0 �2s�2s�2s : (15)From (13) and (15) we then obtain thatkx� � xtk2 � kx� � x0k2 + 2 t�1Xs=0 �s"s�s + t�1Xs=0 �2s�2s�2s � kx� � x0k2 + 2 t�1Xs=0�s"s + t�1Xs=0�2s;so the sequene fxtg is bounded, from the assumptions on the step lengths.That every aumulation point of fxtg is optimal then follows as in the proof of Theorem 8,using (15) in plae of (12), and noting that �t=�t � 1 for all t.To show that x1 is the only limit point of fxtg, let Æ > 0 and let M(Æ) be suh thatkx1 � xM(Æ)k2 � Æ=3, P1s=M(Æ) �2s � Æ=3, and P1s=M(Æ) �s"s � Æ=6. Consider any t > M(Æ).Analogously to the derivation of (15), and using (13) and again noting that �t=�t � 1 for all t,we then obtain thatx1 � xt2 � x1 � xM(Æ)2 + t�1Xs=M(Æ) �2s�2s�2s + 2 t�1Xs=M(Æ) �s"s�s < Æ3 + Æ3 + 2Æ6 = Æ:Sine this holds for arbitrarily small values of Æ > 0, this ompletes the proof.Remark 11 (relations). With "t = 0 the result redues to one in Larsson et al. [LPS96℄. With�t = 0n the result redues to ones previously reahed by Polyak [Pol67℄,1 and Alber et al. [AIS98℄(where the ondition thatP1s=0 �s"s <1 holds is replaed by the ondition that "t � ��t, � > 0for all t).Having presented some generally useful results on the onvergene of onditional "-subgradientalgorithms in onstrained, onvex optimization, we now turn to the solution of the saddle-pointproblem [SP℄ whih will use a subset of the results obtained in this setion.1Polyak [Pol69℄ established that this algorithm annot be linearly onvergent, and proeeded to introdue thestep length rule that bears his name. 7



3 Ergodi onvergene to the set of saddle-pointsIn order to solve the saddle-point problem [SP℄ it is in general not enough to �nd any solution tothe maximization problem over y with x �xed to a value x� 2 X�, as disussed, for example, inHiriart-Urruty and Lemar�ehal [HiL93, Remark VII.4.2.6℄, unless L is stritly onave in y. (Theorresponding result in the ase of the onvex program [CP℄ is known as the non-oordinabilityphenomenon; see, e.g., [Las70℄.) We will establish that an ergodi (that is, averaged) sequeneof the inexat solutions yt"t to the problem (1), generated from the sequene xt in the abovesubgradient algorithm, tends to Y �. Before moving on to state and establish this result, we willhowever disuss some related algorithms.Under an assumption that L is stritly onvex{onave, it is known that f , de�ned in (1), isontinuously di�erentiable, with rf(x) = rxL(x; y) from Danskin's Theorem [Dan67℄, y beingthe unique solution to (1) given x. In order to produe a saddle-point in this situation, it isenough to �nd the minimizer of f over X, and apply (1) to get the orresponding omponenty of the saddle-point. Algorithms of this type inlude the desent algorithm of Demyanovand Malozemov [DeM74, p. 230℄ and the gradient projetion algorithm of Zhu and Rokafellar[ZhR93℄. The former referene also suggests adding a stritly onvex{onave quadrati term inthe absene of strit onvex{onavity, in e�et thus produing a proximal point-like algorithm.Kallio and Ruszzy�nski [KaR94℄ (see also [HeL89, KaR99, Ouo00℄) propose a gradient projetionalgorithm de�ned by the partial gradients of the funtion L evaluated at perturbed points. (We,however, do not assume L to be di�erentiable.) Kiwiel [Kiw95℄ solves the saddle-point problemthrough the use of a bundle method for the problem [P℄, and establishes that a onvergentomponent in y is generated automatially in the searh-diretion �nding quadrati programmingproblems. As for the speial ase of the onvex program [CP℄, one an also envisage applyingolumn generation and/or utting plane approahes, where oordinability is indued throughthe solution of restrited master problems; see [LPS99℄ for more detailed disussions.The inspiration for the algorithm proposed here is however muh more simple approahesto the solution of the problem [CP℄ through the use of Lagrangian dualization, subgradientoptimization, and the onstrution of an optimal primal solution as simple or weighted averagesof the Lagrangian subproblem solutions. Thus, a saddle-point is generated without solving anyauxiliary problems. The origin is Shor's [Sho85, pp. 116{118℄ work on linear programming,followed by [LaL97, ShC96, BaA00℄ (still in the ontext of linear programming, and the latterreferene laking a onvergene proof), [LLP97℄ for a speial large-sale onvex programmingproblem arising in transportation planning, and [LPS99℄ for the general onvex program [CP℄.The �rst onvergene result of this type for saddle-point problems not arising from a Lagrangianwas given by Petersson and Patriksson [PeP97℄, who studied a speial suh large-sale problemarising in ontat mehanis.In the above algorithms, it is assumed that the omputations of the subproblems are per-formed exatly. We extend the sope of these algorithm not only to the more general onvex{onave saddle-point problems, but also to possibly inexat solutions of the subproblems. Inthe ontext of the problem [CP℄ and subgradient methods, it has previously been shown in[Ber99, ZLW99, ZhL02℄ that onvergene to the solution to [P℄ an be ahieved through thesolution of inexat subproblem solutions, but primal onvergene results that an be extratedfrom this development have not been studied previously.The interest in inexat omputations is perhaps the most pronouned in the solution of om-binatorial optimization problems through Lagrangian dualization. (This area is also one whereLagrangian dualization is quite popular.) Although ombinatorial optimization problems arenot onvex problems in general, and there may not exist a saddle point to suh a Lagrangian,there does however exist a saddle point for the onvexi�ed problem assoiated with the om-binatorial problem and its Lagrangian formulation, and the maximum value of the Lagrangiandual funtion is the optimal value of the onvexi�ed problem. (Some of this theory is outlined8



by Wolsey [Wol98, Setion 10.2℄.) If the relaxation does not satisfy the integrality property (sothat the Lagrangean subproblem annot be redued to a linear program), then the Lagrangiansubproblem will be a (potentially) omputationally diÆult ombinatorial problem, and the useof inexat methods suh as heuristis to solve them will therefore be of omputational advantage;then, also, the resulting solution will provide an "-subgradient of the Lagrangian dual funtion.The sope is also extended to inlude the possible use of onditional subgradients. Althoughsuh an algorithm an, in priniple, be inorporated into a standard subgradient algorithm forthe extended objetive funtion f +  X , this funtion is not �nite everywhere, and moreover,it has been found in the numerial investigations performed in [LPS96℄ that adding a normalone element to the searh diretion an substantially enhane onvergene in pratie for somediÆult problems.
3.1 Preliminaries
The optimality onditions for x� in [P℄ is given by

��f(x�) \NX(x�) 6= ; (16)
(e.g., [Ro81, Proposition 5A and Equation (5.5)℄). The non-oordinability phenomenon dis-ussed above, whih is inherent in every non-stritly onvex{onave saddle-point problem, anbe equivalently desribed as the failure of the entire set ��f(x�) to be inluded in NX(x�),something whih obviously does hold whenever f is di�erentiable at x�. We will establish theonvergene of an averaged (or, ergodi) sequene of subproblem solutions by means of estab-lishing that an averaged sequene of the "t-subgradients "t(xt) aumulates at subgradientswhih verify optimality in aordane with (16). The representative algorithm whih we havehosen among those in the previous setion is that validated in Theorem 8.The properties of ergodi sequenes of elements generated in a subgradient sheme have pre-viously been analyzed in [LPS98℄. We extend some of their analysis to the use of "-subgradients.9



Let At := t�1Xs=0�s; (17)byt := A�1t t�1Xs=0�sys"s ; (18)gt := A�1t t�1Xs=0�s"s(xs); (19)nt := A�1t t�1Xs=0�s�s; (20)ntp := A�1t t�1Xs=0(xs+ 12 � xs+1); (21)nt := nt + ntp; (22)'t := A�1t t�1Xs=0�sf(xs); (23)ft(x) := A�1t t�1Xs=0�s hf(xs) + ("s(xs))T(x� xs)� "si ; x 2 X; (24)Æt(x) := f(x)� ft(x); x 2 X; (25)%t(x) := A�1t t�1Xs=0 ��s(�s)T(xs � x) + �xs+ 12 � xs+1�T (xs+1 � x)� ; x 2 X: (26)Here, At is the aumulated step length up to iteration t, byt the weighted average of the inexatsolutions to (1), gt the weighted average of the "s-subgradients of f , and nt and ntp ergodinormal elements and projetion steps, respetively. We note that fbytg � Y , and this sequeneis therefore bounded, by the boundedness assumption on Y . Continuing, 't � v� learly holds.The aÆne funtion ft is derived as a surrogate of the onvexity inequality, and therefore Æt(x) � 0on X. Further, sine �s 2 NX(xs) and xs+ 12 � xs+1 2 NX(xs+1), %t(x) � 0 on X, and thusde�nes a valid inequality for X.We will establish that any aumulation point, by1, of the sequene fbytg together with thesolution x1 obtained from the subgradient sheme forms a saddle-point of L.Lemma 12 (Y (�) is a losed map). Let the sequene fxtg � X, f"tg � <+, the map Y"(�) : X 7!2Y be given by the de�nitionY"(x) := f y 2 Y j L(x; y) � f(x)� " g; x 2 X;and the sequene fyt"tg be given by the inlusion yt"t 2 Y"t(xt). If the sequenes fxtg ! x andf"tg ! 0, then fdist (yt"t ; Y (x))g ! 0. If, in addition, Y (x) = fyg, then fyt"tg ! y.Proof. By the de�nition of Y"t(xt), L(xt; yt"t) � f(xt) � "t holds for all t. It follows fromthe ontinuity of the funtions L and f , the ompatness of X and the onstrution of the se-quene f"tg that y 2 Y (x) holds for any aumulation point y of the sequene fyt"tg. The resultfdist (yt"t ; Y (x))g ! 0 then follows from the boundedness of the sequene fyt"tg. The seondresult is then immediate. 10



3.2 Main resultsWe next utilize this result to establish that the sequene fbytg aumulates in the set Y (x1),establishing the left-most inequality in [SP℄.Theorem 13 (L(x1; by1) � L(x1; y) for all y 2 Y ). fdist (byt; Y (x1))g ! 0.Proof. Fix any � > 0. By Theorem 8 and Lemma 12, for any large enough � ,dist (ys"s ; Y (x1)) � �=2; s � �:By the onvexity of the funtion dist (�; Y (x1)) (e.g., [Ro70, Theorem 4.3℄), we have thatdist (byt; Y (x1)) � A�1t t�1Xs=0�sdist (ys"s ; Y (x1)); s � �:Sine fAtg ! 1 and � is �xed, A�1t Pt�1s=� �sdist (ys"s ; Y (x1)) � (1�A�1t A� )�=2 holds for everyt > � . Hene, dist (byt; Y (x1)) � � holds for all t > � that are large enough, and the desiredresult follows.The next result, whih is a diret onsequene of the de�nition (19) and the inequalitykxs+ 12 � xs+1k � �skX"s (xs)k, is the �rst step towards a onvergene result for the ergodisequene fgtg.Lemma 14 The sequenes fgtg and fntg are bounded.The following lemma onerns the onvergene properties of some of our ergodi sequenes.Lemma 15 fÆt(x1)g ! 0, f%t(x1)g ! 0, and f'tg ! v�. Further, fÆt(xt)g ! 0 andf%t(xt)g ! 0.Proof. By Theorem 8, fxtg ! x1. From the iteration formula (6) it follows thatkxt+1 � x1k2 � kxt � x1k2 + �2t kX"t (xt)k2� 2��t �X"t (xt)�T �xt � x1�+ �xt+ 12 � xt+1�T �xt+1 � x1�� :Repeated appliation of this inequality and utilizing the de�nitions (23), (25), and (26) resultin kx0 � x1k2 + t�1Xs=0�2skX"s (xs)k2 � 2At  Æt(x1) + %t(x1) + 't � v� �A�1t t�1Xs=0�s"s! � 0:Sine Æt(x1) � 0, %t(x1) � 0, 't � f�, and At > 0, the immediate result is that0 � Æt(x1) + %t(x1) + 't � f� � 12At  x0 � x12 + t�1Xs=0 ��2s X"s (xs)2 + �s"s�! :Let t!1 and invoke the onditions of Theorem 8.For the latter result, we note that the de�nitions (19), (24) and (25) yield0 � Æt(xt) = Æt(x1) + f(xt)� f(x1)� (gt)T(xt � x1); t = 1; 2; : : : :From the de�nitions (19) and (26) follow that0 � %t(xt) = %t(x1)� (nt)T(xt � x1); t = 1; 2; : : : :Theorem 8, Lemma 14, the ontinuity of f , and the �rst part of this Lemma yield that the right-hand sides of both the above equations tend to zero as t approahes in�nity. The result follows.We will also utilize the following lemma in our ontinued analysis, when proving optimalityful�llment of the sequene fgtg in the limit. 11



Lemma 16 fgt + ntg ! 0.Proof. By the de�nition (19) and the iteration formula (6),gt + nt = A�1t t�1Xs=0(xs � xs+ 12 + xs+ 12 � xs+1) = A�1t (x0 � xt):Theorem 8 yields that fxtg ! x1. The result then follows from the de�nition (17) and theondition (4).We are now ready to establish that the ergodi sequene fgtg of subgradients aumulatesat subgradients whih verify optimality, aording to (16). We divide the result into two parts,extending, respetively, Theorem 3.7 and Theorem 3.8 in [LPS98℄ to the use of "-subgradients.Proposition 17 (onvergene of fgtg to �f(x1)). fdist (gt; �f(x1))g ! 0.Proof. The de�nitions (19), (24) and (25) imply that gt is a Æt(x)-subgradient of f at anyx 2 X; applying this result to x = xt yieldsf(y) � f(xt) + (gt)T(y � xt)� Æt(xt); y 2 X:By Lemma 14, the sequene fgtg is bounded. Let eg be an aumulation point of fgtg, orre-sponding to a onvergent subsequene T . Then, by Lemma 15, in the limit of T , from the aboveinequality, we obtain that eg 2 �f(x1). The boundedness of �f(x1) then yields the desiredresult.Proposition 18 (onvergene of fgtg to �NX(x1)). fdist (gt;�NX(x1))g ! 0.Proof. From the de�nition (26) it follows that, for all t and any z 2 X, (nt)T(z � x1) =�%t(z) + %t(x1) � %t(x1). By Lemma 14, the sequene fntg is bounded. Let en be an aumu-lation point of the sequene fntgt2T for some onvergent subsequene T . From Lemma 15 it thenfollows that enT (z � x1) � 0 for any z 2 X. By the ontinuity of the funtion dist(�; NX (x1)),for any � > 0 and all t that are suÆiently large, dist(nt; NX(x1)) < �=2; further, by Lemma 16,kgt + ntk < �=2. This yields that dist(gt;�NX(x1)) � dist(�nt;�NX(x1)) + kgt + ntk < �,and the result follows.Theorem 13 established one of the inequalities in the de�nition of [SP℄; the seond inequalitynow follows. (Note that the aumulation point by1 still is arbitrary.)Theorem 19 (L(x; by1) � L(x1; by1) for all x 2 X). fdist (xt;X(by1))g ! 0.Proof. For every x 2 X,L(x; by1)�L(x1; by1) � f(x)�L(x1; by1) = f(x)� f(x1) � egT(x� x1) � 0;where the �rst inequality follows from the de�nition of f(x) and the fat that by1 2 Y , theequality from Theorem 13, and the two �nal inequalities from the onvexity of f and, respe-tively, Propositions 17 and 18.We summarize the results of the Theorems 13 and 19 as follows.Theorem 20 ((x1; by1) solves [SP℄). �dist �(xt; byt); fx1g � Y ��	! 0.12



4 Further researhAs outlined at the beginning of Setion 3, among the possible appliation areas of this type ofmethods perhaps the most interesting one is to use them in order to generate an approximatesolution to the onvexi�ation of an integer program. The ergodi sequene would then beterminated �nitely, for example when the duality gap fails to be redued signi�antly. Theaveraged solution, or the result of a primal feasibility heuristi applied from it, is there afterused as a starting point for (or is embedded within) an algorithm devised to lose the duality gap,suh as a utting plane or branh and bound algorithm. The use of this tehnique is well-knownin irumstanes when the relaxation has the integrality property, beause it is then equivalentto solve the linear relaxation, but it has been tested only to a limited extent for more diÆultLagrangian subproblems. In theory, these subproblems must of ourse be solved exatly in thelimit aording to our onvergene onditions, and this may not be pratially feasible. Two ofthe authors of this artile are urrently investigating the theory and pratie of using Lagrangiannear-optimal solutions and ergodi sequenes in omputations in ombinatorial optimization,ombined with approximate solution methods using ore problems and olumn generation; f.[LaP02℄.The proofs of the results of the previous setion relies on the essential element that thesequene fxtg onverges. Moreover, the analysis at present utilizes rather heavily the ondition(5) on the sequene of step lengths. It would be of interest for pratial purposes to be able toavoid this ondition, as the possibility to enable the use of the algorithm of Theorem 3 in plaeof that of Theorem 8 would also imply that the ondition that P1s=0 �s"s < 1 holds an beremoved, whih in turn would allow for the subproblem solutions to be even less exat.The possible use of the algorithms of Theorem 6 and 10, where the searh diretions aresaled, are left as a topi for further researh, as are the possibilities to use other onvexityweights in the onstrution of the ergodi sequene fbytg as well as other step length rules in thesubgradient algorithm.AknowledgementThe authors thank an anonymous referee for pertinent remarks whih improved the presentation.Referenes[Alb83℄ Ya. I. Alber, Reurrene relations and variational inequalities, Soviet Mathematis Doklady, 27 (1983),pp. 511{517.[AIS98℄ Ya. I. Alber, A. N. Iusem and M. V. Solodov, On the projeted subgradient method for nonsmoothonvex optimization in a Hilbert spae, Mathematial Programming, 81 (1998), pp. 23{35.[BaA00℄ F. Barahona and R. Anbil, The volume algorithm: Produing primal solutions with a subgradientmethod, Mathematial Programming, 87 (2000), pp. 385{399.[BSS93℄ M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and Algo-rithms, John Wiley & Sons, New York, NY, seond ed., 1993.[Ber99℄ D. P. Bertsekas, Nonlinear Programming, Athena Sienti�, Belmont, MA, seond ed., 1999.[CoL93℄ R. Correa and C. Lemar�ehal, Convergene of some algorithms for onvex minimization, Mathe-matial Programming, 62 (1993), pp. 261{275.[Dan67℄ J. M. Danskin, The Theory of Max-Min, Springer-Verlag, Berlin, 1967.[DeM74℄ V. F. Demyanov and V. N. Malozemov, Introdution to Minimax, John Wiley & Sons, New York,NY.[DeS78℄ V. F. Dem'janov and V. K. �Somesova, Conditional subdi�erentials of onvex funtions, SovietMathematis Doklady, 19 (1980), pp. 1181{1185.[Erm66℄ Yu. M. Ermol'ev, Methods for solving nonlinear extremal problems, Cybernetis, 2 (1966), pp. 1{17.13
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