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Faster Recursions in Sphere Decoding
Arash Ghasemmehdi and Erik Agrell

Abstract—Most of the calculations in standard sphere decoders
are redundant, in the sense that they either calculate quantities
that are never used or calculate some quantities more than once.
A new method, which is applicable to lattices as well as finite
constellations, is proposed to avoid these redundant calculations
while still returning the same result. Pseudocode is given to
facilitate immediate implementation. Simulations show that the
speed gain with the proposed method increases linearly withthe
lattice dimension. At dimension 60, the new algorithms avoid
about 75 % of all floating-point operations.

Index Terms—Closest point search, Fincke–Pohst, lattice,
Lenstra–Lenstra–Lovász (LLL) reduction, maximum likeli-
hood (ML) detection, multiple-input multiple-output (MIM O),
Schnorr–Euchner, sphere decoder.

I. I NTRODUCTION

EVERY lattice is represented with itsgenerator matrixG,
whose entries are real numbers. Letn andm denote the

number of rows and columns ofG respectively withn ≤ m.
The rows ofG, which areb1, . . . , bn, are calledbasis vectors
and are assumed to be linearly independent vectors inR

m.
The lattice of dimensionn is defined as the set of points

Λ(G, Z) = {u1b1 + . . . + unbn | ui ∈ Z}. (1)

This paper is about methods to find theclosest pointin a
lattice to a given vectorr ∈ R

m, hereafter calledreceived
vector,which requires minimization of the metric‖r − uG‖
over all lattice pointsuG with u ∈ Z

n.
In 1981, Pohst proposed the first closest point algorithm

[1], in the equivalent context of finding the shortest vectorin a
translated lattice. It was improved by Fincke and Pohst in 1985
[2]. The general method has later become known assphere
decoding,because it relies on enumerating all lattice points
inside a sphere. Mow [3], [4] and Viterbo and Biglieri [5] were
the first to apply the Fincke–Pohst algorithm to maximum like-
lihood (ML) detection in communications. In 1999, Viterbo
and Boutros extended the algorithm to finite constellations
[6]. Agrell et al. in 2002 showed that the Schnorr–Euchner
(SE) enumeration strategy [7] reduces the complexity of sphere
decoding compared with the Pohst enumeration [8].

During the last decade, a lot of work has been done to
improve the efficiency of sphere decoder algorithms [9]–[14],
due to the significant usage they have found in numerous types
of applications. In communication theory, the closest point
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problem arises in ML detection for multiple-input multiple-
output (MIMO) channels [9], [15]–[17], ML sequence esti-
mation [4], quantization [18], vector perturbation in multiuser
communications [19], and joint detection in direct-sequence
multiple access system [20].

The closest point search algorithms can be modified to find
the ML point in finite constellations [6], [9], which has an
important application in MIMO channels. Assuming a system
with n transmit andm receive antennas, the new set of points
Λ(G,U) is defined by replacingZ in (1) with the finite range
of integers

U = {Umin, Umin + 1, . . . , Umax}. (2)

The transmit set can be mapped to anL-PAM constellation
with L = Umax − Umin + 1. The received vector after an
additive white Gaussian noise (AWGN) channel with double-
sided noise power spectral densityN0/2 is

r = uG + n, (3)

where u ∈ Un, r ∈ R
m, G ∈ R

n×m, and n ∈ R
m

is a vector of independent and identically distributed (i.i.d.)
Gaussian noise with varianceN0/2. In this case, ML detection
is equivalent to minimization of the metric‖r−uG‖ over all
possible pointsuG with u ∈ Un. In MIMO systems where
usually quadrature amplitude modulation (QAM) is used, the
L2-QAM signal constellation can be viewed as two real-valued
L-PAM constellations withu ∈ U2n, r ∈ R

2m, G ∈ R
2n×2m,

andn ∈ R
2m.

For both types of applications, lattices or finite constella-
tions, the calculations can be implemented based onG, as
in the original Pohst algorithm and its numerous refinements,
notably [2], [4], [9], or based onH = G

−1 [8], [21]. Its
transposeHT is a generator matrix for the dual lattice.

In this paper, we draw attention to a hitherto unnoticed
problem with the standard algorithms. It is illustrated that
the standard sphere decoder algorithms based on Pohst [2],
[9] and SE [7], [9] enumeration strategies perform many
excessive numerical operations. A method is proposed to
avoid these unnecessary computations. However, the revision
proposed is not related to choosing a more accurate upper
bound on‖r − uG‖ or scanning set of feasible pointuG

in a different order. We believe that the SE strategy is the
best way in this regard. Our modifications instead change
how lattice vectors are recursively constructed from lower-
dimensional lattices (forG-based implementations) or how the
received vectorr is recursively projected onto the basis vectors
(for H-based implementations), which accounts for most of
the floating point calculations in sphere decoding. With the
proposed methods, not a single value would be calculated
twice or remain without any use. Standalone implementations
of the new (and old) algorithms are given in Fig. 2.

c© 2011 IEEE
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Fig. 1. Snapshot of ann-dimensional hypersphere, divided into a stack of
(n − 1)-dimensional layers.

II. CLOSESTPOINT SEARCH ALGORITHMS

Without loss of generality, we assume thatG is a square
lower-triangular matrix with positive diagonal elements [8].
Consequently,H = G

−1 is also square and lower triangular
with positive diagonal elements. We denote withGij andHij

the element ofG andH , resp., at rowi and columnj ≤ i.
The description of the sphere decoding principle in this section
takes theH-based approach.

Every lattice can be divided into layers of lower-dimensional
lattices. The diagonal elementsGii = 1/Hii equal the
distances between the(i − 1)-dimensional layers in ani-
dimensional layer.

Fig. 1 illustrates ann-dimensional hypersphere with radius√
C centered on a vectorr. All lattice points inside this

hypersphere lie on(n−1)-dimensional layers, enumerated by
the integerun. The basis vectorbn is in the same direction
as the hypotenuse of the right triangles△ABC and△DEC,
while all the other basis vectorsb1, . . . , bn−1 lie in the
subspace spanned by one of these(n−1)-dimensional layers.

Starting from dimensionn, the received vectorr =
(r1, r2, . . . , rn) ∈ R

n is projected onto the lattice basis
vectors b1, b2, . . . , bn. This is done by a simple matrix
multiplication enG = r ⇒ en = rH, where en =
(En,1, En,2, . . . , En,n) ∈ R

n. For each(n − 1)-dimensional
layer un that is to be examined, the orthogonal displacement
yn from the received vectorr to this layer is calculated, which
is shown with the lineDE in Fig. 1. This displacement follows
from the congruence of△ABC and△DEC:

(ûn − un) 1

Hn,n

yn

=
(ûn − un)‖bn‖

(En,n − un)‖bn‖
⇒

yn =
En,n − un

Hn,n

. (4)

The possible range of the layer indexun follows from |yn| ≤√
C, which yields

⌈−Hn,n

√
C + En,n⌉ ≤ un ≤ ⌊Hn,n

√
C + En,n⌋, (5)

where ⌈ ⌉ and ⌊ ⌋ denote the round up and round down
operations respectively, which is also seen in Fig. 1.

In order to calculateEn−1,n−1, which will be used later
on to calculate the range ofun−1 (9) and the displacement
yn−1 (14), the received vectorr is first projected onto the
examined(n−1)-dimensional layer (6) and then to the lattice
basis vectors (7). We use the notationrn−1 for the projected
received vectorr, wheren − 1 denotes the dimension of the
layer that the received vector is projected on.

Thanks to the lower-triangular representation, the orthogo-
nal projection ofr onto the(n−1)-dimensional layer currently
being investigated affects only the last component ofr. Thus,
it is sufficient to subtractyn from the nth element ofr to
obtain

rn−1 = (r1, r2, . . . , rn − yn). (6)

This positionsrn−1 exactly onE. In analogy withen = rH,
the projection ofrn−1 onto the basis vectors is

en−1 = rn−1H (7)

= rH − (0, . . . , 0, yn)H

= en − yn(Hn,1, . . . , Hn,n), (8)

where en−1 = (En−1,1, . . . , En−1,n−1, un). The important
element here isEn−1,n−1, because it determines the corre-
sponding range forun−1

⌈−Hn−1,n−1

√

C − y2
n + En−1,n−1⌉ ≤ un−1

≤ ⌊Hn−1,n−1

√

C − y2
n + En−1,n−1⌋, (9)

which follows from y2
n−1 + y2

n ≤ C where yn−1 =
(En−1,n−1 − un−1)/Hn−1,n−1.

The sphere decoder is applied recursively to search this
(n− 1)-dimensional layer. Thereafter the nextun value in (5)
is generated and a new(n− 1)-dimensional layer is searched.
Generalizing, the closest point in ani-dimensional layer is
found by dividing the layer into(i − 1)-dimensional layers,
searching each of these separately, and then proceeding to
the nexti-dimensional layer. We will refer to this process of
decreasing and increasingi asmoving down and up the layers,
resp. The projection ofr onto ani-dimensional layer, where
0 ≤ i ≤ n − 1, is

ri = (r1, . . . , ri, ri+1 − yi+1, . . . , rn − yn) (10)

which differs fromri+1 in one coordinate only. The coeffi-
cients of ri expressed as a linear combination of the basis
vectors are

ei = riH (11)

= en −
n

∑

j=i+1

yj(Hj,1, . . . , Hj,n)

= ei+1 − yi+1(Hi+1,1, . . . , Hi+1,n) (12)

= (Ei,1, . . . , Ei,i, ui+1, . . . , un). (13)
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(In a zero-dimensional layer, which is a lattice point,r0 ∈
Λ(G, Z) ande0 = r0H ∈ Z

n.)
Assuming ani-dimensional sphere similar to Fig. 1, the

orthogonal displacement between the projected vectorri and
the examined(i− 1)-dimensional layer is, for any1 ≤ i ≤ n,

yi =
Ei,i − ui

Hi,i

. (14)

Finally, the range ofui for i = 1, . . . , n− 1 is determined by
the projection valueEi,i as

⌈−Hi,i

√

C − λi+1 + Ei,i⌉ ≤ ui ≤ ⌊Hi,i

√

C − λi+1 + Ei,i⌋,
(15)

where

λi = y2
i + y2

i+1 + . . . + y2
n (16)

is the squared distance from the received vectorr to the
projected vectorri−1 and C − λi+1 is the squared radius
of the examinedi-dimensional layer. Hence,λ1 denotes the
Euclidean distance between the received vectorr and a
potential closest pointr0.

III. AVOIDING REDUNDANT CALCULATIONS

In this section, we claim that most of the arithmetic op-
erations in standard sphere decoders are redundant and we
propose methods to avoid them, thus increasing the decoding
speed. The redundant operations are of two types: forH-based
implementations, numerous quantities are calculated which are
never used, and forG-based implementations, some quantities
are calculated more than once. In both cases, the source of the
problem is the way the projection values are calculated.

In Sec. IV, we demonstrate by simulations how the com-
putational complexity of sphere decoder algorithms, for both
lattices and finite constellations, is reduced due to the proposed
methods. A small penalty is paid in terms of memory usage
and memory write operations.

A. H-Based Decoding: Projection of The Received Vector

Most of the numerical operations carried out in standard
sphere decoders based onH are related to the projection of
the received vectorr, or its lower-dimensional counterpart,
onto the lattice basis vectors as in (11)–(13). Defining a matrix
E

′ whose rows aree1, . . . , en, it follows from (12) that all
elements of this matrix are updated from the elements imme-
diately below. However, the only elements that are required
in (14) and (15) are the diagonal elementsEi,i. The elements
located above the diagonal ofE′ are equal to values ofuj

that have already been calculated in previous stages of the
algorithm, see (13). We therefore define a matrixE as the
lower-triangular part (including the diagonal) ofE

′.
The sphere decoder proposed in [8] always updates the

first i elements ofei simultaneously, which we call arow-
wise updating strategy. For instance, if move down to ani-
dimensional layer, we updateEi,j for all j = 1, . . . , i. These
values may be used later to updateEj,j for somej < i after
moving further down the layers. But why should one project
the entire vectorri onto the lattice basis vectors and calculate

Ei,j for all j = 1, . . . , i − 1, when they are not supposed to
be used at that stage of the algorithm, and possibly not at all?
The answer to this question inspired an intelligent algorithm
to manage the projection ofr and updating theEj,i values,
based on following criteria:
• The last row ofE, en, is calculated just once since there
exists only a singlen-dimensional layer.
• When movingdown to an i-dimensional layer,Ei,i needs
to be calculated. This is done by first calculating those values
of Ej,i for j > i that are not already known, which we call a
column-wiseupdating strategy.
• When movingup from ani-dimensional layer, the firsti+1
elements ofei and of the othere vectors above that row
become obsolete and should be considered as unknown in
the future, since the next time the algorithm will move down
to dimensioni, the received vectorr will be projected onto
anotheri-dimensional layer. However, the elements belowei

remain unaffected.
• In the progression down and up the layers, the algorithm
needs to keep track of which elements ofE are known, to
avoid recalculating them. We introduce the integersd1, . . . , dn

for this purpose, defined such that at any instant,Ej,i is known
for i = 1, . . . , n and j = di, di + 1, . . . , n. Hence, when
moving down to ani-dimensional layer, the row-wise updating
strategy (12) can be replaced by the more efficient column-
wise updating strategy

Ej−1,i = Ej,i − yjHj,i (17)

for j = di, di − 1, . . . , i + 1.

B. G-Based Decoding: Updating The Projection Values

Also in theG-based implementations, the time-consuming
step is to calculate the projection values, which we denote with
Ei,i in H-based implementations, as discussed in Sec. III-A,
andpi in G-based implementations.

According to [9], which uses the same recursions as [6],
the projection value when moving down to ani-dimensional
layer is calculated aspi = fi/Gi,i, wherefn = rn and

fi = ri −
n

∑

k=i+1

ukGk,i. (18)

In contrast to (12), this is a column-wise updating strategy, but
not the most efficient one. Moving further down the layers in
order to calculatepj for j < i, one can notice that part of
the sum in (18) is already calculated and does not need to
be recalculated if stored in memory. Hence, we defineFj,i =
ri −

∑n

k=j+1
ukGk,i for 1 ≤ i ≤ j < n and Fn,i = ri for

1 ≤ i ≤ n. As a result, (18) is equivalent to calculating

Fj−1,i = Fj,i − ujGj,i (19)

for j = n, n − 1, . . . , i + 1 and thenpi = Fi,i/Gi,i. If some
values ofFj,i are already known, however, the recursion (19)
can begin at somej < n, which saves operations compared
with (18).

We collect the elementsFj,i in a lower-triangular matrixF ,
which is related to the lower-triangular matrixE by E = FH

or, equivalently,F = EG. The optimized projection method
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proposed in Sec. III-A to update theEj,i values, with some
minor modifications, can be similarly applied to updateFj,i.
The changes are as follows:
• The last row ofF is equal to the received vectorr.
• When movingdown to an i-dimensional layer,Fi,i needs
to be calculated. This is done by computing (19) forj =
di, di − 1, ..., i + 1, wheredi, in analogy with the definition
above forH-based decoding, is defined as the minimumj for
which Fj,i is known.
• When movingup from an i-dimensional layer, all elements
on theith row of F and above that row become obsolete and
should be considered as unknown in the future, since the next
time the algorithm will move down to dimensioni, anotheri-
dimensional layer will be investigated. However, the elements
below that row remain unaffected.

C. The Proposed Algorithm

Standalone representations of the old and new algorithms,
G-based andH-based versions, for lattices and finite constel-
lations, are given in Fig. 2, all based on the SE enumeration
strategy. The specifications are intended to be sufficientlyde-
tailed to allow a straightforward implementation, even without
knowledge of the underlying theory.

As starting points, we use theG-based algorithm called
“Algorithm II” in [9], labeled with 2 in Fig. 2, and the
H-based algorithm “Decode” in [8], here labeled with3.
The loops have been restructured for consistency between
the algorithms, but the calculations in Fig. 2 are exactly the
same as in [9] and [8]. Indeed, all algorithms for lattice
decoding (algorithms1, 3, 5, and 7) visit the same layers
ui, in the same order, and return the same resultû, although
they calculate different intermediate quantities. A similar note
holds for decoding finite constellations (algorithms2, 4, 6,
and8).

After the initialization, the algorithms are divided into three
parts. In the first part, which is the firstdo–while loop, we
move down the layers (decreasei) as long as the squared
Euclidean distanceλi (16) between the received vectorr
and the projected vectorri−1 (10) is less than the squared
Euclidean distanceC between the received vectorr and the
closest lattice point detected so far. In the second part, which
is the seconddo–while loop, we move up in the hierarchy of
layers (increasei) as long asλi ≥ C. Moreover, before leaving
each of these parts, we store the minimum and maximum
dimensioni that has been visited (in the variablesm and i,
respectively). These values are used in the last part of the
algorithm, which only belongs to the new algorithms.

The method to manage the recursive projection ofei or
the calculation ofFj,i is proposed in the third and last part,
after the secondwhile. This part sets the value ofdj to i for
j = m, m+1, . . . , i−1 andmax{dj , i} for j = 1, . . . , m−1,
but in a way that generally requires fewer thanm− 1 integer
comparisons. The values ofdj for j ≥ i are not updated, since
they will not be needed in the next iteration. The valuesdj

keep track of which elementsEj,i or Fj,i are known at each in-
stant, which in turn determines the range ofj values for which
(17) and (19) should be computed, as detailed in Sec. III-A

1 5 input: n, G, r; output: û ∈ Z
n

2 6 input: n, G, r, Umin, Umax; output: û ∈ Un

3 7 input: n, H , r; output: û ∈ Z
n

4 8 input: n, H , r, Umin, Umax; output: û ∈ Un

12345678 C = ∞
12 5678 i = n + 1

34 i = n
5678 dj = n, j = 1, . . . , n

12345678 λn+1 = 0
34 78 En,j =

Pn

k=j
rkHk,j , j = 1, . . . , n

56 Fn,j = rj , j = 1, . . . , n
3 un = round(En,n)
4 un = roundc(En,n)

34 y = (En,n − un)/Hn,n

34 ∆n = sign(y)
34 λn = y2

12345678 LOOP
12345678 do {
12345678 if (i 6= 1) {
12345678 i = i − 1

34 Ei,j = Ei+1,j − yHi+1,j, j = 1, . . . , i
56 Fj−1,i = Fj,i − ujGj,i, j = di, di − 1, . . . , i + 1

78 Ej−1,i = Ej,i − yjHj,i, j = di, di − 1, . . . , i + 1
12 pi = (ri −

Pn

j=i+1
ujGj,i)/Gi,i

56 pi = Fi,i/Gi,i

1 5 ui = round(pi)
2 6 ui = roundc(pi)

3 7 ui = round(Ei,i)
4 8 ui = roundc(Ei,i)

12 56 y = (pi − ui)Gi,i

34 y = (Ei,i − ui)/Hi,i

78 yi = (Ei,i − ui)/Hi,i

123456 ∆i = sign(y)
78 ∆i = sign(yi)

123456 λi = λi+1 + y2

78 λi = λi+1 + y2
i

12345678 } else{
12345678 û = u

12345678 C = λ1

12345678 }
12345678 } while (λi < C)

5678 m = i
12345678 do {
12345678 if (i = n)
12345678 return û and exit
12345678 else{
12345678 i = i + 1
2 4 6 y = ∞

8 yi = ∞
12345678 ui = ui + ∆i

12345678 ∆i = −∆i − sign(∆i)
2 4 6 8 if (Umin ≤ ui ≤ Umax)

12 56 y = (pi − ui)Gi,i

34 y = (Ei,i − ui)/Hi,i

78 yi = (Ei,i − ui)/Hi,i

2 4 6 8 else{
2 4 6 8 ui = ui + ∆i

2 4 6 8 ∆i = −∆i − sign(∆i)
2 4 6 8 if (Umin ≤ ui ≤ Umax)
2 6 y = (pi − ui)Gi,i

4 y = (Ei,i − ui)/Hi,i

8 yi = (Ei,i − ui)/Hi,i

2 4 6 8 }
123456 λi = λi+1 + y2

78 λi = λi+1 + y2
i

12345678 }
12345678 } while (λi ≥ C)

5678 dj = i, j = m, m + 1, . . . , i − 1
5678 for (j = m − 1, m − 2, . . . , 1) {
5678 if (dj < i)
5678 dj = i
5678 else
5678 goto LOOP

sign(x) =



−1, x ≤ 0
1, x > 0

round(x) = arg min
u∈Z

|u − x|

roundc(x) = arg min
u∈U

|u − x|

5678 }

n: dimension
G: a lower-triangular

n×n generator matrix
with positive diagonal
elements

H = G
−1

r: received vector
Umin, Umax: constellation

endpoints (2)
û = arg min

u

‖r − uG‖

12345678 goto LOOP

1 old G-based, lattices
2 old G-based, finite const. [9]
3 old H -based, lattices [8]
4 old H -based, finite const.
5 new G-based, lattices
6 new G-based, finite const.
7 new H -based, lattices
8 new H -based, finite const.

Fig. 2. Eight algorithms in one figure. To implement a certainalgorithm,
use only the lines labeled with the algorithm’s digit1,. . . ,8.
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and III-B. It can be shown thatdj is a decreasing sequence
for j = 1, 2, . . . , m, constant forj = m, m+1, . . . , i−1, and
finally increasing forj = i − 1, i, . . . , n.

Due to the well-documented performance gain that the
SE enumeration strategy brings to sphere decoders, we ap-
ply herein the proposed refinement only to the SE strategy.
However, the same refinement can be applied to the original
Pohst enumeration strategy. It is also applicable to most, or
all, of the numerous sphere decoder variants, optimal as well
as suboptimal, that have been developed in the last decade.

IV. SIMULATION RESULTS

Herein, we evaluate the effectiveness of the proposed smart
vector projection technique on the sphere decoder algorithms
based on SE enumeration strategy, for both lattices and finite
constellations. All eight algorithms are implemented according
to the pseudocode presented in Fig. 2.

We base our performance comparison measure on counting
the number of floating point operations (flops) and integer
operations (intops) that each algorithm carries out to reach the
closest lattice point. Both types of operations include addition,
subtraction, multiplication, division, and comparison, but not
for loop counters, whose role differs between programming
languages. Theround operation is counted as a single floating
point operation, androundc in Sec. IV-B is counted as one
floating point operation for 2-PAM and two for 4-PAM.

To compare the complexity of two algorithms, typically
an old and a new one, we generateM random generator
matrices G1, . . . , GM , and for eachGj we generateN
random received vectorsrj,1, . . . , rj,N . The same vectors are
decoded using both algorithms and the number of operations
ops(rj,i, Gj) is counted, which could be either flops or intops.
The average gain with the new algorithm is reported as

gain =
1

M

M
∑

j=1

∑N

i=1
opsold(rj,i, Gj)

∑N

i=1
opsnew(rj,i, Gj)

. (20)

A. Lattices

We generate the lattice generator matrices with random
numbers, drawn from i.i.d. zero-mean, unit-variance Gaus-
sian distributions. The random input vectors are generated
uniformly inside a Voronoi region according to [22]. Our
simulation results are based on averaging overM = 100
different generator matrices. The number of input vectorsN
depends on the dimensionn of the lattices. Fewer input vectors
are examined in high dimensions, to the extent that we ensure
that the plotted curves are reasonably smooth.

Fig. 3 compares the number of flops for the standardG- and
H-based algorithms (algorithms1 and 3 in Fig. 2) with the
new algorithms proposed in this paper (algorithms5 and 7).
Apparently, theG- andH-based implementations have about
the same complexity, but both can be significantly improved.

The gain (20) is shown in Fig. 4 for flops and intops. A
preprocessing stage was applied to each lattice, replacingthe
generator matrix with another generator matrix for the same
lattice via the so-called Lenstra–Lenstra–Lovász (LLL) reduc-
tion [23], [24]. The operations needed for the reduction were
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Fig. 3. The average number of flops needed to decode a vector with the old
and new versions ofG- and H-based lattice decoding algorithms, without
reduction.
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G-based flops without reduction
G-based flops with LLL reduction
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Fig. 4. Complexity gain with the new lattice decoding algorithms, with and
without reduction.

not counted, since the preprocessing is only done once for
each lattice, regardless of the number of received vectors.The
gain with new algorithms increases linearly with dimension,
while the reduction does not change the ratios substantially.
The drawback is a somewhat larger number of intops, but the
penalty converges to a mere 15% increase at high dimensions.
In simulations it was observed that most of the operations in
the algorithms are flops, especially as the dimension increases.
For instance, at dimension 60 with the oldH-based algorithm,
the flops are roughly 10 times more than the intops. Hence,
flops dominate the complexity of the algorithms and intops
have a relatively small effect on the overall complexity.

We also measured the running time for the algorithms.
As expected, the gain increases roughly linearly with the
dimension, similarly to the flops curves in Fig. 4. However,
the slope of the curve varies significantly between different
processors and compilers, which is why we did not include
running time in Fig. 4. At dimension 60, the gain ranged
from 1.7 (AMD processor, Visual C++ compiler) to 2.7 (Intel
processor, GCC compiler), for theH-based algorithm without
reduction. We can thus safely conclude that the reduced
number of operations translates into a substantial speed gain,
but how much depends on the computer architecture.
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Fig. 5. Average gain in the number of flops with the new algorithms for a
2-PAM constellation and various SNRs.
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Fig. 6. Average gain in the number of flops for a 4-PAM constellation and
various SNRs.

B. Finite Constellations

The channel model in (3) for anL-PAM constellation is
considered, where the average symbol energy of the constel-
lation, Es, is calculated from the signal set{−L−1

2
,−L−1

2
+

1, . . . , L−1

2
} and the SNR is defined asEb/N0, whereEb =

Es/ log2 L is the average energy per bit andN0/2 is the
double-sided noise spectral density.

The gain in flops is presented in Figs. 5–6 for 2-PAM and 4-
PAM constellations, resp., averaged over 100 random channel
matrices G with i.i.d. zero-mean, unit-variance elements.
The same general conclusion as for lattices holds for finite
constellations too: The new algorithms provide a substantial
complexity gain, and the gain increases linearly with the
dimension. However, in contrast to lattice decoding, the gains
are here higher forG-based implementations. Furthermore, the
gains increase at low SNR, and 4-PAM offers slightly higher
gains than 2-PAM. Tentative investigations indicate that the
gains are even higher with 8-PAM.
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