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Abstract—We establish a lower bound on the noncoherent
capacity pre-log of a temporally correlated Rayleigh block-fading
single-input multiple-output (SIMO) channel. Our result holds
for arbitrary rank () of the channel correlation matrix, arbitrary
block-length L > (@, and arbitrary number of receive antennas R,
and includes the result in Morgenshtern et al. (2010) as a special
case. It is well known that the capacity pre-log for this channel
in the single-input single-output (SISO) case is given by 1—Q/L,
where Q/L is the penalty incurred by channel uncertainty. Our
result reveals that this penalty can be reduced to 1/L by adding
only one receive antenna, provided that .. > 2Q) — 1 and the
channel correlation matrix satisfies mild technical conditions.
The main technical tool used to prove our result is Hironaka’s
celebrated theorem on resolution of singularities in algebraic
geometry.

I. INTRODUCTION

It was shown in [1] that the noncoherent capacity' pre-
log for single-input multiple-output (SIMO) correlated block-
fading channels can be larger than the pre-log in the single-
input single-output (SISO) case. This result was surprising as
it disproved a conjecture in [2] on the pre-log in the SIMO
case being the same as in the SISO case. The channel model
analyzed in [1] assumes that the fading process is independent
across blocks of length L and temporally correlated within
blocks, with the rank of the corresponding L x L channel
correlation matrix given by () < L and the number of receive
antennas R = (. For this channel model, under additional
technical conditions on the channel correlation matrix, a pre-
log of (1 — 1/L) was established in [1]. In contrast, in the
SISO case the pre-log is given by 1 — @Q/L.

The assumption R = () made in [1] is very restrictive,
and the proof technique used in [1] heavily relies on this
assumption. More precisely, the main result in [1] is based
on a lower bound on the differential entropy h(y) of the
channel output signal that is obtained by applying a change of
variables argument [1, Lem. 3]. The proof is then completed
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'Noncoherent capacity denotes capacity in the setting where transmitter
and receiver know the channel statistics but neither of them is aware of the
channel realizations.

by showing that the expected logarithm of the Jacobian de-
terminant corresponding to this change of variables is finite.
For R < @, the Jacobian determinant takes a very involved
form making it difficult to say anything about its expected
logarithm. The main contribution of this paper is to resolve
this problem by introducing a new proof technique based on a
result from algebraic geometry, namely [3, Th. 2.3], which is
a consequence of Hironaka’s celebrated theorem on resolution
of singularities [4], [5]. Roughly speaking, this result allows
us to rewrite any real analytic function [6, Def. 1.6.1] locally
as a product of a monomial and a nonvanishing real analytic
function. The proof of our main result, a lower bound on the
pre-log for the correlated block-fading channel with arbitrary
number of receive antennas R < @), is then effected by using
this factorization to show that the integral of the logarithm of
the absolute value of a real analytic function over a compact
set is finite, provided that the real analytic function is not
identically zero. This method is very general and could be
of independent interest when one tries to show that a certain
differential entropy is finite.

We conclude by noting that the main result in this paper
shows that the pre-log penalty @)/ L incurred in the SISO case,
which is due to channel uncertainty, can be reduced to 1/L
by adding only one receive antenna (i.e., by taking R = 2),
provided that L > 2() — 1 and the channel correlation matrix
satisfies mild technical conditions. In the limit L, Q — oo with
L/Q constant, the 1/L penalty in the SIMO case becomes
arbitrarily small, whereas the )/L penalty in the SISO case
remains unchanged.

A. Notation

Finite subsets of the set of natural numbers, Z C N,
are denoted by calligraphic letters and we write |Z| for the
cardinality of Z. We use [m:n| to designate the set of natural
numbers {m,m+1,...,n}. Uppercase boldface letters denote
matrices, lowercase boldface letters designate vectors. The
superscripts © and H stand for transposition and Hermitian
transposition, respectively. The all-zero matrix of appropriate
size is written as 0. For a matrix A € CM*¥  the entry in the



ith row and jth column is denoted by a; ; and we write a;

for its ith row. If Z C [1: M], we denote by Az € CZI*N the
submatrix of A obtained by retaining all rows a; of A with
row index ¢ € Z. Similarly, for a vector € CM we denote
its ith entry by z;. If Z C [1: M] we denote by x7 € C/Z! the
vector obtained by retaining the entries x; of & with ¢ € Z. We
write e; for the ith unit vector of appropriate size and I, for
the identity matrix of size M x M. For a vector x, diag(x)
denotes the diagonal matrix that has the entries of x in its
main diagonal. For two matrices A and B of arbitrary size,
diag(A, B) is the 2 x 2 block matrix that has the matrix A as
upper left block, B as lower right block, and O as upper right
and lower left block. For N matrices Aq,..., Ay, we define
diag(A1,..., Ay) 2 diag(diag(Ai,...,Ay_1),Ay). We
designate the Kronecker product of the matrices A and B
as A ® B; to simplify notation, we use the convention that
the ordinary matrix product precedes the Kronecker product,
ie, AB® C £ (AB) ® C. For a function f, we write
f # 0 if there exists a vector x in the domain of f such that
f(x) # 0. For two functions f and g, the notation f = O(g)
means that limsup,_, (|f(z)/g(z)]) < co. If z €R, [z] =
max{m € Z | m < z} and [z] £ min{m € Z | m > z}
with Z denoting the set of integers. The logarithm to the base
2 is written as log(-). The expectation operator is denoted by
E[-]. Finally, CA/(a, C) stands for the distribution of a jointly
proper Gaussian random vector with mean a and covariance
matrix C.

II. SYSTEM MODEL

We consider a SIMO channel with R receive antennas. The
fading in each component SISO channel follows a correlated
block-fading model [2], with input-output relation for a given
block

Ym = /pdiag(h,,)x +ny,  m € [1:R] (1)

where p denotes the signal-to-noise ratio (SNR), & € CF is
the transmitted signal vector, y,, € C is the received signal
vector corresponding to the mth receive antenna, and n,, ~
CN(0,I) is additive noise. Finally, h,, ~ CN(0,QQ") is
the vector of channel coefficients between the transmit antenna
and the mth receive antenna. Here,”> Q € CLx@ and R < Q £
rank(Q) < L.

Without loss of generality, we assume that the row vectors
ql of Q satisty q; # 0 (i € [1: L]). The vectors h,, and
n,, are assumed to be mutually independent and independent
across m € [1: R]. It will turn out to be convenient to write the
channel-coefficient vector in whitened form as h,, = Qs,,,
where s, € C? with s, ~ CN(0, I). Finally, we assume
that s,, and n,, change in an independent fashion from block
to block for all m € [1: R).

Setting y* £ (yT,...
(nf,...,n%),

y}{,) sT 2 (s?,...,s%), ntT £
d

iag(x), we can combine the

2When Q = L, capacity is known to grow double-logarithmically in SNR
[7], and, hence, the pre-log is equal to zero. If R > () we can always achieve
the same pre-log as for R = @ by simply using only @) receive antennas.

individual input-output relations in (1) into the overall input-
output relation

Yy =py+n,

III. LOWER BOUND ON THE PRE-LOG

with § 2 (Ir ® XQ)s. (2)

The capacity of the channel (2) is defined as
C(p) = (1/L) sup I(z; y) 3)

f(=)

where I(x;y) denotes mutual information [8, p.251] and the
supremum is taken over all input distributions f(z) on CF
that satisfy the average power constraint E[||x|?] < L. The
pre-log is defined as lim, ... (C(p)/log(p)).

The main result of this paper is the following theorem.

Theorem 1: Suppose that @Q satisfies the following

Property (A): There exists a subset of indices I C [1: L]
with cardinality

K| £ min([(QR—1)/(R—1)],L) )

such that every ) row vectors of Qx are linearly independent.
Then, the capacity of the SIMO channel (2) can be lower-
bounded as

<>>{ ((11/L>log<p>+o<1>, if 9t < g
T | R

1-Q/L)log(p)+ O(1), else. ©)

Remark 1: The SISO pre-log is 1 — Q/L [2].

Remark 2: For () = R Theorem 1 reduces to [1, Th. 1].

Remark 3: Without loss of generality, we will henceforth
assume that the set & in Theorem 1 is given by K = [1:|K]].
This can always be achieved by reordering the scalar input-
output relations in (1).

Remark 4: The pre-log is (1 — 1/L), provided that L >
2Q) — 1, even if R = 2 only.

Remark 5: Property (A) in Theorem 1 is not restrictive and
is satisfied for a broad class of correlation matrices.

Proof: Since we are interested in a capacity lower bound,
we can evaluate the mutual information in (3) for an ap-
propriate input distribution. Specifically, we take the input
distribution to have entries x; (¢ € [1:L]) that are independent
and identically distributed (i.i.d.), zero mean, unit variance,
and satisfy h(x;) > —oo. This implies that [7, Lem. 6.7]

Ellog(|z;|)] > —o0, i€ [1:L]. (6)

For example, we can take z; ~ CAN(0,1). The mutual
information I(x;y) = h(y)—h(y | ) in (3), evaluated for any
input distribution satisfying these constraints, is then lower-
bounded as follows. We first upper-bound h(y|x) according
to [1, Eq. (8)]

h(y|z) < QRlog(p) + O(1) (7
and then lower-bound h(y) as in [1, Eq. (12)]
hy) = (QR+ L — a)log(p) + h(Pylzp) +c  (8)



where c is a constant that is independent of p, h(Pg|xp) is
independent of p, P = [1:a] with a € [1: L], and

P £ diag((I1)5,,- - (IL)7,) 9)
.,Ir C [1:L] satisfying
> ITLl=QR+L-a.

i€[1:R)

for sets 71, ..

(10)

The set P can be interpreted as a set of pilot positions [1].
Combining (7) and (8), the capacity lower bound in (5) is
established by choosing

if QR—1)/(R-1)< L

else,

a= {1’
QR—-(R-1)L,
provided that we can find sets Zj,...,Zr such that
h(Pg|xp) > —oo. The remainder of the paper is devoted
to identifying such a choice for Z;,...,Zr and proving that
the corresponding differential entropy h(Pg |xp) is, indeed,
finite. The main idea is to choose the sets Z;, ..., Zgr such that
h(Pg|xp) can be related to h(s,xp) = h(s) + h(xp) with
D £ [a + 1: L] through a deterministic one-to-one mapping.
The quantity h(s) + h(xp) is much easier to deal with than
WPy wp).
Condition (10) implies that the mapping

(s,zp) — Py=P(Ir® XQ)s (11)

is between two vector spaces of the same dimension QR +
L — «, which is a necessary condition for this mapping to
be one-to-one. Note that the RHS of (11) also depends on
xp, which is, however, taken to be fixed, reflecting the fact
that the pilot symbols are known to both transmitter and
receiver. Any dependence on x will henceforth implicitly mean
a dependence on xp only. We set Zr 2 [1: L] and shall choose
Ty,...,Zr—1 C [1:L] as follows:

(@ If (QR—1)/(R—1) > L,wesetZ; =---=Tp | = [1:

L].
) f (QR—1)/(R—1) < L, we let

I, 21:Q+k+1], me[l:R-1-1] a2)
ITn2[1:Q+k+2, me[R—1:R—1]
with k2 [(Q—R)/(R—1) and [ 2 Q— R—k(R—1).
Now let
., OPjg
J(s,zp) & WQZ)) (13)

be the Jacobian of the mapping in (11). If this mapping is one-
to-one on C@T+L—a almost everywhere (a.e.), we can apply
the change-of-variables theorem for integrals [9, Th. 7.26] in
combination with [10, Th. 7.2] and find that

h(Py | xp) = h(s, zp) + 2 E[log(| det(J (s, zp))|)].
The proof is then concluded by establishing that the mapping
in (11) is one-to-one a.e. and
E[log(| det(J (s, xp))|)] > —oc. (14)

This requires an in-depth analysis of the Jacobian in (13),
which will be carried out in the next section. ]

IV. PROPERTIES OF THE JACOBIAN

The following lemma provides important insights into the
structure of the determinant of the Jacobian in (13).
Lemma 1: The Jacobian in (13) can be decomposed as

J(S,.’BD) = Jl(mp)JQ(S)Jg(.’I}D) (15)
where
Ji(@p) £ P(Ir® X)P" (16)
Jo(s) £ PIr @ Q| aot1 || aL] (17)
J3(zp) £ diag(Igr, diag(zp) ") (18)
with
a; 2 (Ir ® diag(e;)Q)s, i€ [l:L)]. (19)
Proof: The lemma follows by noting that
0y 0 .
5o = o ( > a(Ix @ diag(e;)Q)s )
JE[1:L]
= a;, xS [].L]
oy
= =Ir® XQ.
ds
|

Based on (6), we can conclude that?

Ellog(| det(J1(xp)) det(J3(zp))|)]

= ZRlog(|xj|) + Z Z Eflog(|a;])] > —oo.
jeP i€[1:R—1] jET\P

To conclude the proof of (14) it therefore remains to show that
Ellog(| det(J2(s))])] > —oo. Direct computation reveals that
each vector Pa,; in (17) with ¢ € Zp \ Zr_1 contains only
one nonzero element, which is given by q;f sp. Applying the
Laplace formula [11, p.7] to J2(s) in (17) therefore yields the
decomposition

| det(Ja(s))| = [det(Ja(s)] ]

iI€IR\IR-1

lalsr|  (20)

with

Ju(8) EPIr®Q) | Gagr |-+ |aiz,_,] Q2D

and

Py £ diag((IL)z,, .- (L) 7o (IL)Zs . )-

The expectation of the logarithm of the second term on the
RHS in (20) is finite because sg ~ CN (0, I). It remains
to show that E[log(| det(J4(s))|)] > —oo. This is the most
technical part in the proof of Theorem 1 and can be accom-
plished by applying methods from algebraic geometry, namely
Theorem 2 in Appendix A, which is a consequence of Hiron-
aka’s celebrated theorem on resolution of singularities [4], [5].
A direct proof would require showing that the expected log
of the determinant of the (high-dimensional) matrix Jy4(s) is
finite, which seems exceedingly difficult. Hironaka’s theorem

3We assume that x; #0forall j € P.



drastically simplifies the proof as it tells us that det(J4(-)) Z 0
implies that E[log(| det(J4(s))])] > —oo. We start by noting

that det(J4(s)) is a homogeneous polynomial in s1,...,sqr
of degree D £ |Zr-1] — a, ie.,
det(J4(As)) = AP det(J4(s)), VAeC, (22)

which allows us to apply the following proposition (for M =
QR and D defined above):

Proposition 1: Let g be a homogeneous polynomial in
81,...,8n of degree D € Ny with s ~ CAN(0,Iy;). Then
g # 0 implies that

Eflog(|g(s)|)] > —o0.

Proof: Writing s as s = ||s||(s/||s]|) and using the fact
that g is a homogeneous polynomial of degree D, we can
upper-bound the absolute value of the expectation in (23) by

[Eflog(lg(s)D]| < D Elllog(|s[)I] + Efllog(lg(s/lIsl)])1] -

22 4B

Then [7, Lem. 6.7] together with s ~ CA(0, I;) implies that
A < o0. Introducing polar coordinates [12, p. 55] r € R and

02,

(23)

Oon—1)T €A 20,722 x [0, 2]

for the complex vector s € CM, we can further upper-bound
B according to

BS/ exp(—rQ)T2M*1dr></

0 A

| log(|f()])] 46

where f is obtained from g by changing to polar coordinates
r € Ry,0 € A. Note that f is a real analytic function [6,
Def. 1.6.1], g # 0 implies that f % 0, and we are integrating
[log(]f(-)])| over a compact set A. We can therefore apply
Theorem 2 in Appendix A to conclude that B < oo. ]

It remains to show that det(Jy(-)) # O for our specific
choice of sets 7Z;,...,Zr_1, which will be proved in the
following lemma:

Lemma 2: Property (A)
det(Jy(-)) #Z0.

Proof: See Appendix B [ |

In summary, we proved that (14) holds provided that
Property (A) in Theorem 1 is satisfied. It turns out that
det(J4(+)) # 0 also implies that the mapping in (11) is one-
to-one a.e. on COF+L= The proof, which is along the lines
of the proof of [1, Lem. 2], is omitted due to space limitations.
This completes the proof of Theorem 1.

in Theorem 1 implies that

APPENDIX
A. Resolution of singularities

In this appendix, we show how Hironaka’s theorem
on resolution of singularities can be used to prove that
Jacra [og([f(z)])|dx < oo provided that f # 0 is a real
analytic function and A is a compact set.

We start by defining notation that will be used in this
appendix. Let CM (z,e) = {y e RM | |z; —ys| <€, Vi €
[1: M]} denote the open cube with side length 2¢ centered at

x.Forx € CM and m € N} let ™ £ 2™ ... 2™ If
is a subset of the image of a map f then f~!(X) denotes the
inverse image of X.

The following lemma is an immediate consequence of a
modified version of Hironaka’s theorem [3, Th. 2.3]. This
modified version originally appeared in [13]. The main point
of this lemma is that it allows us to rewrite any real analytic
function [6, Def. 1.6.1] f # 0 locally as a product of a
monomial and a nonvanishing real analytic function.

Lemma 3: Let f be a real analytic function from a neigh-
borhood Q C RP of z € R” to R. Suppose that f(z) = 0.
Then, there exists a triple (X, Z, ¢), where

(a) ¥ C Qis an open set in R” with x € %,

(b) =is a D-dimensional real analytic manifold [3, Def. 2.10],
(¢) ¢ : 2 — X is a real analytic map

that satisfies the following conditions:

(1) The map ¢ is proper, i.e., the inverse image of any compact
set is compact.

(2) The map ¢ is a real analytic isomorphism between Z \
(f 0 #)~1(0) and B\ F(0).

(3) For each point P € =, there exists a coordinate chart
{Ep,@p} such that P € Zp C &, ¢p: CD(O,ep) —
ZEp is a real analytic isomorphism for some ep > 0 with
¢p(0) = P,

|f(popp(u))|=hp(u)u™",

where hp is a nonvanishing real analytic function on
CP(0,ep) and mp € NJ, and the determinant of the
Jacobian of the mapping ¢ o pp satisfies

(¢ o pp(u))
ou

where gp is a nonvanishing real analytic function on

CP(0,ep) and np € NP.

Proof: The main idea is to apply [3, Th. 2.3] to the
function f(z) £ f(z + ), Vz € Q — x. We omit the details
due to space limitations. [ |

We are now in a position to state the theorem that is needed
to prove B < oo in the proof of Proposition 1.

Theorem 2: Let f # 0 be a real analytic function on an
open set 2 C RP. Then

[ 1os(If @) da < oo
A

for all compact sets A C €.

Proof: Let x € A. If f(x) = 0 then Lemma 3 implies
that there exists a triple (X, =g, ¢z) where X, C Q is an
open set containing x, =, is a real analytic manifold, and
¢z 1 2z — Xz is a proper real analytic map. Moreover, for
each P € E, there exists a coordinate chart {Z, p, vz p}
such that 2, p = e pr(CP(0,ez.p)), ¢z,p(0) = P, and

Yu € CP(0,ep)

det ( ) = gp(w)u™r, Yue CP(0,ep)

(24)

My, P

|f o ¢a o Wm,P(u” = hm,P(u)u

00 © o p(u) _ Ta, P
e (222 iy

(25)



for all u € CD(O,E:E7P), where g5 p and hg, p are non-
vanishing real analytic functions on CP(0,¢; p). We can
choose ¢ p sufficiently small so that g, p and h, p are
bounded on CP(0, ¢, p). If f(x) # 0 the existence of a triple
(X, Za, @) With the properties specified above is guaranteed
by taking =, = X, sufficiently small such that f does not
vanish on ¥, and by setting ¢, to be the identity map.

Now for each & € A, we choose an open neighborhood
Y., and a compact neighborhood A, such that z € ¥, C
Agz C ¥g. Since A is a compact set, there exists a finite set
of vectors {@1,..., N} in A such that

Ac | =, c U Ag,.
1€[1:N] N]
For each i € [1: N], set A; 2 Ag,, ¥ = X, 5 2 Zg,
and ¢; £ ¢=,. Since the mapping ¢, :=; — %; is proper, each
set ¢>fl(Ai) C =; is a compact set. Therefore, there exists a
finite set of points {Py,..., Py} in E; such that

¢ N (A)c | Ei

JE[1:M;]

(26)

with =; ; £ Eqg,,p,;. Since (26) holds for all i € [1: N], we
can upper-bound the integral in (24) as follows:

|log(|f()])| de < [ log(|f(x)])| de
/A ’ ze[?N]/ ©
<a¥ ¥ [

1€[1:N] je[1:M;]

’ni,] log (|umi,j |) | du + Co
b(o, €i,5)

< 00

where ci,co > 0 are positive real numbers, g; ;,h; ; are
bounded nonvanishing real analytic functions on C?(0,¢; ;),
m; ;, N, ; are vectors of nonnegative integers, and we changed
variables according to (25). |

B. Proof of Lemma 2

We present a proof for a« = 1,1 # 0 and skip the (simpler)
cases > 1and a=1,1=0.
Suppose that « = 1 and [ # 0. We can write Jy(s) in (17)

as J4(S) = [diag(Qzlv sy QIR—1aQIRf1) A] with AT £
[AT ... A}] and A,, defined as
0 0 0 0
T
qg58nm O 0 0
A, = €[l:R—-1-1]
0 0
0 . qg+k+18m 0
0 0 0
a3 s8m 0 0
A, = 0 , mée[R—1:R].

T
0 s AQipt2Sm

Property (A) in Theorem 1 implies that for arbitrary subsets

Km C[2:Q+ k + 1],
Km C2:Q+k+2],

me[l:R—-1-1]
m € [R—1:R]

with |IC,,| = Q—1, we can find vectors s,,, € C¢ (m € [1: R])

such that

(a) g sy = 0 for all vectors g with j € Ky,

(b) gj sm # 0 for all vectors with j € K\ Kp,

This implies that for each choice of such sets IC,,, (m € [1: R]),
there exists a set of vectors s, € C? (m € [1: R]) such
that the number of nonzero elements n,, in each matrix A,,
satisfies

nm=k+1, me[l:R—-1-1]
(27)
Nm=k+2, mec[R-1:R].
Moreover, we have
Y nm=Q+k+1

me[1l:R]

which implies that we can choose the subsets /C,, and the
vectors S,, (m € [1: R]) such that each column of A contains
precisely one nonzero element. Applying the Laplace formula
[11, p. 7] iteratively, we therefore get

[det(Ja(s))l =¢ [ Idet(@Qx,.u01)l >0

me([l:R]

where c is a positive constant and we used Property (A) in
Theorem 1 in the last step. [ ]

REFERENCES

[1]1 V.1 Morgenshtern, G. Durisi, and H. Bolcskei, “The SIMO pre-log can
be larger than the SISO pre-log,” in Proc. IEEE Int. Symp. Inf. Th. (ISIT
2010), Austin, TX, June 2010, pp. 320-324.

[2] Y. Liang and V. V. Veeravalli, “Capacity of noncoherent time-selective
Rayleigh-fading channels,” IEEE Trans. Inf. Th., vol. 50, no. 12, pp.
3095-3110, Dec. 2004.

[3] S. Watanabe, Algebraic Geometry and Statistical Learning Theory.
Cambridge, U.K.: Cambridge Univ. Press, 2009, vol. 25.

[4] H. Hironaka, “Resolution of singularities of an algebraic variety over a
field of characteristic zero: I,” Math. Ann., vol. 79, no. 1, pp. 109-203,

Jan. 1964.

[5] ——, “Resolution of singularities of an algebraic variety over a field of
characteristic zero: II,” Math. Ann., vol. 79, no. 2, pp. 205-326, Mar.
1964.

[6] S. G. Krantz and H. R. Parks, A Primer of Real Analytic Functions.
Basel, Switzerland: Birkhduser, 1992, vol. 4.

[71 A. Lapidoth and S. M. Moser, “Capacity bounds via duality with
applications to multiple-antenna systems on flat-fading channels,” IEEE
Trans. Inf. Th., vol. 49, no. 10, pp. 2426-2467, Oct. 2003.

[8] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
New York, NY: Wiley, 2006.

[91 W. Rudin, Real and Complex Analysis, 3rd ed.

McGraw-Hill, 1987.

K. Fritzsche and H. Grauert, From Holomorphic Functions to Complex

Manifolds, 1st ed. New York, NY: Springer, 2002.

R. A. Horn and C. R. Johnson, Matrix Analysis.

Cambridge Univ. Press, 1985.

R. J. Muirhead, Aspects of Multivariate Statistical Theory. New York,

NY: Wiley, 1982.

M. E. Atiyah, “Resolution of singularities and division of distributions,”

Comm. Pure and Appl. Math., vol. 13, pp. 145-150, 1970.

New York, NY:
[10]
[11] Cambridge, U.K.:
[12]

[13]



