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Electromagnetic Green’s function for layered systems: Applications to nanohole
interactions in thin metal films

Peter Johansson”
School of Science and Technology, University of Orebro, S-701 82 Orebro, Sweden, and Department of Applied Physics,
Chalmers University of Technology, S-412 96 Goteborg, Sweden
(Received 3 December 2010; revised manuscript received 9 March 2011; published 4 May 2011)

We derive expressions for the electromagnetic Green’s function for a layered system using a transfer matrix
technique. The expressions we arrive at make it possible to study symmetry properties of the Green’s function,
such as reciprocity symmetry, and the long-range properties of the Green’s function which involves plasmon
waves as well as boundary waves, also known as Norton waves. We apply the method by calculating the
light-scattering cross section off a chain of nanoholes in a thin Au film. The results highlight the importance of
nanohole interactions mediated by surface plasmon propagating along the chain of holes.
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I. INTRODUCTION

The research field of plasmonics' has seen an enormous
development over the last decades, both experimentally and
theoretically. Examples of the aspects studied include en-
hanced light emission under various circumstances,? enhanced
spectroscopies such as surface-enhanced Raman scattering
(SERS),? extraordinary transmission of light,* and biosensing
applications.’

A corresponding development has also taken place on
the theory side and a variety of methods are used to solve
theoretical problems in plasmonics. These include exact
methods that apply for certain geometries such as Mie
theory® for problems with spherical symmetry, but in most
situations methods that make more extensive use of numerical
calculations are needed. The finite-difference-in-time-domain
(FDTD) method!®!? is one such method that has grown in
popularity in recent years, the discrete-dipole approximation
(DDA) method'*" and Green’s function (GF) method'¢-?!
are two other methods that are often used. Of these, the DDA
method has a somewhat longer history and probably a bigger
user base. The GF method, on the other hand, can be more
flexible in certain situations.

In this paper we present a calculation of the GF for a
layered material. In particular, this makes it possible to study
scattering off embedded inclusions such as nanoholes in metal
films.?>?° Radiation from sources placed near surfaces and
layered structures has been studied for a long time (see,
for example, Ref. 30). Paulus er al. presented a derivation
of the GF (Green’s tensor) for a layered system in Ref. 18.
The present derivation follows the same basic ideas, but we
derive rather elegant, explicit expressions for the GF that only
involve a single transfer matrix recursion relation, and which
makes it possible to explicitly demonstrate various symmetry
properties of the GF such as reciprocity symmetry. We also
study the analytic properties of the GF in Fourier space and
show how this affects the long-range properties of the GF,
which for metallic films are dominated by plasmon polaritons
for distances typically in the range of 100 nmto 10 pm, and for
even larger distance the dominating contribution comes from a
boundary wave.
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We will illustrate the GF method by calculating scattering
cross sections for light off nanohole systems in thin metal
films. The nanoholes of these systems typically have diameters
that range from 50 to 100 nm in a thin Au film of thickness
20 nm. The optical properties of nanohole system have
attracted intense interest for over a decade now in the context
of extraordinary transmission through an array of nanoholes
discovered by Ebbesen and co-workers* and studied by various
theoretical methods;*'*> for a couple of recent reviews on
this subject, see Refs. 33 and 34. However, nanohole systems
are also studied in connection with biosensing applications,
since they at the same time can act as capturing centers
for biomolecules and light scatterers whose properties are
modulated by the presence of these molecules. The basic
optical scattering properties of individual nanoholes and chains
of nanoholes in thin metal (Au films) have been studied by
Kill and co-workers and the results show signs of strong
hole-hole interactions.>® Here we present theoretical results
for the scattering cross section off multihole systems that are
in good agreement with the experimental ones. The theoretical
results combined with an analysis of the behavior of the
GF shows that the hole-hole interaction affecting the light
scattering is to a large extent mediated by surface (interface)
plasmons. The special nature of the plasmons means that
there is a strong relation between polarization and propagation
direction; hole-hole interactions are much stronger in the case
when the electric field is polarized along the axis through the
hole centers than when the polarization is perpendicular to the
chain axis.

The rest of the paper is organized in the following way. In
Sec. IT we give a brief overview of the GF method. Section III
details our calculation of the GF for a layered background
through a transfer-matrix method and we also show how a
number of physical quantities can be derived from the GE.
Section IV focuses on the analytic properties of the GF in
wave vector space and its consequences for the long-range
behavior in real space. Section V gives a brief description of
the numerical solution of the integral equation determining the
electric field in the scatterers. In Sec. VI we apply the method
to a study of the optical properties of nanoholes in a thin metal
film, and the paper is summarized in Sec. VIIL.
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II. BASIC TREATMENT OF THE SCATTERING PROBLEM

We consider first a situation where all of space is filled with
a material with dielectric function ¢, corresponding to a wave
number,

kp = Jepko = /eg(w/c), ey

where ko and ¢ are the wave number and speed of light
in vacuum, respectively, and  the angular frequency of
electric and magnetic fields. The task at hand is to solve
Maxwell’s equations, which, assuming all fields have a e/’
time dependence, read

V x E =iwB, )
V x B = poj — iwpocoesE. 3)

along with
V.B=0, and V-D =p. )

The solution for the electric field can in this case be written
as the sum of a source term that depends on the current at the
field point 7 and another term that through a GF takes into
account the effects of the currents everywhere else,*

7) . s o o a3
+zwuo/ G BF)- JEYF. ()
V/'—V,s

<>
Here L is a tensor which depends on the shape of the excluded
volume V; around 7. In the most common cases, where the

excluded volume is cubic or spherical in shape, L is diagonal
and each of its three elements have the value 1/3. The GF is
given by

o - < VV] .-~ <~ VV
Gy(rir)y=|1+—|GCTr)=|1+—7%
ki ki

oikBlF—r'|
anli —r'|
(6)

where G* is the GF to the scalar Helmholtz equation, and thus
satisfies

(V2 +k2)G (F,r) = —89G — 7). )
More explicitly, we have
Gy (= [ T 4KeR=1 Y
T K2 R?

3 3iksR— KGR 5 13) eikaR ®

k3 R* 47R’

where R = 7 — /, and ® denotes a dyadic product.
In case the dielectric function is not constant in space, there
is a modification of the second of the Maxwell’s equations,
i(z)SB d ia)(Srel—SB) g

VoxB=poj - P E - "5 )

where the last term is new compared with the case of a
homogeneous medium, and &, can vary in space in an
essentially arbitrary way. We rewrite this as
ilwe B =

2

V x B = oo — (10)
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where the total current due to both external sources and
scattering is
- - = > 1 iw(ee —é€p) 2
Jtot:]+]scatt:J__re—2E- (11
o ¢
By letting ]}m take the place of f in the solution we get
[here Ae denotes (&1 — €p)]

S (Z ._" 7 A - S <~ .o
By = 2D 2O T Ey 4 f G (7.7)
Vj—Vg

ilwepep ep
x [iwpoj(7) + k2 A E()]d?r. (12)

We next show how this expression, in particular the GF,
can be generalized to deal with a layered system where the
background dielectric function ep(¥) varies stepwise along
one direction (z) in space, and Ae = &, — ¢p then describes
further variations of the dielectric function due to scatterers.

III. GREEN’S FUNCTION FOR A LAYERED STRUCTURE

A. Formulation in terms of 2D Fourier transform

The GF for a homogeneous background given above in
Eq. (6) can be written in terms of a Fourier integral as

dq k1 -3®4 iR

Gi (R) =
QrYky  qr—k3

13)

Q

This expression becomes more useful in handling layered
structures if we integrate out the ¢, variable, which yields'3

g EQ% 3 3 d’q <
G (B = =558 + [ S Gy Gz,
! i Qmry M

(14)

The notation G, indicates that we are still dealing with
the GF for a homogeneous background, but the formal

generalization of Eq. (14) to G valid for a layered background
is straightforward. The §-function term is the result of a
subtract-add operation necessary to render the contour integral
convergent. However, in the following we do not explicitly deal

with the singular behavior of G when 7 — 7, so we therefore
leave out this term in the rest of the calculation. The 2D Fourier
transform (FT) of the GF in Eq. (14) is

i

Gr Gty =—(1
n (q),2,2) 2p<

T 2T
-5 ) P, (1)
k
B
where p stands for the absolute value of the z component of
the wave vector ¢ (originating from the residue at the pole in
the contour integration):

p = ki —ldl* (16)

The square root function in Eq. (16) should, to give physical
results in the form of outgoing, damped waves, be evaluated
with the branch cut along the positive real axis of the argument.
The superscript T on the wave vector ¢ © indicates the direction
of propagation of the waves (called primary propagation

195408-2



ELECTROMAGNETIC GREEN’s FUNCTION FOR LAYERED . ..

directionin the following) T = +1,orjustt = +,whenz > 7/

and T = —1 when z < 7'. For the wave vectors we have
q* =4y pz=(gjcosdy.qsing,, £ p), (17
where ¢ = |g;|. The corresponding unit vector,
G =q"/kg, (18)

together with the unit polarization vectors for s polarization

A pors
s iXq

= T = (—sin gy, cos ¢,,0), (19)
and p polarization
=t gt = (L cosgy,. £ Lsing,, — L), (20
kB kB kB

form an orthonormal basis. The unit tensor therefore can be
written

=47 ®§ +p @) +5 0. @D

Using Egs. (18) and (21) we can rewrite the GF FT in Eq. (15)
as

Gy G N T BT 45T @ 5T e
G (qu,z,z)—g(p QP+ ®38e . (22)

As a first step toward generalizing Eq. (22) to a situation
with a layered background, we conclude that a particular
element of the tensor can be written

Ghap(@)2.2) =@ & =G [(pTA™ +§ A™) ],
(23)

where & is a vector field proportional to an electric field
generated by the source. The wave amplitudes are found by
projecting the source unit vector 8 onto the p and s unit
vectors; thus,

A = pT.f and A = —§7. .

24
2 o (24)

B. Generalization to a layered material

When we turn to a layered material the source still generates
outgoing plane waves just like the expression in Eq. (23)
indicates; however, now there is also other waves reflected
and transmitted at the different interfaces (cf. Ref. 36).

This is illustrated in Fig. 1 for a system with four layers
and the source placed in layer 3. In layer 3, there are waves
going upward and downward on both sides of the source, in
layer 2 there are also waves propagating in both directions,
but in the two outermost layers there are only outgoing waves,
propagating upward in layer 1 and downward in layer 4. The
vector field £ we introduced in Eq. (23) takes the generalized
form

€= {[ﬁltAlryp(ZO,[) + fA;’S(ZOJ)] o TP1E=201)
+ [ﬁl?BlT,p(ZO,l) + §B;’S(ZOJ)] e_irpl(Z_ZO,l)} (25)

in layer /. Here T is the opposite direction of 7, —7, and the
unit vectors for p polarization as well as p depend on the layer
number [ since the background wave vector magnitude kp
varies from layer to layer. The wave amplitudes A;?(zo,) for
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FIG. 1. Illustration of the plane waves generated in the different
layers of a four-layer system when the source is placed at z = z'.

outgoing waves propagating away from z =z’ and B, (z,)
for returning waves propagating toward z =z’ in Eq. (25)
depend on the layer number /, primary propagation direction
7, and polarization o (p or s). The offset points z,; are local
origins for the plane wave exponentials, which can be moved
around provided, of course, that the wave amplitudes are
adjusted accordingly. The standard choice for z ;, in particular
in a numerical implementation, is to use the bottom of all the
layers above the source, and the top of all the layers below the
source. In Fig. 1 this means that zo 1 = di, z02 = da, 203 = 2/,
and 794 = ds.

We need to determine the wave amplitudes A;*°(zo,;) and
B;"? (z0,1), something we will do in two steps. First we view the
stack of layers as made up of two independent parts, one above
the source plane z = 7/, and one below. We introduce relative
wave amplitudes a;"?(zo;) and b;’(zo,;), corresponding to
the actual amplitudes A;7(zo;) and B;*°(zo;). The actual
amplitudes above the source are found from the relative ones
as

a[+ (Z//)
a2

ler(Z//)
a; (2)

AL = Af @), B = Af (@), (26)

where [’ denotes the source layer and z” is any z coordinate.

In the same way, below the source,

a[_ (Z”)

a, (z')

b[_ (ZH)

A;(Z//) = a;(z/)

A @), B (@)=

Ay @)
The relative amplitudes can be determined by a transfer-matrix
calculation using the fact that there are only outgoing waves
in the outermost layers. However, Egs. (26) and (27) show
that the actual wave amplitudes A} and A; in the source
layer play the role of driving forces for all the waves above
and below the source, respectively, and still have to be
calculated independently. This is done in the second step of
our calculation, by a detailed investigation of the situation in
the source layer.

C. Transfer matrix calculation

The calculation of the relative amplitudes uses the fact that
there are no returning waves in the outermost layers; thus,

Bif =bf =0 and By =by =0. (28)
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We set the relative amplitudes of the outgoing waves in the
outermost layers, that is, a1+ and ay,to 1,

af(zz)=1 and ay(z-)=1. (29)

The coordinates z, and z_ lie above (z) and below (z_) all
interfaces as well as the source and field points, respectively.

The remaining relative amplitudes can then be determined
by recursion, applying the Fresnel formula at each interface
and adjusting the amplitudes by exponentials to account for
the propagation through intermediate layers. For a general
z coordinate 7" we get

+.0 0 1
a ' (Z ) +on |:1]
=W7(z",z
[b;,’g(zﬁ)] ( +) O
1
= S/JF(Z”,dz—l)TJfl e Tszasr(dl \24) |:O:|

(30)

above the source and
afad(z//) _ 1
e | =Wz ,z_)[ }
|:b[’ (z /):| 0
— N —,0 —,0 — 1
=8 @dDT - Ty v Sy(dv-1,2-) 0

(€29

below the source. Here W is a “total” transfer matrix built up
by factors S, related to the wave propagation in the different
layers, and T, describing reflection and transmission at a
particular interface.

The propagation in one single layer just yields exponential
factors multiplying the wave amplitudes. We have

O st [4260]
=S ’ T.0 1 ’ 32
LV@ H@2 | o G2

where o denotes a polarization (s or p) and where

etim(z=) 0 ]

0 eFiriz=2") (33)

Sz, = [

The cross-interface transfer matrices 7 relate the wave
coefficients on opposite sides of an interface z = d, separating
layers [ and n (where [ = n % 1), to each other:

@] o [a@)
LVMJ_m Lrw] G

They can be evaluated by using the Fresnel formulas for
s- and p-polarized waves. We express the result in terms
of the reflection amplitudes for s- and p-polarized waves,
respectively, incident from the material in layer / onto material
n in case this is the only interface,

] Pi— Pn p EnPl — €1 Pn
fi=—— and f, = ———. 35)
i+ pa " ewpr + € pa
These quantities depend on the dielectric functions ¢; and ¢,
and wave vector z components p; and p,, of the two layers. The
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T matrices are found after some algebra, which also involves
the amplitude of the transmitted wave. We get

1 1 £ }
= o " (36)
: 1+m[m 1

for s polarization and

klpn 1 1 fp
T, =" In 37
In kwﬂ—ﬁ[ﬁ 1 G

for p polarization.

D. Calculation of the primary wave

Using the scheme outlined in Sec. III C we can calculate
all the relative wave amplitudes we need. Now it remains to
find the primary wave amplitudes A;‘f’“ in the source layer. We
have already seen that in the case of a homogeneous material
we have

AP =s—p"-B and APE)=5—5-B. (3B)

2pr 2pr
In the present case we have to add the wave reflected off
the “opposite” interface of the source layer to each of these
expressions. Thus, the amplitude of the wave propagating
upward has a direct contribution from the source and one
contribution from the interface below the source, and vice
versa for the wave propagating downward. By introducing the
response functions, that is, the ratios between reflected and
incident wave amplitudes,

b;,O'(Z//) _ BI'E,U(Z//)
a’@)  AEY

x"@") = (39)

we can write (using 6 as a general polarization vector, § or p)
each of these amplitudes as

o/ 1 i A 2} T,0/ I\ AT-O (/)
A% () = Eoﬁ B+ xT7(HA(E), T ==£1. (40)
l/
This system of two equations has the solution

[6f +67 x™ @] -B i
L= x+to(@)x>(@) 2pr

in which the first term in the numerator is the direct wave
from the source, the second term is the wave reflected once
off the opposite interface, and the denominator accounts for
repeated reflections off the surrounding interfaces. We can
now calculate the GF by using this solution in Egs. (25), (26),
and (27).

A = (41)

E. Results for the Fourier-space GF

With a source pointing in the 8 direction we can now write
down the result for the matrix element G4 (‘?H ,2,7)=@a-&in
Fourier space. To keep the whole thing manageable we divide
the GF into one p part and one s part,

G (4.,z.2) =G” (q.2,2)+ G’ (q),2.2), 42)

with
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;P (zo) b (20, z) _ (P} + xTP@HPE] i
G”( Z, Z)— s lrpz(7 20.1) +p r = itpi(z—2z0.1) ® (43)
B [ 77@) "( ) T XX ) 2pr
and
ol , (zo,1) _ b/ (zo1) _ [14+ x™* (") i
G (C] ,2,7) = [—elfpz( 0.0) + —e itpi(z—20.1) F®5 - (44)
: (@) ;" (@) 1=+ @)x @) 2pr

These expressions are a good starting point for a numerical implementation.
For theoretical purposes it is, however, quite useful to express the GFs in terms of the W transfer matrices. By multiplying the

numerators and denominators in Egs. (43) and (44) with ;" (z/ )al

?(z), and using that, in view of Egs. (30) and (31), a,,° (z")

and b;,° (") are the first column elements of W™ (z”,z,), we arrive at

o . P(2.20) [P + BT x™P@] ® [pf + pix TP ()] Wi (@ \z2)
G’ (§).2,7) = Wi (45)
I Dﬁ(Z/)
and
< Wr . 1 TS 1 TS W T
G @G = i (z,z0)[1 + x (z)]s?S[ + XTI W (2 )’ (46)
Di, (@)
|
where o

D{\(2) = —2ipy [W (. z) W% (2 22)
—W5 (2 2 Wy (2 120)] (47

is the 1,1 element of the matrix
D(Z) =Wz ) (=2ipro) W™ z-).  (48)

Here the superscript ¢ denotes matrix transposition, and o is

the Pauli matrix
1 0 49)
o, = 0o -1
To summarize, Eqs. (45)—(47) show how the GF can be
uniquely expressed in terms of the transfer matrices describing

propagation from the outer layers of the system to the source
and field points 7’ and z, respectively.

F. Calculation of the real-space GF

The layered system we are considering has cylindrical
symmetry and it is therefore quite natural to view both the
GF in real space and its FT, which has been at the center of
our attention so far, as functions of cylindrical coordinates

G (7,F') =G (p,¢.z,2) and G (§).2,2) =G (q),84.2.2),
(50)

respectively.
Thanks to the cylindrical symmetry the FT of the GF for an
arbitrary ¢, can be related to the one at ¢, = 0 through

G (q1.bg.2.2) = U(d) G (qdy = 0.2.2) U@ Y. (51)

where

cos¢, —sing, 0
U(gy) = | sing, cos¢, O [, (52)
0 0 1

and the superscript ¢ denotes transposition. For ¢, =0, G
(¢,0,z,z") has four nonzero components xx, xz, zx, and zz,

while for G* (g;,0,z,z") only the yy component is nonzero.
Likewise, for ¢ = 0 the GF in real space has five nonzero
components xx, yy, Xz, zx, and zz and for a general ¢ we have

G (p.$.2.2) = U@) G (p.¢ = 0.2.)U@T. (53)

<>
Therefore, to calculate G (p,¢,z,z’) in practice, we first

calculate G for ¢ = 0 using the generalization of Eq. (14)
to the case of a layered material and then use Eq. (53) to
get the final result. The angular part of the Fourier integral
can be carried out analytically by making use of the integral
representation of the Bessel functions

rae= g [ et egds o0
We get
G (0.0,2,7)
:/awuwﬂg%m%ﬁwwmwwn

G.x(p,0,2,7) 0 G,.(0,0,2,7)
0 Gyy(0,0,2,2) 0 )
G, (0,0,2,7) 0 G..(p,0,2,7)
(55)

and using /9171 = ¢i175% and Eq. (54) the different com-
ponents are explicitly given by

o0 J
Gr(0,0,2,7) = / [ <Jo(q||,0) - M) G.x(q),0,2,2)
0 q|p
J d
1(61||,0)Gw(q|| 0.2.2 )] day. (56)
q1P
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, <. A dq)
Gralp,0,2,7) = / @0)G 102 50, 67)
0

and
N ‘IH
G..(p,0,z,7)) = Jo(q10)G 2 (qy, Ozz) . (58)
0

The expression for Gy,(p,0,z,z) is obtained by the index
replacements xx — yy and yy — xx in Eq. (56), and
G.(p,0,z,7') is obtained by replacing the index xz in
Eq. (57) by zx.

The integrations in Egs. (56), (57), and (58) nominally run
along the real g axis; however, as discussed in Ref. 18 the
numerical evaluation can be speeded up by deforming the
integration contour into the complex plane. The numerical
integration is further simplified if as a first step we also divide

<>
the GF into two parts, a homogeneous part G, and an indirect
<>

part Gina,?' so that

<> <~ <~

G=Gp + Gina (39)
in both real space and Fourier space. We define the homoge-
neous part to consist of all contributions that originate from
waves, propagating or evanescent, that go directly from the
source point 7' to the field point 7 without being reflected
or transmitted at any interface. The indirect part contains all
remaining contributions, that is, those that involve at least
one reflection or transmission event at any of the interfaces
of the layered material. This means that when the source and

field points are in the same layer ! = /’, G, is identical with the
(homogeneous) GF one would get if the material of layer / were

<>
to fill all of space. In this case Gi,q gives all the corrections to
the GF as a result of reflections off the layers surrounding layer
1. If, on the other hand, the source and field points are situated
in different layers / # I’, no wave can go from 7’ to ¥ without
passmg an interface, and in this case our deﬁnltlon yields

Gh— 0. In practice, when [ =1, we evaluate Gh from the
explicit expression in Eq. (8), whlle the 1nd1rect part is always

calculated from Eq. (55) with G replaced by Gmd—G Gh in
the integral.

The functions in the respective integrals are analytic in the
lower half plane (LHP) but has two branch cuts in the upper
half plane (UHP) along the hyperbolas for which Im[p;] = 0
and Im[py] = 0, respectively, where p; and py are given by
Eq. (16) using the material properties of the top and bottom
layers. In addition the integrands may have one or several poles
in the UHP. We deform the integration contour so that it starts
from g = O, first runs along the negative imaginary axis, then
goes parallel to the real axis until it reaches a point beyond
the singularities in the UHP where it goes back to the real
axis. From there the integration either proceeds along the real
axis to values of g large enough that further contributions are
negligible, or in the case that the lateral distance p between the
source and field points is large a faster convergence is achieved
by rewriting the Bessel functions in terms of Hankel functions
as!8

Ju(g,) = 3 [HV(q,) + HP(q,)]. (60)
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and then carrying out the integration of the H(" part along a
vertical path in the UHP and the H'® part along a vertical path
in the LHP.

For the purpose of (semi-)analytical calculations of the
Green functions it is often an advantage to deform the branch
cuts. More is written about that later.

G. Reciprocity symmetry of the Green’s function

Reciprocity, which can be stated as “interchanging the
source and the field probe does not change the result,” is a
central property of linear, time-reversal-invariant electrody-
namics. In our case this requires that the GF fulfills the relation
(61)

Gpa(F2,71) = Gop(F1,12).

To show that this is in fact true one can go back to Egs. (45) and
(46) and first look at the matrix appearing in the denominators,
D°(Z'). While D°(z") nominally appears to be a function of
the source coordinate 7/, it is in fact an invariant, independent
of z’. To see this we first note that D? is independent of the
position of 7z’ within layer /’. Writing D? as

D) = [WH(dp-1 = 0,2)]' S (' di—1)

x(=2ipro)S; (2, d )W~ (dy +0,z-)  (62)

explicitly exposes the propagation in layer I’ and it is easy to
show that
S (& s dy 1 )(=2iprar)S; (' .dr) = S;f (dy.dy—1)(=2ipyay)
= (—2ip[/O'Z)Sl7(dl/_1,dl/).
(63)

It remains to see what happens to D?(z’) when z’ is moved
across an interface. We then have

D?(dy +0)
= (W7 (dy + 0.2 (~2ippo) T, W™ (dy — 0.2-)
(64)
just above an interface and
D?(dy —0)
— [WH(dy + 0,201 T, (~2ipr16)W ™ (dy — 0,2-)
(65)

just below. However, for both p and s polarization an explicit
calculation shows that

(_ZiPl’Gz)Tz]/.;,.] = 7}7+1,p(—2i1?1/+10z)- (66)

Thus, Eqgs. (63) and (66) show that the matrices D” and D*
are invariant to all changes of 7/, both within a layer and from
one layer to another.

To prove Eq. (61) we reverse the propagation direction in
Egs. (45) and (46), which means that g, —> —¢, T - —7, 2
and 7z’ and the layer indices / and /" are 1nterchanged 3(q) —
§(—qy) = —8(g)). and p*(g)) — p¥(—q,) = p*(g)) and find
that
(67)

Gho(—=q):22,21) = G4(G).21,22)
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for both p and s polarization. As a consequence, inserting
Eq. (42) into Eq. (14) and substituting the integration variable
gy — —qy we recover Eq. (61),

2
G, (. 1) = MG a iqy-(F —Fup)
ga(F2,71) ) 8a(q),22,21)€

d*q) iGy-Guy =
= Gpo(—q1,22, iqy-(ry—ra))
/(2;1)2 pa(=4qj-22:21)€
= Goup(r1,12),

where we used Eq. (67) in the last step.

(68)

H. Surface response from the Green’s function

<>

As we have seen in this section, calculating G for a layered
system is in general fairly involved; however, once it has
been calculated a lot of information can also be extracted
from the GF and its FT. As a first example we determine the
reflection factors for a plane wave impinging on one of the
outer interfaces at z = d; or z = dy_1.

For definiteness we concentrate on the reflection off the top
interface at z = d; and use

Gop(G2.7) =6 - E, (69)

[cf. Eq. (23)] with a vector field & of the form shown in Eq. (25)
to find a relation between the reflection coefficients and the FT
of the GF. We assume that the source is placed above the
interface so that the vector field can be written in terms of the
actual amplitudes we introduced earlier:

- a4 S A
E=G (q.d1+0,2)+ G (q.dy +0,2)} B
=p AP (d)+pT B, P(d)+5T A (d)+5T B (dy).
(70)

Moreover, if the GF is divided into a homogeneous part and

an indirect part as in Eq. (59), in this case the terms with A
<~

coefficients contribute to G;,, whereas the B terms contribute to

<>

Gind. We can therefore conclude that the reflection coefficient
for polarization o can be written

_B{d) 6" Gina i +0,2) 67
AVT@) 6= Gy Gpdy +0.2) - 6+

(71)

I. The Green’s function and far-field calculations

In many situations one wants to calculate the scattered
electric field very far from the layered system. Given a source
distribution ji(7) the field above the layered system, retaining
only nonzero terms in Eq. (12), is

EF) = / G (F,7iwwo juF) dr. (72)
The GF here can be written
G (F,r")
2 <> - - -, bl bl
_ d QII G (é'” ’ZJ”Z/)eiq”-(rufr"‘)ei\/]r—qu“(z—br)’
(2m)?
(73)
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where z, lies above all layer interfaces d;, as well as the source
7. To get somewhat simpler expressions we first assume that
we can set z, = 0. For a field point far away from the layered
system the argument of the exponential function oscillates
very rapidly over most of the g.q, plane, and the important

contributions to G originate from the geometric-optics limit,
that is, the region around the point of stationary phase
(qx,qy) = kg1 sinf(cos ¢, sing) in the g.g, plane. We thus
evaluate the integral by the method of stationary phase,’’
which yields

ikmr

e—ikglsiné)(x’cosw+y’ sin @) Zfar (Q,QO,Z/), (74)

G )= 4mrr

where

St (0.9.2) = —2ikp1| cos O] G (kg sin.9.0.2),  (75)

r = |F| and kz; = /ejw/c. In case z, > 0 one must use the
generalized expression

8 far (9#’72/)
= —2ikg|cosBle "%+ G (kg sinb,p,z4,2), (76)
where the exponential function compensates for the propaga-

<>
tion of the outgoing wave included in G.
This expression for the far field is also useful in order to
evaluate the field generated in the layered system by an incident
plane wave. Assume that a plane transverse wave

-

Eincetk-r

impinges on the top surface of the stack of layers. This plane
wave can be generated by a point source very far away at the
point (r,6,¢) in spherical coordinates in the direction where
the wave comes from, that is,

k= (—ksinfcosg, —ksinfsing, —kcosf). (77)

Comparison with Eq. (8) shows that this requires a point
source,

> oz Amr
j(r/) = 8("/ — 1) Ejpc - eilkkra
twlo

(78)

at the point 7. The full field at the point 7o = (x¢,yo,20) in the
layered structure can now be calculated by inserting the source
of Eq. (78) in Eq. (12) (generalized to a layered background)
and then applying the reciprocity relation Egs. (61) and (74).
This yields

Eo(7p) = e tkorsin0Gocosptaosind) g (9 ¢ z0)] Eine.  (79)

IV. LONG-RANGE PROPERTIES OF THE GREEN’S
FUNCTION

The asymptotic behavior of the GF in the case that both
the source and the field points lie close to a metal surface is
a problem that has attracted a lot of interest in the last few
years, 34

Our results for the amplitude squared of the zz element
of the GF are shown in Fig. 2 (which uses a logarithmic
scale on both axes). This figure illustrates that the field
generated by a point source near (10 nm above) a Au film and
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FIG. 2. (Color online) Behavior of the absolute square of the zz
element of the GF along the surface of (a) a gold sample, (b) a
20-nm-thick gold film on glass. In both cases, the photon energy is
1.8 eV, and the source point as well as the field point are placed
10 nm above the metal surface. The dielectric properties of gold were
described by the dielectric data of Johnson and Christy (Ref. 43).

propagating outward along the surface basically displays three
different regimes: At short range from the source the dipole
field originating from the source (and its image) dominates
completely, giving rise to a large field that, however, drops off
as 1/p®. After that follows a range of distances where plasmon
propagation along the surface gives the dominant contribution
to the GF. The plasmons are cylindrical waves confined to the
metal surface so their amplitudes decay as 1/,/p in the absence
of power losses. A Au film on a glass substrate supports
two different plasmons, and in this case we see interference
between them. Eventually, once we get to lateral distances
between the source and field points corresponding to the
plasmon propagation length the GF drops exponentially due
to losses in the metal film and we enter the domain where the
main contribution comes from a boundary wave, also known
as a Norton wave,*? propagating along the interface.

Naively, one may expect |G_.|* to decay as 1/p? in the
boundary wave regime, but in fact one finds a faster decay,
~1/p*. References 38—42 present a number of derivations of
this behavior. The basic physical reason behind the rapid decay
is a destructive interference between the direct wave emerging
from the source, and the wave reflected off the surface. As
is easily seen from the expressions in Eq. (35), exactly at
grazing incidence (where p; = 0) both of the Fresnel reflection
coefficients f* and f? equal —1, which means that to lowest
order the sum of incident and reflected wave vanishes. Away
from grazing incidence the incident and reflected wave do not
cancel exactly and what remains (with |G_.|*> ~ 1/p%) is the
result of the interference between these contributions.

In order to understand and calculate the asymptotic behavior
of the GF it is useful to study the behavior of the FT

G (g),0,z,7) in the complex plane. Figure 3 shows the
general structure for the case of a three-layer structure
vacuum/metal/dielectric. The FT has two branch points at
kg and kg3, the vacuum and dielectric wave numbers. The
physical branch cuts, as discussed in connection with Eq. (16),
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FIG. 3. (Color online) Deformation of the integration path in the
complex plane in order to capture the asymptotic behavior of the GF
along the surface of the metal film.

in this case follows the real axis back to the origin and then
runs out along the positive imaginary axis. For the purpose of
performing the Fourier integral for large separations between
the source and field points, it is, however, better to deform the
branch cuts to run parallel with the imaginary, as shown in
Fig. 3.

Now the Bessel function in the integral Eq. (58) can be split
into two Hankel functions, as indicated in Eq. (60). The integral
containing H®(gp) is calculated by deforming the contour
to run far into the LHP, which for large p yields negligible
contributions. The integral containing H"(gp) is calculated
by deforming the contour to run far into the UHP where this
Hankel function is exponentially small so that the contributions
from most of the contour are negligible. However, unlike in the
LHP, the contour in the UHP must return to the real axis (or its
vicinity) at every obstacle in the form of a branch cut or pole,
and these parts of the integration path yield the dominating
contributions to the GF for large p.>” The singularities closest
to the real axis give the contributions with the farthest range
in p.

For the case illustrated in Figs. 2 and 3 the contributions
from the integration along the branch cuts give the long-range,
boundary wave contribution that persists over the entire range
of distances in Fig. 2. A close look at the result for a film
shows that the long-range tail exhibits some small oscillations
between the contributions from the two different boundary
waves, the one at the vacuum-gold interface, and the one at the
gold-glass interface.

The results displayed in Fig. 2 have been calculated using
the integration path described in Sec. III for small p, while the
integration path described here was used for larger p. The two
methods give identical results over a large range of p values
from a few tens of nm to ~10 pum.

As already stated, the boundary waves become the dominant
contribution for values of p beyond the plasmon propagation
length. In Fig. 2(b) this happens around p ~ 10 um. The
behavior for p ~ 1-10 pum is dictated by two different
plasmons corresponding to the two poles in the UHP. The
pole to the right of both branch cuts corresponds to a charge-
symmetric, bound plasmon with a wavelength of 364 nm,
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shorter than the wavelengths of iw = 1.8 eV light in both
glass and vacuum.** This mode is thus bound to the film,
evanescent in both vacuum and glass, and the pole lies on the
physical sheet of the Riemann surface. The other plasmon with
a wavelength 666 nm is evanescent in vacuum, but propagating
in glass. Therefore, this charge-asymmetric mode is termed
leaky since energy is lost to the glass side.* From a formal
point of view this mode does not correspond to a bound
state and the corresponding pole lies on a higher sheet of
the Riemann surface, but is brought out in the open by the
contour deformation.

V. SOLUTION OF THE SCATTERING PROBLEM

The ultimate goal when using the GF method is, of course,
to solve electrodynamics problems in the form of Eq. (12)
generalized to the situation with a layered background,

Ae(r) <

L j#) L -EF)

iweoes(F)  e5(F)
+ / G (i) iowo] (F) + R2Ae(HEG]dr.
Vj—Vg

(80)

E(F) =

We focus on the case where the current sources ; are well
separated from the scatterers so that the contribution from the
current term in the integral in Eq. (12) can be written as an
incident field,
- <~ -
%®=f G (7. iopoj ) d*r'. 81
Vi—Vs
If the sources are very far away we have a situation where a
plane wave is incident on the layered system and gives rise
to reflected and transmitted waves in the system, all of this is
dictated by the presence of the GF in Eq. (81). With an incident
field written as Ejnce’™" we obtain a driving field Eo(7) in the

layered system in accordance with Eq. (79).
Then Eq. (80) can be written

Ae(r)

ep(r)

EF) = BoF) — L -E®)

+ / 8(7,7/)k§As(F/)E(F/)d3r’. (82)
V;—Vs

By moving all terms involving the full field E (F) to the
left-hand side, thus leaving only the driving field Eo(F) on the
right-hand side, and then discretizing the electric field on a
mesh of equally sized cubic elements that covers all scatterers,
we arrive at

] Aé‘,'jk g 2 oS
Eijk + L 'E,'jk — koAEijk M Eijk
EB.ijk
! 2 < - >
- E koAeijpwVm Gi—p j—jr ki Eijw = Eoijk.
b
(83)

Here i, j, and k are discrete coordinates for the mesh
elements in the x, y, and z directions, respectively. With a
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mesh side ay; and an equivalent radius Rj; the volume of a
mesh element is

47 R3
Vy =ay = M
M = dy 3

(84)

<>
The term containing M describes self-interaction within a

<>
mesh element. We use an approximation for M corresponding
to a spherical mesh element of radius R;;,*

<~ 2 <
M= ——[(1 — ik Ry)exp(ikzRy) — 1] 1 .

(85)
32

At the same time, as indicated by the prime, the singular self-
<>
interaction term (i —i' = j — j' =k — k' = 0) due to Gy, is

<>
excluded from the sum, while the indirect part Gi,q is to be
included also in this case.

Equation (83) corresponds to a system of linear equations;
the left-hand side can be seen as a 3Ny x 3N, matrix
multiplying a vector with 3N, elements, N, being the total
number of mesh elements in the scatterers where the dielectric
function differs from what the layered background dictates,
that is, where A¢ is nonzero. We solve the system of equations
iteratively using the stabilized biconjugate gradient method,
BiCGstab(2).*” The iterative solution involves a large number
of matrix multiplications. The contribution from the term in
which the GF multiplies the electric field is, as can be seen
in Eq. (83), the result of a convolution sum in the x and
y directions. This means that the matrix multiplication can
be speeded up by using a fast Fourier transform (FFT) in these
two directions.*® The same technique is used in the DDA
method.'* We calculate the FTs of the GF and the electrical
field and multiply the transforms by each other locally on the
mesh in Fourier space and then transform the product back to
the real space mesh.

To carry out the Fourier transformations in the x and
y directions we need to have an array of equally sized mesh
elements placed at the lattice points of a square lattice (without
vacancies in it). In practice we let the mesh elements be cubic
with a side ajy;. This means that we work with an array of
Ny x Ny x N, mesh elements in the FFT calculations and
this array includes and encloses all of the Nj; mesh elements
inside the scatterers. Thus, in general, Ny N, N, > Ny;. The use
of the FFT is crucial in reducing computation times since most
of the computational effort required in determining the electric
field in the scattering volume goes into solving the equation
system, thus essentially the repeated matrix multiplications.
The calculation of the GF, on the other hand, just needs to be
done once per photon frequency, combination of z and 7/, and
in-plane distance p.

Once we have a converged solution to the system of
equations the electric field inside the scatterers is known.
At this point Eq. (82) provides an explicit expression for the
electric field everywhere else in space that can be evaluated by
discretizing the integral as in Eq. (83).

The results presented in the next section focus on the
scattering cross section and thus depend on the far field which
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can be found from a discretized version of Eq. (72) using
Egs. (74) and (76). The scattering cross section is given by

do rs,

— = , 86

ds2 Si (86)
where S, is the radial component of the Poynting vector at
a large distance r from the scatterers and Sj, is the Poynting
vector of the incident field. Given the (transverse) far field
E(r),

S, =3 ceo JEBIEFP, (87)

where ¢p is the dielectric function of the material the radiation
is scattered into.

VI. SCATTERING OFF NANOHOLES IN A THIN
METAL FILM

We now turn to calculating scattering spectra off nanoholes
in a thin Au film. Such systems have been studied experimen-
tally by Rindzevicius ef al.>> and Alaverdyan et al.”

To study the problem theoretically we let a number of
circular cylindrical holes in a Au film on top of a glass substrate
act as scatterers. The Au film here has the same thickness,
20 nm, as in the experimental studies. The holes have a radius
of 40 nm, and the dielectric function of Au is taken from
Ref. 43. The discretization scheme usually uses a mesh element
side ayy = 4 nm. The system is driven by a plane wave that
impinges on the film (and the holes) at normal incidence,
polarized either parallel to the symmetry axis of the hole chain
or perpendicular to that symmetry axis, as illustrated in Fig. 4.
We study primarily the forward-scattering cross section as the
edge-to-edge distance d between the holes is varied.

As aprelude we look at the GF with both the source and field
points placed inside the metal film, which is a central quantity
determining the interaction between different nanoholes in the
film. Figure 5 displays the behavior of the diagonal elements

of G for the vacuum/Au film/glass substrate system at a
representative photon energy of 1.8 eV (AL &~ 690nm) as a
function of the lateral separation x. The xx element is by far
the strongest over most of the range of distances x between the
source and field points. A source pointing in the x direction
can excite plasmons propagating in the x direction, which
explains why we have long-range interactions in this case.
These plasmons are of the bound, charge-symmetric type
discussed in Sec. IV and illustrated in Fig. 3. The bound

@ _E y () d
O-OLO0O
X
+ +

FIG. 4. (Color online) Illustration of illumination of two
nanoholes with an electric field parallel to the dimer axis [in (a)]
and perpendicular to the dimer axis [in (b)]. We also indicate how
charges in the metal film surrounding the holes will be distributed in
the case that the frequency of the incident light lies well below the
single-hole resonance. One should note that the behavior of nanoholes
in terms of induced charges is essentially opposite to that of metallic
nanoparticles.

E
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FIG. 5. (Color online) The diagonal components of the GF as
a function of the lateral distance x along a 20-nm-thick Au film
on a glass substrate. Both the source and field points are placed in
the middle of the film to best describe hole-hole interaction. The
marks near the upper border show where the first, second, and third
neighbor hole is placed in a chain of holes with a radius of 40 nm and
edge-to-edge distance d = 160 nm. (We stress, though, that the GF
here has been calculated in the absence of any holes.)

plasmon wavelength for iw = 1.8eV is ~364 nm. The yy
element is of comparable strength as G, for distances up to
~200 nm, that is, in the near-field zone. However, for larger
x the yy element is much smaller because a dipole pointing
in the y direction cannot excite plasmons propagating in the
x direction. Finally, looking at G, we see that this component
is much smaller than G, for all x values. This is due to the
boundary conditions for the electric field at a metal interface,
which strongly suppress the normal component inside the
metal. As a consequence of reciprocity this also means that
a source inside the metal film oriented perpendicular to the
interfaces is not very effective in generating electric fields
elsewhere.

The behavior of different elements of the GF leads to
differences in the hole-hole interaction depending on the
polarization direction of the incident light (illustrated in Fig.
4); interaction effects are much more important in the case
of parallel polarization. The consequences are clearly seen
in Figs. 6 and 7. Figure 6, to begin with, shows calculated
scattering cross sections for two nanoholes of diameter 80 nm
that are illuminated by light polarized parallel to the dimer axis.
Each curve corresponds to a different edge-to-edge separation
between the holes. To make a comparison that brings out the
effect of hole-hole interactions the result for a single hole is
also shown. This result is multiplied by 4 to adjust to the
difference in scattering volume between the one- and two-hole
cases. For a small separation between the holes the scattering
cross section is suppressed and blue-shifted compared with
the one-hole case. This is a result of G,, being negative
for x smaller than ~200 nm (an edge-to-edge separation of
40 nm corresponds to a center-to-center distance of 120 nm).
The shift can also be understood in view of Fig. 4(a): The
figure shows that for frequencies below resonance the field
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FIG. 6. (Color online) Calculated forward-scattering spectra for
two nanoholes of diameter 80 nm in a 20-nm-thick Au film placed on
a glass substrate illuminated at normal incidence by light polarized
parallel to the dimer axis. The different curves show results for a
series of edge-to-edge distances d between the holes as indicated in
the key. The curve marked “1 hole” shows the corresponding result,
adjusted for the scattering volume, for the case of a single hole. The
mesh element had a side of ay; = 4 nm.

caused by the induced charges at one hole will counteract the
external field at the other hole, but this situation is reversed
for frequencies above the single-hole resonance; hence, the
blue-shift. With an increasing distance between the holes the
scattering cross section increases and its maximum redshifts,
and a maximum in the cross section occurs for d = 160 nm,
corresponding to a distance of 240 nm between the hole
centers. As can be seen in Fig. 5 this is close to the distance
where Re[G,,] has a maximum. In this situation there is a
constructive interference at one hole between the incident

2000 |- d=40 nm —— ]
d=80 nm
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d=200 nm
d=280 nm
= 1500 d=360 nm - 4
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S
£
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FIG. 7. (Color online) Forward-scattering spectra for two
nanoholes as in Fig. 6; however, here the incident light is polarized
perpendicular to the dimer axis. As in Fig. 6 the mesh elements
have a side of a); =4 nm except for the d = 40 nm case, where
ay = 2.5 nm was used; see the text.
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field and the field scattered off the other hole. For larger d
the scattering cross section continues to redshift, while the
peak value falls off. For the largest separation d = 360 nm,
we in fact see a new peak building up at the blue end of
the spectrum (near 650 nm). For even larger d this peak
grows and redshifts, reaching a second maximum around
d = 560 nm corresponding to a center-to-center separation
right near the second maximum of Re[G,,] in Fig. 5 at
x ~ 650 nm. In Ref. 23 it is argued that the scattering from a
chain of holes should show maxima whenever an odd number
of half surface plasmon wavelengths can be fit in between two
holes. We note that in the present case with A, = 364 nm,
this predicts scattering maxima for d = A,/2 = 182 nm and
d = 3)p1/2 = 546 nm, which indeed agrees very well with
the calculated results. Still, looking at the behavior of the GF
is a more general way of predicting resonance conditions.

The results in Fig. 7 calculated with the incident light
polarized perpendicular to the hole dimer axis show much
less variation with d. There is a suppression and a redshift of
the cross section for d = 40 nm. This is expected given the
basic behavior illustrated in Fig. 4(b) since in this case the field
from the induced charges acts to enhance the external field at
frequencies below the single-hole resonance. However, with
increasing d the two-hole result rather quickly approaches
the adjusted one-hole result; that is, the spectrum is only
marginally affected by hole-hole interactions. This can be
anticipated by a look at the results for G, in Fig. 5, which
shows that the long-range interaction is rather weak for this
configuration.

The discretization scheme produces an artifact in the form
of a small shoulder around A = 850 nm in most of the spectra
seen in Figs. 6 and 7. This is essentially a single-hole effect,
but using a mesh element size of @y = 4 nm it becomes more
pronounced in the case of d = 40 nm in Fig. 7, and therefore
we have used a smaller mesh element, a; = 2.5 nm, which
eliminates the artifact for this particular calculation.

Figures 8 and 9 show scattering spectra for chains of five
and eight holes, respectively, illuminated by light polarized
along the axis of the chain. These results show the same
trends as those in Fig. 6, but one can still make some
additional observations. (i) The fact that we have more holes
means that the collective effects of hole-hole interactions
are stronger since the holes inside the chain now have two
nearest neighbors. Consequently, the peak position shifts more
now when changing d and the spectra rise higher above
the (adjusted) one-hole result. (ii) The maximum scattering
cross section is obtained at somewhat larger values of d
compared with the two-hole case. The reason is that not only
nearest-neighbor interactions matter now. The cross section
can be increased by moving the next-nearest neighbor hole
closer to the second maximum of Re[G,,] at x = 650 nm
(see Fig. 5), something that is achieved by an increase of d.
(iii) We also see that the spectral features are sharper here than
in the two-hole case. This is a rather natural consequence of the
facts discussed above. An increasing number of holes brings
an increasing degree of collective behavior and constructive
interference to the optical response of the hole system, which at
the same time is more sensitive to changes in either the photon
energy of the incident light, the hole-hole separation, or, for
that matter, the dielectric environment. Going from two holes
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FIG. 8. (Color online) Forward scattering spectra for five
nanoholes illuminated by light polarized along the axis of the chain
of holes. The remaining parameters are the same as in Fig. 6.

to five makes more of a qualitative difference than increasing
the number from five to eight. The reason for this is primarily
that nearest-neighbor interactions play a dominant role; with
two holes in the chain both of them just have one nearest
neighbor, whereas for five- or eight-hole chains the majority
of the holes have two nearest neighbors.

The results presented here agree very well with the
experimental results found in Ref. 23; see, in particular, Fig. 2
there. (i) As in the experiment, nanohole interactions play
an important role when the electric field is polarized along
the axis of the hole chain, while interactions only have a
minor influence on the spectrum in the case of perpendicular
polarization. (ii) For parallel polarization the experimental
scattering spectrum goes through the same development as
in Figs. 6, 8, and 9. For the smallest edge-to-edge distances
the spectrum is suppressed and blueshifted, but as d increases
a strong successively redshifted peak builds up. (iii) The
maximum scattering cross section in the two-hole case is
reached for d = 160 nm here and for d = 150 nm in the
experiment [see Fig. 2(a) of Ref. 23]. These peak wavelengths
differ somewhat, ~655 nm in the experiment and ~675 nm
here, part of the reason for this is probably that the holes used
in the experiment were somewhat smaller, with a diameter of
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FIG. 9. (Color online) Forward-scattering spectra for eight
nanoholes illuminated by light polarized along the axis of the chain
of holes. The remaining parameters are the same as in Fig. 6.

75 nm. (iv) Comparing the experimental results for eight holes
with those for two holes [Fig. 2(a) of the experimental paper],
we also see much the same trends as discussed above. More
holes give stronger and sharper peaks and bigger wavelength
shifts as a function of the edge-to-edge distance, just as in the
calculation.

We end this section with a look at the numerical calculations
involved in obtaining the results presented here. During the
iterative solution for the fields in the scatterers, which means
solving an equation system Ax = b, we monitor the relative
residual ||b — Ax||/||b]|, and break the iteration when this
number reaches a threshold level. Table I shows the number of
iterations needed to reach a relative residual of 107> in some
of the cases considered above.*® As is seen, the number of
iterations depends strongly on the dielectric properties of the
metal film. Many more iterations are needed for low photon
energies where the metal is strongly screening than for higher
photon energies above about 2 eV. The size of the mesh
elements also plays some role; with a finer mesh the number
of iterations increases. The number of mesh elements and the
geometric size of the scattering region, on the other hand, has a
rather limited effect on the number of iterations, but determines
the time an iteration takes. The time for each iteration roughly

TABLE I. Number of matrix multiplications needed to reach convergence in the solution of the scattering problem (with a relative residual
of 107%) in a few of the calculations presented in Figs. 6-9. The columns show d, a,;, the number of holes, polarization direction relative to the
hole chain axis, photon energy, Au dielectric function, and number of matrix multiplications.

d (nm) ay (nm) Holes Polarization direction how (eV) € Au No. of multiplications
40 4 2 I 1.6 —2241.4i 1153
40 4 2 I 2.0 —11+1.3i 561
40 4 2 I 24 —3.7+28i 77
40 4 8 I 1.6 —2241.4i 994
240 4 2 I 1.6 —22+1.4i 1127
40 4 2 €L 1.6 —2241.4i 950
40 2.5 2 1 1.6 —2241.4i 1162
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scales as ~N, In(N,)N, In (Ny)sz, where N,, N,, and N,
denote the number of mesh elements in each coordinate
direction of the box enclosing all of the scatterers (see above).
(For example, for two holes, d = 40 nm and ay = 4 nm,
N, =50, Ny, =20, and N, = 5.) Actual calculation times, of
course, depend on the hardware used, but to give an indication,
acalculation corresponding to the case in the first row of Table I
uses 1-2 min per photon wavelength on a single-core machine.

VII. SUMMARY

In this paper we have presented a derivation of the elec-
tromagnetic GF in systems where the background dielectric
function varies stepwise along one of the coordinate directions,
z. The derivation is built on a transfer-matrix calculation of the
FT of the GF. We have discussed certain symmetry properties
of the GF and also studied its long-range properties in real
space based on the analytic properties of the FT in the complex
plane.

As an example of an application we have studied the
long-range properties of the GF near a thin Au film on a glass
substrate. We find there three different regimes depending on
the lateral distance p between the source and field points:
(i) A near-field regime where the square of the GF decay as
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1/p%. (ii) For 100 nm < p < 10 um the GF is dominated
by contributions from propagating surface plasmons, and
|G|?> ~ 1/p. (iii) Finally, for larger distances, beyond the
surface plasmon propagation length, the GF is dominated by
contributions from boundary waves (Norton waves) grazing
the interface. A nearly destructive interference between the
incident and the reflected wave results in the intensity oc|G|?
decaying as 1/p* in this case.

We have also applied the GF method to a calculation of the
scattering off of two or several nanoholes in a thin Au film.
We find a strong hole-hole interaction mediated by the surface
plasmons of the Au film provided that the incident electric field
is polarized along the axis of the hole chain. By increasing the
number of holes the scattering spectrum gets sharper features
and becomes more sensitive to changes in geometry, photon
energy, or dielectric environment, something that can have
applications in, for example, biochemical sensing.
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