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Symmetry-dependent screening of surface plasmons in ultrathin supported films:
The case of Al/Si(111)
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Ying Jiang
International Center for Quantum Materials (ICQM), Peking University, 100871, Beijing, China

Yi Gao
Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China

Mikael Käll
Department of Applied Physics, Chalmers Tekniska Högskolan, SE-412 96, Göteborg, Sweden
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A joint theoretical and experimental study of plasmon excitations for Al overlayers on Si(111) has been carried
out. The presence of the substrate is found to drastically modify the hybridization and charge density response of
the surface plasmons of the metal overlayers. The symmetric mode, which is polarized toward the Al/Si interface,
is strongly damped in intensity and significantly redshifted in energy. However, the antisymmetric mode, which is
polarized to the metal-vacuum interface, is essentially unaffected by the presence of the substrate. A low-energy
acoustic plasmon mode is also found in a one monolayer Al film and is almost unaffected by the substrate.
The calculated plasmon dispersions with substrate are in good agreement with experimental data measured by
electron energy loss spectroscopy. Our results suggest that interaction and screening at the subnanometer scale are
symmetry dependent, a conclusion that may have general implications in other thin films and related structures.
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I. INTRODUCTION

Surface plasmons of metallic thin films1–12 have been
studied intensively due to their distinct and tunable properties.
The latter feature is common to many other tunable plasmonic
structures at nanometer scales. It is generally known that
quantum-well states (QWSs) of thin films can modulate
their single-particle spectra. Consequently, they also affect
the collective excitations of the metal films. The energy
dispersions of thin film plasmons have been studied in the liter-
ature by classical models.13–15 Recently, quantum-mechanical
calculations based on linear response and the time-dependent
local density approximation16–23 (LR-TDLDA) have also been
performed for thin films as a function of thickness.11,12 The
calculated energy dispersions are in good agreement with
the classical expressions at large thickness. However when
the thickness goes down to a few nanometers, the energy
dispersions given by the quantum calculations start to deviate
from the classical values and show quantum oscillations as
a function of thickness. For ultrathin films with only a few
atomic layers, a transition from three-dimensional surface
plasmons to electron-hole pair excitations has been observed.
These conclusions revealed the quantum-mechanical behavior
of surface plasmons in ultrathin films in flat two-dimensional
(2D) geometry. They may also have implications for surface
plasmons in other types of shell-like structure in reduced
dimensions.

Samples of metal films are usually grown and measured
on substrates.1–9 Contact with a dielectric environment can

modify the band structure, charge transfer, and electronic
excitations of the thin metal films. These issues have been
intensively investigated in the adsorption of alkali metal
overlayers on metals16–22 and semiconductor substrates.24,25

Electron energy loss spectroscopy (EELS) of silver and
aluminum films on various substrates1–9 has indicated that the
energies and linewidths of surface plasmons depend sensitively
on the type of substrate on which the films are supported, and
the film thicknesses. Very recently, high-quality films of a few
Al monolayers (ML) have been grown on a Si(111) surface,3,4

where their thickness can be controlled precisely down to
1 ML. Such a monolayer film offers a prototype system, in
terms of both atomic and electronic structures, for a quasi-
two-dimensional electron gas (2DEG).26–28 It also provides a
model interface system where rigorous quantum-mechanical
investigations can be carried out and detailed comparison with
experiments can possibly be achieved.

So far, fully quantum-mechanical calculations for surface
plasmons at interfaces have not been available due to two major
obstacles: (1) the complicated mechanisms and unknown
atomic structures involved in the growth process,29 and (2) the
computational challenge in a quantum-mechanical description
of large supercells of interface structures.30 For the case
of Al/Si(111), for example, deposition of Al on Si(111)
lifts the (7 × 7) reconstruction of the substrate, yielding a
commensurate structure with (4 × 4) Al atoms in a (3 ×
3) unitcell of the substrate. A fully quantum-mechanical
treatment of this supercell is far beyond the reach of the
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current LR-TDLDA calculations. It is thus desirable to develop
approximate schemes to treat such interface systems in order
to gain deeper understanding of the plasmon excitations of the
supported films.

In this paper, we extend our previous LR-TDLDA calcu-
lations for free-standing films to a jellium slab supported on
a dielectric substrate to model Al films on the Si surface,
which were measured by recent experiments. The ground-state
electronic structure of the thin film is solved within density
functional theory, while the Si substrate is simulated via the
dielectric function of the substrate. Our description is similar
to the recent approaches for nanoparticles and nanoshells31,32

with dielectric cores. Application to Al/Si(111) reveals several
effects of the substrate, including hybridization and charge
transfer, and a symmetry- and frequency-dependent screening
in the plasmon excitations. In particular, the symmetric
plasmon mode, which is polarized to the Al/Si interface,
is strongly damped in intensity and redshifted in energy.
In contrast, the antisymmetric mode, which is polarized
toward the metal-vacuum interface, is much unaffected. Our
results demonstrate that the screening effect on the atomic
scale is energy and symmetry dependent. Similar symmetry-
dependent screening has also been found for the collective
resonances in one-dimensional atomic chains.33

The rest of the paper is organized as follows. The
experimental measurements are presented in Sec. II. The
theoretical methods are outlined in Sec. III. This is followed
by the results and comparison with experiments. In Sec. V,
we give a brief summary. Details about the evaluation of
the ground-state electronic structure and interactions in the
presence of dielectrics are given in the Appendixes.

II. EXPERIMENTS

The experiments were carried out in a combined variable-
temperature scanning tunneling microscope (VT-STM) (Omi-
cron) and high-resolution EELS (HREELS) (LK-5000)
ultrahigh-vacuum system (p < 1 × 10−10 mbar). The mono-
layer Al(111)-1 × 1 film was epitaxially grown on a Si(111)-
1 × 1–terminated surface using the method described in Ref. 3.
After growth, the quality of the sample was checked by STM
and low-energy electron diffraction (LEED). The HREELS
measurement was then performed at room temperature (RT).
The incident electron beam energies adopted in the HREELS
measurement are 20 and 50 eV, with incident angles of 60◦
and 55◦ with respect to the direction normal to the surface,
respectively. The energy dispersion of surface plasmons was
obtained by rotating the analyzer, while fixing the incident
angle. To enhance the signal-to-noise ratio, the energy resolu-
tion of the HREELS was further degraded to about 15 meV,
judged from the full width at half maximum (FWHM) of the
zero-loss peak. All the data shown in the work were obtained
from a single sample.

The EEL spectra of the monolayer Al film exhibit two
energy loss peaks, located below 1 eV and around 11 eV as
shown in Figs. 1(a) and 1(b), respectively. The momentum
transfer parallel to the surface, q, is calculated from the
energies and angles of the incident and scattered electrons.
The direction of q is along �M in the Al(111) surface
Brillouin zone, as measured by LEED (inset in Fig. 1). For the
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FIG. 1. (Color online) EEL spectra of the monolayer Al on
Si(111) measured at RT at different scattering angles. (a) Incident
angle, 60◦; electron primary energy, 20 eV. Each spectrum is fitted
by a Lorentzian peak (elastic peak) and a Gaussian peak (loss peak).
Inset: LEED pattern obtained on the monolayer Al film, showing
very sharp diffraction spots. The white arrow in the inset indicates
the incident direction of the electron beam. (b) Incident angle, 55◦;
electron primary energy, 50 eV. Each spectrum is fitted by a single
Gaussian peak. The momentum transfer parallel to the surface q is
calculated from the energies and angles of the incident and scattered
electrons.

low-energy mode, the loss peak is superimposed on a Drude
tail, resulting from the metallicity of the Al film. The peak
position can be determined by fitting the EEL spectrum with a
Lorentzian peak and a Gaussian peak. The low-energy mode
disperses monotonically to higher energy with increasing q.
On the other hand, the high-energy mode can be fitted by a
single Gaussian peak with FWHM about 3 eV. This mode has
a negative slope at small q and positive slope at large q, which
is very similar to the behavior of the surface plasmon of bulk
Al(111). The corresponding energy dispersion curves of both
modes are plotted in Fig. 5.

III. THEORY

Our theoretical model consists of a jellium slab with
thickness D and a dielectric substrate as schematically shown
in the upper panel of Fig. 2. The LR-TDLDA method used
in our previous publication for free-standing films11 has been
modified to include the effect of the substrate. Our strategy
is to decouple the quantum-mechanical response of the metal
electrons from the classical electrodynamical response of the
combined metal-dielectric systems. This is done in practice
by using the classical response to an external potential as
a background electrostatic potential, which acts as external
perturbation to the electronic system of the supported films.
In such a way, the LR-TDLDA calculation remains formally
the same as in the free-standing film calculation, but the
evaluation of the response functions has to be modified. Such
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(a)

(b)

(c)

FIG. 2. Schematic structure (a), self-consistent electron density
(b), and effective potential (c) of a free-standing (dashed lines) and
supported (solid lines) Al monolayer on a Si(111) substrate. The
static screening of Si with εSi = 11.65 leads to charge transfer to
the substrate. The thin solid (dashed) lines in (c) indicate the energy
levels of the supported (free-standing) Al monolayer.

a separation between the classical and quantum-mechanical
responses is possible due to the superposition principle of the
linear electric field and the shared translational symmetry of
the combined systems. Below we outline the basic steps of
our theoretical method. Other details concerning the ground-
state electronic structure and the evaluation of the Coulomb
interaction kernel for the supported slab are given in the
Appendixes.

A. Electrodynamical response of the metal-dielectric system

The electrodynamical response of the metal-dielectric
interface can be described by classical electrodynamics.13,34,35

For 2D systems with translational symmetry, an arbitrary
external perturbation can be expanded by Fourier transforms:

φ0
ext(r,t) = 1

(2π )2

∫
d2q

∫
dω ei(q·r‖−ωt)φ0

ext(z,q,ω). (1)

Here ω is the excitation energy and q = |q| is the wave
vector parallel to the surface. Without losing generality,
we consider the response to a perturbation in the form of
φ0

ext(z,q,ω) = −2πeqz/q, which may represent any sourceless
perturbation in the surface region.36,37 This external potential
induces polarizations in the dielectric substrate and the metal
film, which can be described by the dielectric functions ε1(ω)
and ε2(ω), respectively.

In the quasistatic approximation, the induced potential
φε

ind can be obtained by electrostatics. The total electrostatic
potential φest = φ0

ext + φε
ind obeys the Laplace equation for

each Fourier component,

d

dz

[
ε(z,ω)

d

dz
φest(z,q,ω)

]
+ q2φest(z,q,ω) = 0. (2)

The general solution of Eq. (2) can be formally written as

φest(z,q,ω) =

⎧⎪⎨
⎪⎩
Ae−qz + Beqz, z < −D

2 ,

Ce−qz + Deqz, −D
2 < z < D

2 ,

Ee−qz + Feqz, z > D
2 .

(3)

At |z| � D/2 the induced potential φε
ind(z,q,ω) should vanish,

so φest(z,q,ω) approaches φ0
ext(z,q,ω), which makes A =

0 and F = −2π/q. The other four coefficients can be
determined from the boundary conditions for the electro-
static potentials φest(z,q,ω) and the electric displacements
ε(z,ω) d

dz
φest(z,q,ω) at the two interfaces z = ±D/2. The total

electrostatic potential of the combined system thus reads

φest(z,q,ω) =

⎧⎪⎪⎨
⎪⎪⎩

− 2ε2
ε2+1

2γ

ε1+ε2

2π
q

eqz, z < −D
2 ,

− 2γ

ε2+1
2π
q

[
eqz + ε2−ε1

ε2+ε1
e−q(z+D)

]
, −D

2 < z < D
2 ,

− 2π
q

[
eqz + γ 1−ε2

1+ε2
e−q(z−D) + γ ε2−ε1

ε2+ε1
e−q(z+D)

]
, z > D

2 ,

(4)

with the common factor γ defined by

γ =
(

1 + ε1 − ε2

ε1 + ε2

ε2 − 1

ε2 + 1
e−2qD

)−1

. (5)

It is obvious that γ = 1 when ε2 = 1, which recovers the
well-known case for a single dielectric medium.

The surface response function for the dielectric-metal
interface is given by35

gε(q,ω) = εeff(q,ω) − 1

εeff(q,ω) + 1
, (6)

where the effective dielectric function εeff of the combined
system is defined as13

εeff(q,ω) = ε2
ε1 + ε2 + (ε1 − ε2)e−2qD

ε1 + ε2 − (ε1 − ε2)e−2qD
. (7)

The imaginary part of the surface response function corre-
sponds to the energy absorption of the classical system. After
some algebra, we obtain

Im gε(q,ω) = Im

[
γ

(
ε1 − ε2

ε1 + ε2
e−2qD + ε2 − 1

ε2 + 1

)]
. (8)
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B. Quantum-mechanical response of the electrons
in the supported slab

The simplest way to treat the quantum-mechanical response
of the electronic subsystem is to replace the local dielectric
function of the metal slab, ε2, by the quantum-mechanical
description of their electrons. The details about the calculation
of the ground-state electronic structure can be found in
Appendix A. The linear response of the metal slab is carried out
using the electrostatic potential of the dielectric background
as the external perturbation, φext = φest. In the following
formulation, we keep ε2 to mimic possible core polarization
beyond the free-electron approximation.34,37 For aluminum,
we can simply set ε2 = 1.

The quantum-mechanical response of the electronic sub-
system is defined by the induced electron density δn subjected
to the electrostatic potential Eq. (4),

δn(z,q,ω) =
∫

dz′ χ (z,z′,q,ω)φest(z
′,q,ω). (9)

The density response function χ (z,z′,q,ω) contains excitation
properties of the many-electron systems.

As in the free-standing film, the density response δn is
also related to the variation of the effective potential of the
supported film, φeff(z′,q,ω), via the noninteracting density
response function χ0(z,z′,q,ω),

δn(z,q,ω) =
∫

dz′ χ0(z,z′,q,ω)φeff(z
′,q,ω)

=
∫

dz′ χ0(z,z′,q,ω)[φest(z
′,q,ω)

+ δφC(z′,q,ω) + δφxc(z′,q,ω)]. (10)

The second and third terms correspond to the changes of the
Coulomb and exchange-correlation potentials induced by δn,
respectively,

δφC(z,q,ω) =
∫

dz′ KC(z,z′,q,ω)δn(z′,q,ω), (11)

δφxc(z,q,ω) =
∫

dz′ Kxc(z,z′,q,ω)δn(z′,q,ω), (12)

where KC and Kxc are the electron-electron interaction kernels.
Within the TDLDA, the latter is given by

Kxc(z,z′,q,ω) = ∂vxc

∂n

∣∣∣∣
n=n(z)

δ(z − z′). (13)

With the dielectric substrate, the Coulomb kernel
KC(z1,z2,q,ω) between two points is slightly more compli-
cated due to the polarization of the dielectric, or the potential
of the image charges. As such, KC depends on the dielectric
functions of all components and on the thickness of the thin
film. The evaluation of the Coulomb kernel is given in detail
in Appendix B. Combining Eqs. (9), (10), (11), and (12), we
arrive at a Dyson equation,

χ (z,z′,q,ω) = χ0(z,z′,q,ω) +
∫∫

dz1 dz2 χ0(z,z1,q,ω)

×K(z1,z2,q,ω)χ (z2,z
′,q,ω), (14)

with K = KC + Kxc. The computation of χ0 from the ground-
state band structure of the supported film and the solution

of Eq. (14) are formally the same as in the free-standing
systems.11

C. Electron energy loss spectrum and loss function

In EELS experiments, the scattering cross section σ per
unit solid angle d� per energy dω is given by38

d2σ

d�dω
= m2e2v2

⊥
2π cos θI

(
kS

kI

)

× |v⊥q(RI+RS)+i(RI−RS) (ω−v‖ · q)|2
[v2

⊥q2+(ω−v‖ · q)2]2

P (q,ω)

q2
,

(15)

where θI is the incident angle, v⊥ and v‖ are the normal and
parallel velocities of the incoming electrons, kI and kS are the
wave vector magnitudes of the incident and scattered electrons,
and q is the parallel momentum transferred to the surface,
q = |q| = |kI − kS |. RI and RS are the specular elastic
scattering amplitudes after and before reflection, respectively.
The prefactor in Eq. (15) depends only on the scattering
geometry, while the function P (q,ω) is the probability of
generating electronic excitations. It can be calculated from37

P (q,ω) = − q2

4π2
Im

∫∫
dz dz′ φ∗

eff(z,q,ω)

×χ0(z,z′,q,ω)φeff(z
′,q,ω)

≡ − q

2π
Im ge(q,ω). (16)

Here the surface loss function due to the metal electrons is
defined by

Im ge(q,ω) = − q

2π
Im

∫∫
dz dz′ φ∗

eff(z,q,ω)

×χ0(z,z′,q,ω)φeff(z
′,q,ω)

= − q

2π
Im

∫
dzφ∗

eff(z,q,ω)δn(z,q,ω). (17)

In the absence of dielectrics, the Coulomb and exchange
correlation kernels are real symmetric, so that Eq. (17) can
be simplified as

Im ge(q,ω) = − q

2π
Im

∫∫
dz dz′ φ∗

ext(z,q,ω)

×χ (z,z′,q,ω)φext(z
′,q,ω). (18)

Unfortunately, this simplification is not possible in this work
due to the complex Coulomb kernel. The more general
definition in Eq. (17) has to be used to calculate the loss
function.

The total energy loss spectrum consists of the quantum-
mechanical contribution of jellium electrons, Im ge, and the
absorption of the dielectric background Im gε in Eq. (8). There-
fore the total surface loss function of the metal-dielectrics
system reads

Im g(q,ω) = − q

2π
Im

∫
dz φ∗

eff(z,q,ω)δn(z,q,ω)

+ Im

[
γ

(
ε1 − ε2

ε1 + ε2
e−2qD + ε2 − 1

ε2 + 1

)]
. (19)
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Note that all the above relations hold for frequency-dependent
dielectric functions. For the special case with ε1 = ε2 = 1.0,
it reduces to the free-standing jellium slab we studied before.
This limiting case is useful for checking the code implemen-
tation. The sum rule for the surface response function30 is no
longer fulfilled with the dielectric background.

IV. COMPUTATIONAL RESULTS AND DISCUSSION

First, we apply the jellium-dielectrics model to 1 ML
of Al film on Si(111).4 The complex dielectric function of
silicon is taken from the optical measurement39 and its energy
dependence is interpolated to arbitrary frequencies using the
cubic spline method. The Al layer is simulated by a jellium
slab with electron density rs = 2.07 and D = 4.5 bohr for
the Al(111) surface. The thicknesses of the substrate and the
vacuum region are fixed at 41 bohr, which is converged for the
simulations of these regions.

The lower part of Fig. 2 shows the electron density
[Fig. 2(b)] and the effective potential [Fig. 2(c)] of the
free-standing (dashed lines) and supported (solid lines) Al ML
in the ground state. The Si substrate significantly reduces the
electronic potential in the substrate due to the static screening
of silicon (εSi = 11.65). As a result, the total electron densities
are spilled out toward the substrate, leading to charge transfer
into the substrate. Such a charge transfer is also found to
play a role in the surface plasmons5 of silver nanodisks. The
derivative of the electron potential is discontinuous at the
Si-Al interface due to the boundary condition. In contrast,
the electron density and effective potential of the Al-vacuum
interface are unaffected by the presence of the substrate for
such a thin film as 1 ML. A similar jellium-on-slab model was
used before in the study of charge transfer and work function
change of metal-semiconductor interfaces.24,25 The results in
Fig. 2 are in agreement with previous density functional theory
calculations with an atomic slab modeling the semiconductor
substrate.

Figure 3 displays the surface loss functions Im g(q,ω) at
different q values of the free-standing [Fig. 3(a)] and the
supported Al monolayer [Fig. 3(b)]. Classically, thin films gen-
erally support two surface plasmon modes, the symmetric (ω−)
and antisymmetric (ω+) modes, ω± = ωsp

√
1 ± exp(−qD),

where ωsp is the frequency of the surface plasmon. Both modes
show up in our quantum calculations in the upper panel, but are
split up due to the strong electronic interaction between the two
surfaces.11,12 The symmetric mode exhibits a large dispersion
from 3 eV at q = 0.038 Å−1 to 8 eV at q = 0.302 Å−1

and has high intensity at small q due to the fact that decays
into electron-hole pairs are forbidden in the low-energy regime
of the 2DEG. The high-energy branch appears as a broad
band at around 12 eV and shows little dispersion. It splits into
interband transitions at small q. In addition, a third mode is also
discernible at 5–6 eV without much dispersion. Parity-resolved
analysis shows that this mode consists of both the symmetric
and antisymmetric components. It is an electron-hole pair
type excitation. We should mention here that the symmetric
mode is broadened dramatically at q � 0.151 Å−1, due to the
onset of electron-hole pair excitations in this regime. Finally,
there is a weak mode of linear energy dispersion from 0 to
2 eV, which can be associated with the acoustic plasmon

(a)

(b)

FIG. 3. Surface loss functions Im g(q,ω) of the free-standing
(a) and supported (b) Al monolayer as functions of the excitation
energy ω and momentum transfer q. The dashed lines in (b) show
the surface loss function of the bare Si substrate without the Al
monolayer.

mode. Such a mode was theoretically predicted and has been
measured recently on Be(0001) (Ref. 40) and Au(111).41 It can
be associated with the collective density oscillations within
2D surface bands.42,43 In the case of an Al monolayer, this
collective mode can be attributed to density oscillations within
the two partially occupied bands as shown in Fig. 2(c). The
linear dispersion coefficient of the acoustic mode, 0.47 a.u., is
a little above the Fermi velocity of band 2 (vF = 0.39 a.u.),
but is consistent with the previous theory for noble metal
surfaces.43

For comparison, the loss functions of the supported film
[Fig. 3(b)] exhibit quite distinct features from those of free-
standing films. First of all, the antisymmetric mode becomes
much more prominent in the spectra, and its energy is slightly
redshifted. The large increase of intensity in the high-energy
region results from the contributions from the energy loss in
the silicon substrate, which is indicated by the dashed lines
in the same panel. The substrate contribution is especially
significant at small q, due to the deep penetration of the induced
potential. At increasing q, it decreases rapidly due to the decay
of the electron potential. In contrast, the symmetric mode is
strongly damped in intensity and its energy is substantially
redshifted by about 70%, which is comparable to a scaling
factor 1/

√
εSi + 1, as expected by the classical model. This

mode disappears as it enters the absorption region of Si above
2 eV. The weak mode of electron-hole excitations at 5–6 eV
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(a)

(b)

FIG. 4. Induced charge density of the symmetric ω− and
antisymmetric ω+ modes at q = 0.038 Å−1 as marked in
Fig. 3 for the free-standing (dashed lines) and supported (solid lines)
Al monolayer.

is still visible, but is much more broadened due to coupling
to the substrate. The acoustic plasmon peak becomes even
weaker due to the substrate screening. Comparison between
the isolated and supported films suggests that the effect of
the substrate is very different for different modes. It strongly
depends on the energy and symmetry of the electronic response
of each mode. This conclusion is very different from what is
usually expected and treated by classical models.

In order to gain insight into the mode-dependent screening
of the substrate, the induced electron densities of the symmetric
and antisymmetric mode at q = 0.038 Å−1 are shown in
Fig. 4. The induced density of the symmetric mode is clearly
polarized at the Si-Al interface, while that of the antisymmetric
mode is pushed toward the vacuum region. This polarization
can be understood from the plasmon hybridization model.11,44

The antisymmetric mode has thus roughly a frequency of
ω+ 
 ωp√

2
, the frequency of the surface plasmon, and is not

much affected by the presence of the silicon substrate. In
contrast, the frequency of the symmetric mode, which is
localized toward the substrate-metal interface, is substantially
redshifted as shown in Fig. 3. Charge polarization explains
why the two modes experience different screening in the
presence of the substrate. In addition, electron transfer to
the substrate, which reduces the effective electron density
of the Al monolayer, may also be responsible to the overall
redshifts of energies in both modes.

Figure 5 summarizes the dispersions of the surface plas-
mons for the free-standing and supported Al ML together with
comparison with experimental data and classical models.13

The energy dispersion of the antisymmetric mode at 11 eV,
which is the main feature of the energy loss functions, is in
excellent agreement with that measured by the experiment.
This mode shows a minor negative dispersion, which is
characteristic for the surface plasmons of free-electron-like
metals.37 Inclusion of substrate screening is essential to reach
better agreement with experiment for this mode, as the energies

FIG. 5. (Color online) Energy dispersions of the surface plasmons
for the free-standing (dashed lines) and supported (solid lines)
Al monolayer. The experimental data (+) are also plotted for
comparison. The classical dispersions (dotted lines) are obtained
by the Gadzuk model (Ref. 13) with the same dielectric function
for Si and a Drude model for the Al monolayer, where εAl(ω) =
1 − ω2

p/ω(ω + iη) with ωp = 15.82 eV and η = 27 meV. The gray
area indicates the region of (q,ω) plane where electron-hole pairs can
be created within the upper occupied state [band 2 in Fig. 2(c)] in the
supported Al monolayer.

of the free-standing films are higher by about 1 eV. The
symmetric mode between 1 and 2 eV, which is weak but
visible in the theoretical calculations, is not measured in the
loss spectra. This might indicate that our model does not fully
account for all possible effects in the low-energy regime.
Or perhaps the measurement in this regime is not sensitive
enough, because the calculation indicates that the symmetric
mode is indeed strongly damped. It is also known that the
low-energy mode is very sensitive to interface roughness and
in-plane scattering.45 It is interesting to note that the acoustic
plasmon is almost unaffected by the presence of the substrate.
In the experiment, a similar low-energy mode with linear
dispersion has been measured and might be assigned to the
acoustic plasmon mode. We should point out here that the
low-energy excitation is sensitive to the atomic bonding and
band structures of the interface, which are not fully included in
the present model. It remains interesting in the future to study
these low-energy modes using fully atomistic models together
with LR-TDLDA calculations.30

To see the evolution of the surface plasmons with thickness
in the presence of substrate, Fig. 6 shows the energy disper-
sions of the main surface mode ω+ for D = 1, 2, and 3 ML
of Al(111) on the silicon surface. It can be seen that all three
dispersions approach the same one at small q, due to the deep
penetration of the probing electrons. In this limit, the loss
function is completely dominated by the contribution from
the silicon substrate. At intermediate q = 0.1–0.3 Å−1, the
plasmon energies increase with the thickness. This blueshift
in energy reflects the change of free-electron densities in the
overlayers and the gradual reduction of substrate effects. This
trend for the supported films is opposite to the thickness
dependence of the free-standing films, where a redshift was
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FIG. 6. (Color online) Plasmon dispersions for the high-energy
mode of Al/Si(111) with thickness D = 1, 2, and 3 ML. The solid
line shows the plasmon dispersion of the Al(111) surface, modeled
by a thick jellium slab with D = 43 Å.

generally found as D increases.11 It is an indication of the
electron transfer at the interface, which absorbs a fraction
of free electrons into the substrate at 1 ML, reducing the
effective electron density in Al. The charge transfer becomes
less important in thicker films. In addition, as D increases, the
dynamical screening of the substrate also has less influence on
the ω+ mode, whose electron oscillations are localized mainly
at the Al-vacuum interface. At D � 3 ML, the dispersion of
the Al film approaches the surface plasmon of the semi-infinite
Al(111) surface, and the effect of the substrate gradually
disappears. This limit occurs earlier in the large-q regime,
and is obvious for q > 0.2 Å−1 at 3 ML. The evolution of
energy dispersion in Fig. 6 indicates the effects of interface
charge transfer and substrate screening on the surface plasmon
excitations. Such effects may generally occur in other types
of structure such as coated nanoparticles, nanoshells, and
molecular-metal interfaces.

V. SUMMARY

We have performed a joint experimental and theoretical
study of plasmon excitations of supported Al monolayer
on a Si substrate. A low-energy mode below 1 eV and a
high-energy one around 11 eV are found in the electron energy
loss spectra. Within the LR-TDLDA, we have developed
a jellium-dielectric model to treat the effect of substrate
screening on the plasmon excitations. The calculated energy
dispersion of the supported thin films is in good agreement
with the measured data. The high- and low-energy modes in the
measured spectra correspond to the antisymmetric mode and
the acoustic surface plasmon mode, respectively. The substrate
drastically modifies the electronic structure of the ground
state and the dynamic response to the external field. In the
ground state, the silicon substrate induces an electron transfer
from the metal to the substrate due to static screening. The
substrate also modifies the hybridization of surface plasmons.
The symmetric mode, whose charge oscillation is mainly
localized at the substrate-metal interface, is strongly damped

by the substrate. In contrast, the antisymmetric mode is much
less affected because its charge response is polarized toward
the vacuum region. Increasing film thickness leads to charge
transfer back to the film and blueshift of plasmon frequencies.
The strong damping of the symmetric mode also explains the
absence of the symmetric mode in the energy loss spectra.
These conclusions may be general to surface plasmons at
metal-semiconductor interfaces and in other types of structure.
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APPENDIX A: GROUND-STATE ELECTRONIC
STRUCTURE OF THE SUPPORTED FILMS

In this appendix, we present the solution of the ground-
state electronic structure of a supported jellium slab. The
translational symmetry parallel to the surfaces allows us to
solve the quantum-well states of the slab separately using the
following 1D Kohn-Sham equation:[

−1

2

d2

dz2
+ veff(z)

]
ψn(z) = εnψn(z), (A1)

where εn and ψn are the one-electron eigenenergy and wave
function, respectively. The effective electron potential veff(z)
consists of the electrostatic term ϕ(z) and the exchange-
correlation term vxc(z),

veff(z) = ϕ(z) + vxc(z). (A2)

Here vxc(z) is described within the local density approximation
by Wigner as used before11 and it does not depend on the
dielectric medium. The electrostatic potential ϕ(z) is obtained
by solving the Poisson equation,

∂

∂z

[
ε(z)

∂

∂z
ϕ(z)

]
= −4π [n(z) − nion(z)], (A3)

where n(z) and nion(z) are the densities of electrons and
positive ions, respectively. Equation (A3) implies continuation
of the electric displacement field at each interface z = zi =
±D/2,

ε(z−
i )ϕ′(z−

i ) = ε(z+
i )ϕ′(z+

i ). (A4)

The spatial dependence of the dielectric constant ε(z) is defined
by

ε(z) =

⎧⎪⎨
⎪⎩

ε1, z < −D/2,

ε2, −D/2 < z < D/2,

1, z > D/2.

(A5)

Here ε1 is the static dielectric constant of the substrate. We
also introduce ε2 in the jellium slab region to mimic possible
polarizations of the metal ion cores. The right-hand side of the
film is vacuum (ε = 1); the impact electrons come from there
in the EELS experiments. In this paper ε2 = 1.0 for Al has been
used, but it is kept as an arbitrary constant in our formulation.
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APPENDIX B: EVALUATION OF THE COULOMB KERNEL
FOR TDLDA CALCULATION

Here we derive the Coulomb kernel in the presence of
dielectrics. In general, the Coulomb kernel KC(r,r′) represents
an effective electric field at r, which is generated by a point
charge at r′. It can be obtained by solving the following Poisson
equation:

∇ · [ε(r,ω)∇KC(r,r′,ω)] = −4πδ(r − r′). (B1)

Due to the translational symmetry parallel to surfaces, KC is
expanded in terms of the transverse momentum q,

KC(r,r′,ω) = 1

4π2

∫
d2q eiq·(r‖−r′

‖)KC(z,z′,q,ω), (B2)

and the reduced one-dimensional Poisson equation can be
solved piecewise (for z �= ±D/2) with appropriate continuous
boundary conditions at the interfaces,

d2

dz2
KC(z,z′,q,ω) − q2KC(z,z′,q,ω) = − 4π

ε(z,ω)
δ(z − z′).

(B3)

For z′ < −D/2, the particular solution of Eq. (B3)
2π/(εq) exp(−q|z − z′|) exists only at z < −D/2 and the
whole solution can be formally written as

KC(z,z′,q,ω)

=

⎧⎪⎨
⎪⎩

2π
ε1q

e−q|z−z′ | + Aeqz + A′e−qz, z < −D
2 ,

Beqz + Ce−qz, −D
2 < z < D

2 ,

De−qz + D′eqz, z > D
2 .

(B4)

Here the coefficients A′ = D′ = 0 because of the asymp-
totic behavior that the field must vanish at z = ±∞. The
other four coefficients are determined by the boundary
conditions at the two interfaces z = ±D/2, where the
field and its first derivative must fulfill the continuity
conditions

2π

ε1q
eq(D/2+z′) + Ae−qD/2 = Be−qD/2 + CeqD/2,

−2πeq(D/2+z′) + ε1qAe−qD/2 = ε2qBe−qD/2 − ε2qCeqD/2,

BeqD/2 + Ce−qD/2 = De−qD/2,

ε2qBeqD/2 − ε2qCe−qD/2 = −qDe−qD/2.

Then the coefficients read

A = 2π

ε1q
γ

[
ε1 − ε2

ε1 + ε2
eq(z′+D) + ε2 − 1

ε2 + 1
eq(z′−D)

]
,

B = 2π

q

2γ

ε1 + ε2

ε2 − 1

ε2 + 1
eq(z′−D),

C = 2π

q

2γ

ε1 + ε2
eqz′

,

D = 2ε2

ε1 + ε2

2γ

ε2 + 1

2π

q
eqz′

,

where the variable γ is defined in Eq. (5).
Performing the same procedure for −D/2 < z′ < D/2 and

z′ > D/2, we can finally obtain the general form of the
Coulomb kernel,

KC(z,z′,q,ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π
ε1q

[
e−q|z−z′ | + γ ε1−ε2

ε1+ε2
eq(z+z′+D) + γ ε2−1

ε2+1eq(z+z′−D)
]
, z,z′ < −D

2 ,

2γ

ε1+ε2

2π
q

[
e−q(z−z′) + ε2−1

ε2+1eq(z+z′−D)
]
, −D

2 < z < D
2 ,z′ < −D

2 ,

2ε2
ε1+ε2

2γ

ε2+1
2π
q

e−q(z−z′), z > D
2 ,z′ < −D

2 ,

2γ

ε1+ε2

2π
q

[
eq(z−z′) + ε2−1

ε2+1eq(z+z′−D)
]
, z < −D

2 , − D
2 < z′ < D

2 ,

2π
ε2q

{
e−q|z−z′ | + γ ε2−1

ε2+1

[
eq(z+z′−D) + ε2−ε1

ε2+ε1
eq(z−z′−2D)

]
+ γ ε2−ε1

ε2+ε1

[
e−q(z+z′+D) + ε2−1

ε2+1e−q(z−z′+2D)
]}

, −D
2 < z,z′ < D

2 ,

2γ

ε2+1
2π
q

[
e−q(z−z′) + ε2−ε1

ε2+ε1
e−q(z+z′+D)

]
, z > D

2 , − D
2 < z′ < D

2 ,

2ε2
ε2+1

2γ

ε1+ε2

2π
q

eq(z−z′), z < −D
2 ,z′ > D

2 ,

2γ

ε2+1
2π
q

[
eq(z−z′) + ε2−ε1

ε2+ε1
e−q(z+z′+D)

]
, −D

2 < z < D
2 ,z′ > D

2 ,

2π
q

[
e−q|z−z′ | + γ 1−ε2

1+ε2
e−q(z+z′−D) + γ ε2−ε1

ε2+ε1
e−q(z+z′+D)

]
, z,z′ > D

2 .

(B5)

In contrast to the case of a free-standing jellium slab, the Coulomb kernel in the presence of dielectrics depends on the frequency
ω (through the frequency-dependent dielectric functions) and the thickness of the film D.
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