Comparison of Ergodic Capacities From Wideband MIMO Antenna Measurements in Reverberation Chamber and Anechoic Chamber

Xiaoming Chen, Per-Simon Kildal, Fellow, IEEE, Jan Carlsson, Member, IEEE, and Jian Yang, Senior Member, IEEE

Abstract—It has previously been shown that ergodic multiple-input–multiple-output (MIMO) capacity of a multiport antenna system can be conveniently determined from channel measurements in a reverberation chamber. In this letter, we compare such MIMO capacity results to results based on measurements in an anechoic chamber of the embedded far-field functions and efficiencies at all antenna ports. The comparison is performed over two-octaves bandwidth by using the decade bandwidth eleven antenna, a log-periodic dual-dipole array. The agreement between the reverberation chamber results and the anechoic chamber results is good over the entire frequency band 2–8 GHz.

Index Terms—Anechoic chamber, multiple-input–multiple-output (MIMO) capacity, reverberation chamber.

I. INTRODUCTION

MULTIPORT antenna systems have drawn considerable interest due to increased data transmission rate in multipath environments using multiple-input–multiple-output (MIMO) techniques [1]–[3]. In early MIMO literature, antenna elements in a multiport antenna system were assumed isotropic and lossless. The overall antenna effects were examined via impedance-matrix of the multiport antenna and open-circuit correlation (Z-parameter method) in [4]–[6]; using the complete scattering-parameter channel matrix between the transmitting and receiving sides of the MIMO communication system in [7] and [8]; and using both the numerical ray-based channel model and embedded element patterns in [10] and [11].

It was also shown in [10]–[13] that ergodic MIMO capacity can be readily determined from the channel measured in a reverberation chamber, which intrinsically includes all effects of ohmic losses in the antenna and mutual coupling between its ports. There is an alternative way to compute the MIMO capacity using a numerically generated channel matrix (as in [4]–[7]) together with efficiencies and correlations obtained from anechoic chamber measurements. Therefore, the purpose of this letter is to compare and verify the calculated capacities based on measurements in the two chambers. Measurement of an embedded far-field functions anechoic chamber is quite laborious compared to the fast channel measurement in a reverberation chamber. In addition, the anechoic measurement needs to be accomplished by numerically generated channels. The measurements are done by using a bandwidth eleven antenna, which is a log-periodic dual-dipole array with up to eight ports [14].

The work is of particular interest because both the reverberation chamber and anechoic chamber are being considered for standardization of so-called over-the-air (OTA) measurements for characterization of active wireless MIMO stations.

II. MIMO CAPACITY

We assume that the receiver has perfect channel state information (CSI) and that transmitted power is equally allocated among transmitting antenna elements. The maximum available capacity of the multiport antenna system can then be expressed as [1]

\[
C_{N_r \times N_t} = E \left\{ \log_2 \left[\det \left(\mathbf{I}_{N_t} + \frac{\gamma}{N_t} \mathbf{H}_{N_r \times N_t} \mathbf{H}^H_{N_t \times N_r} \right) \right] \right\}
\] (1)

where \(\gamma \) is signal-to-noise ratio (SNR), the superscript \(H \) is Hermitian operator, \(\mathbf{H}_{N_r \times N_t} \) is the channel matrix, \(N_t \) and \(N_r \) are the number of transmitting and receiving antennas, respectively, and \(E \) is statistical expectation taken over samples of the channel matrix describing the fading. The subscripts in (1) will be dropped hereafter for conciseness. \(\mathbf{H} \) is normalized so that its Frobenius norm satisfies \(\| \mathbf{H} \|_F^2 = N_r N_t \).

The antenna under test is a compact power-balanced two-port antenna in the receive end of the MIMO systems. Therefore, it is judicious to assume ideal transmitting antennas with unity efficiency and no correlation. The overall antenna effects can be included using the Z-parameter method [4]–[6], but only by assuming lossless multiport antenna in single-mode operation. We instead use the following resulting compact formulation in which the values of correlation and efficiency are explicitly shown:

\[
C = E \left\{ \log_2 \left[\det \left(\mathbf{I} + \frac{\gamma}{N_t} \mathbf{\Phi}_{\text{emb}} \mathbf{H} \mathbf{H}^H \right) \right] \right\}
\] (2)
where e_{emb} is average total embedded radiation efficiency [10] of receive antenna ports, and Φ^{rnc}_{ρ} is the correlation matrix. This takes, for a two-port antenna, the form

$$\Phi^{rnc}_{\rho} = \begin{bmatrix} 1 & \rho \\ \rho^* & 1 \end{bmatrix}$$

(3)

where ρ is the complex correlation between the two ports. The squared magnitude of the complex correlation is equal to the envelope correlation [15]. Note that (2) is only valid when two antenna ports have approximately the same embedded element efficiencies. The formula can readily be extended for more ports having different efficiencies. For a lossless antenna, both embedded radiation efficiency and correlation can be calculated using S-parameters measured in an anechoic chamber [9], [16], [17]. However, for general lossy multiport antenna, neither the Z-parameter method nor S-parameter method is valid. Then, the complex correlation must be calculated by using [15]

$$\rho = \frac{\int_{4\pi} G_{emb}^*(G_{emb})^* \, d\Omega}{\sqrt{\int_{4\pi} G_{emb}^*(G_{emb})^* \, d\Omega \cdot \int_{4\pi} G_{emb}^*(G_{emb})^* \, d\Omega}}$$

(4)

where G_{emb} is the complex embedded far-field function of the ith element ($i = 1, 2$), i.e., the far-field function when the other elements are present and terminated with the reference port impedance, normally 50 Ω. Both the embedded radiation efficiencies and the embedded far-field functions can be obtained from anechoic chamber measurements at all ports. This method is called the embedded far-field function method. It can be used both for lossy and lossless antennas.

III. MEASUREMENTS

The measurements were done using the wideband so-called eleven antenna described in [14] and shown in Fig. 1. In this letter, the four ports for one polarization of the eleven antenna, shown in Fig. 1, are combined to two ports for one polarization, as shown in Fig. 2, by using two wideband 180$^\circ$ hybrids. The result is a two-port antenna with ports P1 and P2 at which capacity is calculated. Each of the ports therefore corresponds to one log-periodic dipole array (one petal), and the log-periodic dipole arrays of the two ports P1 and P2 are parallel. The 180$^\circ$ hybrids have losses between 1.4 dB at 2 GHz and 3 dB at 8 GHz.

A. In Reverberation Chamber

The Bluetest HP reverberation chamber is used for the measurement. It has a size of $1.75 \times 1.25 \times 1.8$ m3 and is provided with two plate stirrers and platform and polarization stirring [11]. In the measurements, the platform was moved stepwisely to 20 positions spaced by 18$^\circ$, and for each platform position, each of the two plates moves stepwisely and simultaneously to 10 positions, evenly distributed along the total distance they can move. At each stirrer position and for each of the three wall antennas, the vector network analyzer performed a frequency sweep to sample the channel transfer functions and antenna reflection coefficients as a function of frequency (and stirrer position). Therefore, for each receiving and transmitting antenna element pair, there are 200 samples per frequency point. In order to improve measurement accuracy, 20-MHz frequency stirring (for post-processing) [11] is used. A well-stirred reverberation chamber emulates a rich isotropic multipath environment [11]. It has been shown that ergodic MIMO capacity can be easily determined from reverberation chamber measurement [10]–[13]. First, the average power transfer function is measured using a reference antenna with known total radiation efficiency. The averaging is done over all the stirring samples. The reference level, P_{ref}, is obtained by dividing the average power level with the total radiation efficiency of the reference antenna. The reverberation chamber has three wall antennas, giving the channel matrix $H_{2\times3}$ as a function of frequency and stirrer positions, so we chose to evaluate a 2×3 MIMO system from the measured data.

For convenience, we introduce the following notation for the normalized measured channel matrix:

$$H_{meas} = \frac{H_{2\times3}}{\sqrt{P_{ref}}}$$

(5)

The MIMO capacity can now be computed from the measured H-matrix by using

$$C = E \left\{ \log_2 \left[\det \left(I + \frac{\gamma}{N_t} H_{meas} H_{meas}^H \right) \right] \right\}$$

(6)

where the expectation is taken over all channel samples. Note that the reverberation chamber attenuation and the total radiation efficiency of the wall antennas (transmit side) are calibrated out by (5). Since the three wall antennas in the reverberation chamber are located far away (more than several wavelengths at lowest frequency) from each other on three orthogonal walls, the correlations between them are negligible [11], [15]. Complex correlation in a reverberation chamber can be easily calculated using

$$\rho = \frac{R(1,2)}{\sqrt{R(1,1)R(2,2)}}$$

$$R = E\{(H_{meas}^H - E[H_{meas}]) (H_{meas} - E[H_{meas}])^H\}$$

(7)

where R is covariance matrix.
Fig. 3. Comparison of magnitudes of complex correlations calculated from measured embedded far-field functions in the anechoic chamber and MIMO channels in the reverberation chamber.

B. In Anechoic Chamber

The embedded far-field functions and efficiencies of the eleven antenna were measured in an anechoic chamber (with angular step of 1°) at the Technical University of Denmark (DTU), Lyngby, Denmark. During measurement, the eleven antenna is rotated by an azimuth positioner, and the full-sphere near-field signal is measured on a regular grid by a dual-polarized probe located about 6 m away. The measured signal is then transformed to the far field using the spherical wave expansion and properly correcting for the probe characteristics [18].

C. Results

Fig. 3 compares magnitudes of complex correlations calculated using both embedded far-field functions (4) measured in the anechoic chamber and the correlation obtained from the measured channels in the reverberation chamber (7). As expected, the correlations measured in the anechoic chamber and reverberation chamber agree well with each other. Fig. 4 shows a comparison of embedded radiation efficiencies measured in the anechoic chamber and reverberation chamber. As expected, embedded radiation efficiencies measured in anechoic and reverberation chambers agree well with each other.

Fig. 5 shows the final capacities evaluated from anechoic chamber measurements (embedded far-field functions and efficiencies) and reverberation chamber measurements (MIMO channels) as a function of frequency from 2 to 8 GHz at an SNR of γ = 10 dB. There is good agreement between embedded far-field function method and reverberation chamber measurement over all frequencies. The slightly decreasing capacity when the frequency increases is due to the fact that the embedded radiation efficiency slightly degrades with increasing frequency.

D. Measurement Uncertainty

In Section II, it was shown that capacity depends on efficiencies and correlations. Thus, the uncertainty of measured capacity depends on the uncertainty of the measured efficiencies and correlations. At high SNR regime, capacity is given by [1]

\[C = K \log_2 \gamma_{\text{eff}} + o(1) \]

where \(\gamma_{\text{eff}} = \gamma e_{\text{emb}} \) is effective SNR [13], \(K \) denotes the rank of \(\mathbf{H} \), and \(o(1) \) vanish at high SNR. While correlation (uncertainty) implicitly affects capacity via \(K \), efficiency uncertainty affects capacity explicitly by \(\Delta \gamma_{\text{eff}} = \gamma \Delta e_{\text{emb}} \), where \(\Delta e_{\text{emb}} \) is the estimated efficiency error. Using Taylor expansion of (8), the estimated capacity error can easily be derived, giving

\[\Delta C = \frac{K}{\gamma_{\text{eff}} \ln 2} \Delta \gamma_{\text{eff}} = \frac{K}{e_{\text{emb}} \ln 2} \Delta e_{\text{emb}}. \]

However, it is well known that correlation smaller than 0.5 (see Fig. 3) has little effect on diversity or MIMO performance [11], [15]. Neglecting correlation uncertainty, the
uncertainty, or standard derivation (STD), of capacity is proportional to the uncertainty (STD) of efficiency. It would be impractically time-consuming to determine the uncertainty of measured capacity by repeating the measurement procedure many times for measurement in either chamber. Instead, we will determine the uncertainty based on (2) using numerically generated random channels. The STD of efficiencies measured in the Bluetest reverberation chamber is better than 0.5 dB [19], whereas in the anechoic chamber at DTU it is approximately 0.2 dB [18]. For each ergodic capacity simulation, we introduce a random efficiency error with corresponding uncertainty. By repeating this procedure 50 times, we can calculate the STD of the estimated capacity error. It is found that the 0.5-dB efficiency uncertainty of the reverberation chamber gives a capacity STD of 0.12 b/s/Hz, and that the 0.2-dB efficiency uncertainty in the anechoic chamber gives a capacity STD of 0.05 b/s/Hz (at 10 dB SNR). The STD (over frequency) of correlation difference between reverberation and anechoic chamber measurements is 0.08, which means that the correlation STD in either chamber is smaller than 0.08. Using a similar simulation procedure, it is found that correlation uncertainty of 0.08 gives a capacity STD of 0.012 b/s/Hz, which is much smaller than the contribution from the efficiency STD. There are other minor contributions to the system error. However, the efficiency uncertainty is found to be the major contribution to capacity uncertainty.

The time used to actually perform the actual measurements covering the whole frequency range was 1.5 h in the reverberation chamber and 10 h in the anechoic chamber. The better accuracy of the anechoic chamber measurement is achieved at the expense of much longer measurement time. Nevertheless, it needs to be mentioned that the capacity uncertainties in the reverberation chamber are small already.

IV. CONCLUSION

We have compared anechoic chamber and reverberation chamber measurements of ergodic capacity of a MIMO system using an eleven antenna. The far-field functions and efficiencies measured in the anechoic chamber and channel matrices measured in the reverberation chamber give approximately the same results. However, for anechoic chamber measurements, it is necessary to generate the channel matrix numerically and correct it with efficiency and correlation, and the measurement is quite laborious. Note that it is also possible in an anechoic chamber to generate a MIMO fading scenario over the antenna under test. However, this requires a large number of phase- and amplitude-controlled transmitting antennas that considerably increase the price, complexity, and testing times of the system. In contrast, reverberation chambers directly provide the fading channels, including the effects of efficiency, mutual coupling, and correlation. The present study has been done over 2–8 GHz by using the decade bandwidth eleven antenna. Good measurement accuracies are observed in both chambers (anechoic chamber measurement gives better accuracy, but needs more measurement time). The results indicate that this and similar wideband multiport antennas may be conveniently used to compare performances of different types of chambers.

REFERENCES